/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/ ** ** This file is part of the Qt3D module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qbox3d.h" #include "qplane3d.h" #include #include QT_BEGIN_NAMESPACE /*! \class QBox3D \brief The QBox3D class represents an axis-aligned box in 3D space. \since 4.8 \ingroup qt3d \ingroup qt3d::math QBox3D can be used to represent the bounding box of objects in a 3D scene so that they can be easily culled if they are out of view. The sides of the box are always aligned with the x, y, and z axes of the world co-ordinate system. Transforming a box with transformed() will result in the smallest axis-aligned bounding box that contains the transformed box. Boxes may be null, finite, or infinite. A null box does not occupy any space and does not intersect with any other box. A finite box consists of a minimum() and maximum() extent in 3D space. An infinite box encompasses all points in 3D space. The extents of a finite box are also included within the box. A box with minimum() and maximum() set to the same value contains a single point. */ /*! \fn QBox3D::QBox3D() Constructs a null box in 3D space. \sa isNull() */ /*! \fn QBox3D::QBox3D(const QVector3D& corner1, const QVector3D& corner2) Constructs a finite box in 3D space from \a corner1 to \a corner2. The minimum() and maximum() co-ordinates of the new box are set to the minimum and maximum x, y, and z values from \a corner1 and \a corner2. The \a corner1 and \a corner2 values can be any two opposite corners that define the box. \sa isFinite(), minimum(), maximum() */ /*! \fn bool QBox3D::isNull() const Returns true if this box is null; false otherwise. \sa isFinite(), isInfinite(), setToNull() */ /*! \fn bool QBox3D::isFinite() const Returns true if this box is finite in size; false otherwise. \sa isNull(), isInfinite(), setExtents() */ /*! \fn bool QBox3D::isInfinite() const Returns true if this box is infinite in size; false otherwise. \sa isNull(), isFinite(), setToInfinite() */ /*! \fn QVector3D QBox3D::minimum() const Returns the minimum corner of this box. \sa maximum(), setExtents() */ /*! \fn QVector3D QBox3D::maximum() const Returns the maximum corner of this box. \sa minimum(), setExtents() */ /*! \fn void QBox3D::setExtents(const QVector3D& corner1, const QVector3D& corner2) Sets the extents of this box to a finite region from \a corner1 to \a corner2. The minimum() and maximum() co-ordinates of the box are set to the minimum and maximum x, y, and z values from \a corner1 and \a corner2. The \a corner1 and \a corner2 values can be any two opposite corners that define the box. \sa minimum(), maximum() */ /*! \fn void QBox3D::setToNull() Sets this box to null. \sa isNull() */ /*! \fn void QBox3D::setToInfinite() Sets this box to be infinite in size. \sa isInfinite() */ /*! \fn QVector3D QBox3D::size() const Returns the finite size of this box. If this box is null or infinite, the returned value will be zero. \sa center(), isNull(), isInfinite() */ /*! \fn QVector3D QBox3D::center() const Returns the finite center of this box. If this box is null or infinite, the returned value will be zero. \sa size(), isNull(), isInfinite() */ /*! \fn bool QBox3D::contains(const QVector3D& point) const Returns true if this box contains \a point; false otherwise. Null boxes do not contain any points and infinite boxes contain all points. Containment is not a strict test: the point is contained if it lies on one of the faces of the box. \sa intersects() */ /*! \fn bool QBox3D::contains(const QBox3D& box) const Returns true if this box completely contains \a box. If this box is null, then it will not contain \a box. If this box is infinite, and \a box is not null, then \a box will be contained within this box. If \a box is infinite, then this box must also be infinite to contain it. \sa intersects() */ /*! Returns true if \a box