/**************************************************************************** ** ** Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB). ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the Qt3D module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "sphere_p.h" #include #include #include #include QT_BEGIN_NAMESPACE namespace { // Algorithms taken from Real-time collision detection, p178-179 // Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting, // returns true and intersection point q; false otherwise bool intersectRaySphere(const Qt3DRender::RayCasting::QRay3D &ray, const Qt3DRender::Render::Sphere &s, Vector3D *q = nullptr) { if (s.isNull()) return false; const Vector3D p = ray.origin(); const Vector3D d = ray.direction(); const Vector3D m = p - s.center(); const float c = Vector3D::dotProduct(m, m) - s.radius() * s.radius(); // If there is definitely at least one real root, there must be an intersection if (q == nullptr && c <= 0.0f) return true; const float b = Vector3D::dotProduct(m, d); // Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) if (c > 0.0f && b > 0.0f) return false; const float discr = b*b - c; // A negative discriminant corresponds to ray missing sphere if (discr < 0.0f) return false; // If we don't need the intersection point, return early if (q == nullptr) return true; // Ray now found to intersect sphere, compute smallest t value of intersection float t = -b - sqrt(discr); // If t is negative, ray started inside sphere so clamp t to zero if (t < 0.0f) t = 0.0f; *q = p + t * d; return true; } inline void constructRitterSphere(Qt3DRender::Render::Sphere &s, const QList &points) { //def bounding_sphere(points): // dist = lambda a,b: ((a[0] - b[0])**2 + (a[1] - b[1])**2 + (a[2] - b[2])**2)**0.5 // x = points[0] // y = max(points,key= lambda p: dist(p,x) ) // z = max(points,key= lambda p: dist(p,y) ) // bounding_sphere = (((y[0]+z[0])/2,(y[1]+z[1])/2,(y[2]+z[2])/2), dist(y,z)/2) // // exterior_points = [p for p in points if dist(p,bounding_sphere[0]) > bounding_sphere[1] ] // while ( len(exterior_points) > 0 ): // pt = exterior_points.pop() // if (dist(pt, bounding_sphere[0]) > bounding_sphere[1]): // bounding_sphere = (bounding_sphere[0],dist(pt,bounding_sphere[0])) // // return bounding_sphere const Vector3D x = points[0]; const Vector3D y = *std::max_element(points.begin(), points.end(), [&x](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - x).lengthSquared() < (rhs - x).lengthSquared(); }); const Vector3D z = *std::max_element(points.begin(), points.end(), [&y](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - y).lengthSquared() < (rhs - y).lengthSquared(); }); const Vector3D center = (y + z) * 0.5f; const Vector3D maxDistPt = *std::max_element(points.begin(), points.end(), [¢er](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - center).lengthSquared() < (rhs - center).lengthSquared(); }); const float radius = (maxDistPt - center).length(); s.setCenter(center); s.setRadius(radius); } } // anonymous namespace namespace Qt3DRender { namespace Render { const float Sphere::ms_epsilon = 1.0e-7f; Sphere Sphere::fromPoints(const QList &points) { Sphere s; s.initializeFromPoints(points); return s; } void Sphere::initializeFromPoints(const QList &points) { if (!points.isEmpty()) constructRitterSphere(*this, points); } void Sphere::expandToContain(const Vector3D &p) { if (isNull()) { m_center = p; m_radius = 0.0f; return; } const Vector3D d = p - m_center; const float dist2 = d.lengthSquared(); if (dist2 > m_radius * m_radius) { // Expand radius so sphere also contains p const float dist = sqrt(dist2); const float newRadius = 0.5f * (m_radius + dist); const float k = (newRadius - m_radius) / dist; m_radius = newRadius; m_center += k * d; } } void Sphere::expandToContain(const Sphere &sphere) { if (isNull()) { *this = sphere; return; } else if (sphere.isNull()) { return; } const Vector3D d(sphere.m_center - m_center); const float dist2 = d.lengthSquared(); const float dr = sphere.m_radius - m_radius; if (dr * dr >= dist2) { // Larger sphere encloses the smaller. Set our size to the larger if (m_radius > sphere.m_radius) return; else *this = sphere; } else { // The spheres are overlapping or disjoint const float dist = sqrt(dist2); const float newRadius = 0.5f * (dist + m_radius + sphere.m_radius); if (dist > ms_epsilon) m_center += d * (newRadius - m_radius) / dist; m_radius = newRadius; } } Sphere Sphere::transformed(const Matrix4x4 &mat) const { if (isNull()) return *this; // Transform extremities in x, y, and z directions to find extremities // of the resulting ellipsoid Vector3D x = mat.map(m_center + Vector3D(m_radius, 0.0f, 0.0f)); Vector3D y = mat.map(m_center + Vector3D(0.0f, m_radius, 0.0f)); Vector3D z = mat.map(m_center + Vector3D(0.0f, 0.0f, m_radius)); // Transform center and find maximum radius of ellipsoid Vector3D c = mat.map(m_center); float rSquared = qMax(qMax((x - c).lengthSquared(), (y - c).lengthSquared()), (z - c).lengthSquared()); return Sphere(c, sqrt(rSquared), id()); } Qt3DCore::QNodeId Sphere::id() const { return m_id; } bool Sphere::intersects(const RayCasting::QRay3D &ray, Vector3D *q, Vector3D *uvw) const { Q_UNUSED(uvw); return intersectRaySphere(ray, *this, q); } Sphere::Type Sphere::type() const { return RayCasting::QBoundingVolume::Sphere; } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const Sphere &sphere) { QDebugStateSaver saver(dbg); dbg.nospace() << "Sphere(center(" << sphere.center().x() << ", " << sphere.center().y() << ", " << sphere.center().z() << ") - radius(" << sphere.radius() << "))"; return dbg; } #endif } // Render } // Qt3DRender QT_END_NAMESPACE