summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/DeboneProcess.cpp
blob: b43dcad84f78cb9563bbbad0a724898b78ffae35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2017, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/// @file DeboneProcess.cpp
/** Implementation of the DeboneProcess post processing step */



// internal headers of the post-processing framework
#include "ProcessHelper.h"
#include "DeboneProcess.h"
#include <stdio.h>


using namespace Assimp;

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
DeboneProcess::DeboneProcess()
{
    mNumBones = 0;
    mNumBonesCanDoWithout = 0;

    mThreshold = AI_DEBONE_THRESHOLD;
    mAllOrNone = false;
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
DeboneProcess::~DeboneProcess()
{
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool DeboneProcess::IsActive( unsigned int pFlags) const
{
    return (pFlags & aiProcess_Debone) != 0;
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void DeboneProcess::SetupProperties(const Importer* pImp)
{
    // get the current value of the property
    mAllOrNone = pImp->GetPropertyInteger(AI_CONFIG_PP_DB_ALL_OR_NONE,0)?true:false;
    mThreshold = pImp->GetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD,AI_DEBONE_THRESHOLD);
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void DeboneProcess::Execute( aiScene* pScene)
{
    DefaultLogger::get()->debug("DeboneProcess begin");

    if(!pScene->mNumMeshes) {
        return;
    }

    std::vector<bool> splitList(pScene->mNumMeshes);
    for( unsigned int a = 0; a < pScene->mNumMeshes; a++) {
        splitList[a] = ConsiderMesh( pScene->mMeshes[a] );
    }

    int numSplits = 0;

    if(!!mNumBonesCanDoWithout && (!mAllOrNone||mNumBonesCanDoWithout==mNumBones))  {
        for(unsigned int a = 0; a < pScene->mNumMeshes; a++)    {
            if(splitList[a]) {
                numSplits++;
            }
        }
    }

    if(numSplits)   {
        // we need to do something. Let's go.
        //mSubMeshIndices.clear();                  // really needed?
        mSubMeshIndices.resize(pScene->mNumMeshes); // because we're doing it here anyway

        // build a new array of meshes for the scene
        std::vector<aiMesh*> meshes;

        for(unsigned int a=0;a<pScene->mNumMeshes;a++)
        {
            aiMesh* srcMesh = pScene->mMeshes[a];

            std::vector<std::pair<aiMesh*,const aiBone*> > newMeshes;

            if(splitList[a]) {
                SplitMesh(srcMesh,newMeshes);
            }

            // mesh was split
            if(!newMeshes.empty())  {
                unsigned int out = 0, in = srcMesh->mNumBones;

                // store new meshes and indices of the new meshes
                for(unsigned int b=0;b<newMeshes.size();b++)    {
                    const aiString *find = newMeshes[b].second?&newMeshes[b].second->mName:0;

                    aiNode *theNode = find?pScene->mRootNode->FindNode(*find):0;
                    std::pair<unsigned int,aiNode*> push_pair(static_cast<unsigned int>(meshes.size()),theNode);

                    mSubMeshIndices[a].push_back(push_pair);
                    meshes.push_back(newMeshes[b].first);

                    out+=newMeshes[b].first->mNumBones;
                }

                if(!DefaultLogger::isNullLogger()) {
                    char buffer[1024];
                    ::ai_snprintf(buffer,1024,"Removed %u bones. Input bones: %u. Output bones: %u",in-out,in,out);
                    DefaultLogger::get()->info(buffer);
                }

                // and destroy the source mesh. It should be completely contained inside the new submeshes
                delete srcMesh;
            }
            else    {
                // Mesh is kept unchanged - store it's new place in the mesh array
                mSubMeshIndices[a].push_back(std::pair<unsigned int,aiNode*>(static_cast<unsigned int>(meshes.size()),(aiNode*)0));
                meshes.push_back(srcMesh);
            }
        }

        // rebuild the scene's mesh array
        pScene->mNumMeshes = static_cast<unsigned int>(meshes.size());
        delete [] pScene->mMeshes;
        pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
        std::copy( meshes.begin(), meshes.end(), pScene->mMeshes);

        // recurse through all nodes and translate the node's mesh indices to fit the new mesh array
        UpdateNode( pScene->mRootNode);
    }