intersects this box; false otherwise. \sa intersect(), intersected(), contains() */ bool QBox3D::intersects(const QBox3D& box) const { if (boxtype == Null) return false; else if (boxtype == Infinite) return box.boxtype != Null; else if (box.boxtype == Null) return false; else if (box.boxtype == Infinite) return true; if (maxcorner.x() < box.mincorner.x()) return false; if (mincorner.x() > box.maxcorner.x()) return false; if (maxcorner.y() < box.mincorner.y()) return false; if (mincorner.y() > box.maxcorner.y()) return false; if (maxcorner.z() < box.mincorner.z()) return false; if (mincorner.z() > box.maxcorner.z()) return false; return true; } /*! Returns true if \a ray intersects this box; false otherwise. \sa intersection() */ bool QBox3D::intersects(const QRay3D &ray) const { qreal minimum_t, maximum_t; return intersection(ray, &minimum_t, &maximum_t); } static inline void trackIntersectionX (const QBox3D &box, const QRay3D &ray, qreal t, qreal *minimum_t, qreal *maximum_t, bool *found) { QVector3D point = ray.point(t); if (point.y() < box.minimum().y() || point.y() > box.maximum().y()) return; if (point.z() < box.minimum().z() || point.z() > box.maximum().z()) return; if (!(*found)) { *minimum_t = *maximum_t = t; *found = true; } else { if (t < *minimum_t) *minimum_t = t; if (t > *maximum_t) *maximum_t = t; } } static inline void trackIntersectionY (const QBox3D &box, const QRay3D &ray, qreal t, qreal *minimum_t, qreal *maximum_t, bool *found) { QVector3D point = ray.point(t); if (point.x() < box.minimum().x() || point.x() > box.maximum().x()) return; if (point.z() < box.minimum().z() || point.z() > box.maximum().z()) return; if (!(*found)) { *minimum_t = *maximum_t = t; *found = true; } else { if (t < *minimum_t) *minimum_t = t; if (t > *maximum_t) *maximum_t = t; } } static inline void trackIntersectionZ (const QBox3D &box, const QRay3D &ray, qreal t, qreal *minimum_t, qreal *maximum_t, bool *found) { QVector3D point = ray.point(t); if (point.x() < box.minimum().x() || point.x() > box.maximum().x()) return; if (point.y() < box.minimum().y() || point.y() > box.maximum().y()) return; if (!(*found)) { *minimum_t = *maximum_t = t; *found = true; } else { if (t < *minimum_t) *minimum_t = t; if (t > *maximum_t) *maximum_t = t; } } /*! Finds the \a minimum_t and \a maximum_t values where \a ray intersects this box. Returns true if intersections were found; or false if there is no intersection. If \a minimum_t and \a maximum_t are set to the same value, then the intersection is at a corner or the volume of the box is zero. If the t values are negative, then the intersection occurs before the ray's origin point in the reverse direction of the ray. The \a minimum_t and \a maximum_t values can be passed to QRay3D::point() to determine the actual intersection points, as shown in the following example: \code qreal minimum_t, maximum_t; if (box.intersection(ray, &minimum_t, &maximum_t)) { qDebug() << "intersections at" << ray.point(minimum_t) << "and" << ray.point(maximum_t); } \endcode \sa intersects(), QRay3D::point() */ bool QBox3D::intersection(const QRay3D &ray, qreal *minimum_t, qreal *maximum_t) const { bool found = false; QVector3D origin = ray.origin(); QVector3D direction = ray.direction(); *minimum_t = *maximum_t = qSNaN(); if (boxtype == Finite) { if (direction.x() != 0.0f) { trackIntersectionX (*this, ray, (mincorner.x() - origin.x()) / direction.x(), minimum_t, maximum_t, &found); trackIntersectionX (*this, ray, (maxcorner.x() - origin.x()) / direction.x(), minimum_t, maximum_t, &found); } if (direction.y() != 0.0f) { trackIntersectionY (*this, ray, (mincorner.y() - origin.y()) / direction.y(), minimum_t, maximum_t, &found); trackIntersectionY (*this, ray, (maxcorner.y() - origin.y()) / direction.y(), minimum_t, maximum_t, &found); } if (direction.z() != 0.0f) { trackIntersectionZ (*this, ray, (mincorner.z() - origin.z()) / direction.z(), minimum_t, maximum_t, &found); trackIntersectionZ (*this, ray, (maxcorner.z() - origin.z()) / direction.z(), minimum_t, maximum_t, &found); } } return found; } /*! Returns the t value at which \a ray first intersects the sides of this box, or not-a-number if there is no intersection. When the \a ray intersects this box, the return value is a parametric value that can be passed to QRay3D::point() to determine the actual intersection point, as shown in the following example: \code qreal t = box.intersection(ray); QVector3D pt; if (qIsNaN(t)) { qWarning("no intersection occurred"); else pt = ray.point(t); \endcode The \a ray might intersect at two points - as the ray passes through the box - one on the near side, one on the far side; where near and far are relative to the origin point of the ray. This function only returns the near intersection point. Only positive values on the ray are considered. This means that if the origin point of the ray is inside the box, there is only one solution, not two. To get the other solution, simply change the sign of the ray's direction vector. If the origin point of the ray is outside the box, and the direction points away from the box, then there will be no intersection. When the ray does not intersect the box in the positive direction, or the box is not finite, then the return value is not-a-number. \sa intersects(), QRay3D::point() */ qreal QBox3D::intersection(const QRay3D &ray) const { qreal minimum_t, maximum_t; if (intersection(ray, &minimum_t, &maximum_t)) { if (minimum_t >= 0.0f) return minimum_t; else if (maximum_t >= 0.0f) return maximum_t; else return qSNaN(); } else { return qSNaN(); } } /*! Intersects this box with \a box. \sa intersected(), intersects(), unite() */ void QBox3D::intersect(const QBox3D& box) { // Handle the simple cases first. if (boxtype == Null) { // Null intersected with anything is null. return; } else if (boxtype == Infinite) { // Infinity intersected with a box is that box. *this = box; return; } else if (box.boxtype == Null) { // Anything intersected with null is null. setToNull(); return; } else if (box.boxtype == Infinite) { // Box intersected with infinity is the box. return; } // Intersect two finite boxes. QVector3D min1 = mincorner; QVector3D max1 = maxcorner; QVector3D min2 = box.mincorner; QVector3D max2 = box.maxcorner; if (min2.x() > min1.x()) min1.setX(min2.x()); if (min2.y() > min1.y()) min1.setY(min2.y()); if (min2.z() > min1.z()) min1.setZ(min2.z()); if (max2.x() < max1.x()) max1.setX(max2.x()); if (max2.y() < max1.y()) max1.setY(max2.y()); if (max2.z() < max1.z()) max1.setZ(max2.z()); if (min1.x() > max1.x() || min1.y() > max1.y() || min1.z() > max1.z()) { setToNull(); } else { mincorner = min1; maxcorner = max1; } } /*! Returns a new box which is the intersection of this box with \a box. \sa intersect(), intersects(), united() */ QBox3D QBox3D::intersected(const QBox3D& box) const { QBox3D result(*this); result.intersect(box); return result; } /*! Unites this box with \a point by expanding it to encompass \a point. If \a point is already contained within this box, then this box will be unchanged. \sa united(), intersect() */ void QBox3D::unite(const QVector3D& point) { if (boxtype == Finite) { if (point.x() < mincorner.x()) mincorner.setX(point.x()); else if (point.x() > maxcorner.x()) maxcorner.setX(point.x()); if (point.y() < mincorner.y()) mincorner.setY(point.y()); else if (point.y() > maxcorner.y()) maxcorner.setY(point.y()); if (point.z() < mincorner.z()) mincorner.setZ(point.z()); else if (point.z() > maxcorner.z()) maxcorner.setZ(point.z()); } else if (boxtype == Null) { boxtype = Finite; mincorner = point; maxcorner = point; } } /*! Unites this box with \a box by expanding this box to encompass the region defined by \a box. If \a box is already contained within this box, then this box will