const int MAX_LIGHTS = 8; const int TYPE_POINT = 0; const int TYPE_DIRECTIONAL = 1; const int TYPE_SPOT = 2; struct Light { int type; vec3 position; vec3 color; float intensity; vec3 direction; float constantAttenuation; float linearAttenuation; float quadraticAttenuation; float cutOffAngle; }; uniform Light lights[MAX_LIGHTS]; uniform int lightCount; // Pre-convolved environment maps struct EnvironmentLight { samplerCube irradiance; // For diffuse contribution samplerCube specular; // For specular contribution }; uniform EnvironmentLight envLight; uniform int envLightCount = 0; void adsModelNormalMapped(const in vec3 worldPos, const in vec3 tsNormal, const in vec3 worldEye, const in float shininess, const in mat3 tangentMatrix, out vec3 diffuseColor, out vec3 specularColor) { diffuseColor = vec3(0.0); specularColor = vec3(0.0); // We perform all work in tangent space, so we convert quantities from world space vec3 tsPos = tangentMatrix * worldPos; vec3 n = normalize(tsNormal); vec3 v = normalize(tangentMatrix * (worldEye - worldPos)); vec3 s = vec3(0.0); for (int i = 0; i < lightCount; ++i) { float att = 1.0; float sDotN = 0.0; if (lights[i].type != TYPE_DIRECTIONAL) { // Point and Spot lights // Transform the light position from world to tangent space vec3 tsLightPos = tangentMatrix * lights[i].position; vec3 sUnnormalized = tsLightPos - tsPos; s = normalize(sUnnormalized); // Light direction in tangent space // Calculate the attenuation factor sDotN = dot(s, n); if (sDotN > 0.0) { if (lights[i].constantAttenuation != 0.0 || lights[i].linearAttenuation != 0.0 || lights[i].quadraticAttenuation != 0.0) { float dist = length(sUnnormalized); att = 1.0 / (lights[i].constantAttenuation + lights[i].linearAttenuation * dist + lights[i].quadraticAttenuation * dist * dist); } // The light direction is in world space, convert to tangent space if (lights[i].type == TYPE_SPOT) { // Check if fragment is inside or outside of the spot light cone vec3 tsLightDirection = tangentMatrix * lights[i].direction; if (degrees(acos(dot(-s, tsLightDirection))) > lights[i].cutOffAngle) sDotN = 0.0; } } } else { // Directional lights // The light direction is in world space, convert to tangent space s = normalize(tangentMatrix * -lights[i].direction); sDotN = dot(s, n); } // Calculate the diffuse factor float diffuse = max(sDotN, 0.0); // Calculate the specular factor float specular = 0.0; if (diffuse > 0.0 && shininess > 0.0) { float normFactor = (shininess + 2.0) / 2.0; vec3 r = reflect(-s, n); // Reflection direction in tangent space specular = normFactor * pow(max(dot(r, v), 0.0), shininess); } // Accumulate the diffuse and specular contributions diffuseColor += att * lights[i].intensity * diffuse * lights[i].color; specularColor += att * lights[i].intensity * specular * lights[i].color; } } void adsModel(const in vec3 worldPos, const in vec3 worldNormal, const in vec3 worldEye, const in float shininess, out vec3 diffuseColor, out vec3 specularColor) { diffuseColor = vec3(0.0); specularColor = vec3(0.0); // We perform all work in world space vec3 n = normalize(worldNormal); vec3 v = normalize(worldEye - worldPos); vec3 s = vec3(0.0); for (int i = 0; i < lightCount; ++i) { float att = 1.0; float sDotN = 0.0; if (lights[i].type != TYPE_DIRECTIONAL) { // Point and Spot lights // Light position is already in world space vec3 sUnnormalized = lights[i].position - worldPos; s = normalize(sUnnormalized); // Light direction // Calculate the attenuation factor sDotN = dot(s, n); if (sDotN > 0.0) { if (lights[i].constantAttenuation != 0.0 || lights[i].linearAttenuation != 0.0 || lights[i].quadraticAttenuation != 0.0) { float dist = length(sUnnormalized); att = 1.0 / (lights[i].constantAttenuation + lights[i].linearAttenuation * dist + lights[i].quadraticAttenuation * dist * dist); } // The light direction is in world space already if (lights[i].type == TYPE_SPOT) { // Check if fragment is inside or outside of the spot light cone if (degrees(acos(dot(-s, lights[i].direction))) > lights[i].cutOffAngle) sDotN = 0.0; } } } else { // Directional lights // The light direction is in world space already s = normalize(-lights[i].direction); sDotN = dot(s, n); } // Calculate the diffuse factor float diffuse = max(sDotN, 0.0); // Calculate the specular factor float specular = 0.0; if (diffuse > 0.0 && shininess > 0.0) { float normFactor = (shininess + 2.0) / 2.0; vec3 r = reflect(-s, n); // Reflection direction in world space specular = normFactor * pow(max(dot(r, v), 0.0), shininess); } // Accumulate the diffuse and specular contributions diffuseColor += att * lights[i].intensity * diffuse * lights[i].color; specularColor += att * lights[i].intensity * specular * lights[i].color; } } void adModel(const in vec3 worldPos, const in vec3 worldNormal, out vec3 diffuseColor) { diffuseColor = vec3(0.0); // We perform all work in world space vec3 n = normalize(worldNormal); vec3 s = vec3(0.0); for (int i = 0; i < lightCount; ++i) { float att = 1.0; float sDotN = 0.0; if (lights[i].type != TYPE_DIRECTIONAL) { // Point and Spot lights // Light position is already in world space vec3 sUnnormalized = lights[i].position - worldPos; s = normalize(sUnnormalized); // Light direction // Calculate the attenuation factor sDotN = dot(s, n); if (sDotN > 0.0) { if (lights[i].constantAttenuation != 0.0 || lights[i].linearAttenuation != 0.0 || lights[i].quadraticAttenuation != 0.0) { float dist = length(sUnnormalized); att = 1.0 / (lights[i].constantAttenuation + lights[i].linearAttenuation * dist + lights[i].quadraticAttenuation * dist * dist); } // The light direction is in world space already if (lights[i].type == TYPE_SPOT) { // Check if fragment is inside or outside of the spot light cone if (degrees(acos(dot(-s, lights[i].direction))) > lights[i].cutOffAngle) sDotN = 0.0; } } } else { // Directional lights // The light direction is in world space already s = normalize(-lights[i].direction); sDotN = dot(s, n); } // Calculate the diffuse factor float diffuse = max(sDotN, 0.0); // Accumulate the diffuse contributions diffuseColor += att * lights[i].intensity * diffuse * lights[i].color; } }