    DefaultLogger::get()->debug("DeboneProcess end");
}

// ------------------------------------------------------------------------------------------------
// Counts bones total/removable in a given mesh.
bool DeboneProcess::ConsiderMesh(const aiMesh* pMesh)
{
    if(!pMesh->HasBones()) {
        return false;
    }

    bool split = false;

    //interstitial faces not permitted
    bool isInterstitialRequired = false;

    std::vector<bool> isBoneNecessary(pMesh->mNumBones,false);
    std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX);

    const unsigned int cUnowned = UINT_MAX;
    const unsigned int cCoowned = UINT_MAX-1;

    for(unsigned int i=0;i<pMesh->mNumBones;i++)    {
        for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++)   {
            float w = pMesh->mBones[i]->mWeights[j].mWeight;

            if(w==0.0f) {
                continue;
            }

            unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId;
            if(w>=mThreshold)   {

                if(vertexBones[vid]!=cUnowned)  {
                    if(vertexBones[vid]==i) //double entry
                    {
                        DefaultLogger::get()->warn("Encountered double entry in bone weights");
                    }
                    else //TODO: track attraction in order to break tie
                    {
                        vertexBones[vid] = cCoowned;
                    }
                }
                else vertexBones[vid] = i;
            }

            if(!isBoneNecessary[i]) {
                isBoneNecessary[i] = w<mThreshold;
            }
        }

        if(!isBoneNecessary[i])  {
            isInterstitialRequired = true;
        }
    }

    if(isInterstitialRequired) {
        for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
            unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]];

            for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) {
                unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]];

                if(v!=w)    {
                    if(v<pMesh->mNumBones) isBoneNecessary[v] = true;
                    if(w<pMesh->mNumBones) isBoneNecessary[w] = true;
                }
            }
        }
    }

    for(unsigned int i=0;i<pMesh->mNumBones;i++)    {
        if(!isBoneNecessary[i]) {
            mNumBonesCanDoWithout++;
            split = true;
        }

        mNumBones++;
    }
    return split;
}

// ------------------------------------------------------------------------------------------------
// Splits the given mesh by bone count.
void DeboneProcess::SplitMesh( const aiMesh* pMesh, std::vector< std::pair< aiMesh*,const aiBone* > >& poNewMeshes) const
{
    // same deal here as ConsiderMesh basically

    std::vector<bool> isBoneNecessary(pMesh->mNumBones,false);
    std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX);

    const unsigned int cUnowned = UINT_MAX;
    const unsigned int cCoowned = UINT_MAX-1;

    for(unsigned int i=0;i<pMesh->mNumBones;i++)    {
        for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++)   {
            float w = pMesh->mBones[i]->mWeights[j].mWeight;

            if(w==0.0f) {
                continue;
            }

            unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId;

            if(w>=mThreshold) {
                if(vertexBones[vid]!=cUnowned)  {
                    if(vertexBones[vid]==i) //double entry
                    {
                        //DefaultLogger::get()->warn("Encountered double entry in bone weights");
                    }
                    else //TODO: track attraction in order to break tie
                    {
                        vertexBones[vid] = cCoowned;
                    }
                }
                else vertexBones[vid] = i;
            }

            if(!isBoneNecessary[i]) {
                isBoneNecessary[i] = w<mThreshold;
            }
        }
    }

    unsigned int nFacesUnowned = 0;

    std::vector<unsigned int> faceBones(pMesh->mNumFaces,UINT_MAX);
    std::vector<unsigned int> facesPerBone(pMesh->mNumBones,0);

    for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
        unsigned int nInterstitial = 1;

        unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]];

        for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) {
            unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]];

            if(v!=w)    {
                if(v<pMesh->mNumBones) isBoneNecessary[v] = true;
                if(w<pMesh->mNumBones) isBoneNecessary[w] = true;
            }
            else nInterstitial++;
        }

        if(v<pMesh->mNumBones &&nInterstitial==pMesh->mFaces[i].mNumIndices)    {
            faceBones[i] = v; //primitive belongs to bone #v
            facesPerBone[v]++;
        }
        else nFacesUnowned++;
    }