be unchanged. \sa united(), intersect() */ void QBox3D::unite(const QBox3D& box) { if (box.boxtype == Finite) { unite(box.minimum()); unite(box.maximum()); } else if (box.boxtype == Infinite) { setToInfinite(); } } /*! Returns a new box which unites this box with \a point. The returned value will be the smallest box that contains both this box and \a point. \sa unite(), intersected() */ QBox3D QBox3D::united(const QVector3D& point) const { if (boxtype == Finite) { QBox3D result(*this); result.unite(point); return result; } else if (boxtype == Null) { return QBox3D(point, point); } else { return *this; } } /*! Returns a new box which unites this box with \a box. The returned value will be the smallest box that contains both this box and \a box. \sa unite(), intersected() */ QBox3D QBox3D::united(const QBox3D& box) const { if (boxtype == Finite) { QBox3D result(*this); result.unite(box); return result; } else if (boxtype == Null) { return box; } else { return *this; } } /*! Transforms this box according to \a matrix. Each of the 8 box corners are transformed and then a new box that encompasses all of the transformed corner values is created. \sa transformed() */ void QBox3D::transform(const QMatrix4x4& matrix) { *this = transformed(matrix); } /*! Returns this box transformed by \a matrix. Each of the 8 box corners are transformed and then a new box that encompasses all of the transformed corner values is returned. \sa transform() */ QBox3D QBox3D::transformed(const QMatrix4x4& matrix) const { if (boxtype != Finite) return *this; QBox3D result; result.unite(matrix * mincorner); result.unite(matrix * QVector3D(mincorner.x(), mincorner.y(), maxcorner.z())); result.unite(matrix * QVector3D(mincorner.x(), maxcorner.y(), maxcorner.z())); result.unite(matrix * QVector3D(mincorner.x(), maxcorner.y(), mincorner.z())); result.unite(matrix * QVector3D(maxcorner.x(), mincorner.y(), mincorner.z())); result.unite(matrix * QVector3D(maxcorner.x(), maxcorner.y(), mincorner.z())); result.unite(matrix * QVector3D(maxcorner.x(), mincorner.y(), maxcorner.z())); result.unite(matrix * maxcorner); return result; } /*! \fn bool QBox3D::operator==(const QBox3D& box) const Returns true if this box is identical to \a box. */ /*! \fn bool QBox3D::operator!=(const QBox3D& box) const Returns true if this box is not identical to \a box. */ /*! \fn bool qFuzzyCompare(const QBox3D& box1, const QBox3D& box2) \relates QBox3D Returns true if \a box1 and \a box2 are almost equal; false otherwise. */ #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QBox3D &box) { if (box.isFinite()) { dbg.nospace() << "QBox3D((" << box.minimum().x() << ", " << box.minimum().y() << ", " << box.minimum().z() << ") - (" << box.maximum().x() << ", " << box.maximum().y() << ", " << box.maximum().z() << "))"; return dbg.space(); } else if (box.isNull()) { dbg << "QBox3D(null)"; return dbg; } else { dbg << "QBox3D(infinite)"; return dbg; } } #endif #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QBox3D &box) \relates QBox3D Writes the given \a box to the given \a stream and returns a reference to the stream. */ QDataStream &operator<<(QDataStream &stream, const QBox3D &box) { if (box.isNull()) { stream << int(0); } else if (box.isInfinite()) { stream << int(2); } else { stream << int(1); stream << box.minimum(); stream << box.maximum(); } return stream; } /*! \fn QDataStream &operator>>(QDataStream &stream, QBox3D &box) \relates QBox3D Reads a 3D box from the given \a stream into the given \a box and returns a reference to the stream. */ QDataStream &operator>>(QDataStream &stream, QBox3D &box) { int type; stream >> type; if (type == 1) { QVector3D minimum, maximum; stream >> minimum; stream >> maximum; box = QBox3D(minimum, maximum); } else if (type == 2) { box.setToInfinite(); } else { box.setToNull(); } return stream; } #endif // QT_NO_DATASTREAM QT_END_NAMESPACE