    // invalidate any "cojoined" faces
    for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
        if(faceBones[i]<pMesh->mNumBones&&isBoneNecessary[faceBones[i]])
        {
            ai_assert(facesPerBone[faceBones[i]]>0);
            facesPerBone[faceBones[i]]--;

            nFacesUnowned++;
            faceBones[i] = cUnowned;
        }
    }

    if(nFacesUnowned) {
        std::vector<unsigned int> subFaces;

        for(unsigned int i=0;i<pMesh->mNumFaces;i++)    {
            if(faceBones[i]==cUnowned) {
                subFaces.push_back(i);
            }
        }

        aiMesh *baseMesh = MakeSubmesh(pMesh,subFaces,0);
        std::pair<aiMesh*,const aiBone*> push_pair(baseMesh,(const aiBone*)0);

        poNewMeshes.push_back(push_pair);
    }

    for(unsigned int i=0;i<pMesh->mNumBones;i++) {

        if(!isBoneNecessary[i]&&facesPerBone[i]>0)  {
            std::vector<unsigned int> subFaces;

            for(unsigned int j=0;j<pMesh->mNumFaces;j++)    {
                if(faceBones[j]==i) {
                    subFaces.push_back(j);
                }
            }

            unsigned int f = AI_SUBMESH_FLAGS_SANS_BONES;
            aiMesh *subMesh =MakeSubmesh(pMesh,subFaces,f);

            //Lifted from PretransformVertices.cpp
            ApplyTransform(subMesh,pMesh->mBones[i]->mOffsetMatrix);
            std::pair<aiMesh*,const aiBone*> push_pair(subMesh,pMesh->mBones[i]);

            poNewMeshes.push_back(push_pair);
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Recursively updates the node's mesh list to account for the changed mesh list
void DeboneProcess::UpdateNode(aiNode* pNode) const
{
    // rebuild the node's mesh index list

    std::vector<unsigned int> newMeshList;

    // this will require two passes

    unsigned int m = static_cast<unsigned int>(pNode->mNumMeshes), n = static_cast<unsigned int>(mSubMeshIndices.size());

    // first pass, look for meshes which have not moved

    for(unsigned int a=0;a<m;a++)   {

        unsigned int srcIndex = pNode->mMeshes[a];
        const std::vector< std::pair< unsigned int,aiNode* > > &subMeshes = mSubMeshIndices[srcIndex];
        unsigned int nSubmeshes = static_cast<unsigned int>(subMeshes.size());

        for(unsigned int b=0;b<nSubmeshes;b++) {
            if(!subMeshes[b].second) {
                newMeshList.push_back(subMeshes[b].first);
            }
        }
    }

    // second pass, collect deboned meshes

    for(unsigned int a=0;a<n;a++)
    {
        const std::vector< std::pair< unsigned int,aiNode* > > &subMeshes = mSubMeshIndices[a];
        unsigned int nSubmeshes = static_cast<unsigned int>(subMeshes.size());

        for(unsigned int b=0;b<nSubmeshes;b++) {
            if(subMeshes[b].second == pNode)    {
                newMeshList.push_back(subMeshes[b].first);
            }
        }
    }

    if( pNode->mNumMeshes > 0 ) {
        delete [] pNode->mMeshes; pNode->mMeshes = NULL;
    }

    pNode->mNumMeshes = static_cast<unsigned int>(newMeshList.size());

    if(pNode->mNumMeshes)   {
        pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
        std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes);
    }

    // do that also recursively for all children
    for( unsigned int a = 0; a < pNode->mNumChildren; ++a ) {
        UpdateNode( pNode->mChildren[a]);
    }
}

// ------------------------------------------------------------------------------------------------
// Apply the node transformation to a mesh
void DeboneProcess::ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)const
{
    // Check whether we need to transform the coordinates at all
    if (!mat.IsIdentity()) {

        if (mesh->HasPositions()) {
            for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
                mesh->mVertices[i] = mat * mesh->mVertices[i];
            }
        }
        if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) {
            aiMatrix4x4 mWorldIT = mat;
            mWorldIT.Inverse().Transpose();

            // TODO: implement Inverse() for aiMatrix3x3
            aiMatrix3x3 m = aiMatrix3x3(mWorldIT);

            if (mesh->HasNormals()) {
                for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
                    mesh->mNormals[i] = (m * mesh->mNormals[i]).Normalize();
                }
            }
            if (mesh->HasTangentsAndBitangents()) {
                for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
                    mesh->mTangents[i]   = (m * mesh->mTangents[i]).Normalize();
                    mesh->mBitangents[i] = (m * mesh->mBitangents[i]).Normalize();
                }
            }
        }
    }
}