summaryrefslogtreecommitdiffstats
path: root/src/animation/backend/animationutils.cpp
blob: 7e21cba3ad89766f84407b8d2114e5654a79da03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/****************************************************************************
**
** Copyright (C) 2017 Klaralvdalens Datakonsult AB (KDAB).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "animationutils_p.h"
#include <Qt3DAnimation/private/handler_p.h>
#include <Qt3DAnimation/private/managers_p.h>
#include <Qt3DAnimation/private/clipblendnode_p.h>
#include <Qt3DAnimation/private/clipblendnodevisitor_p.h>
#include <Qt3DAnimation/private/clipblendvalue_p.h>
#include <QtGui/qvector2d.h>
#include <QtGui/qvector3d.h>
#include <QtGui/qvector4d.h>
#include <QtGui/qquaternion.h>
#include <QtGui/qcolor.h>
#include <QtCore/qvariant.h>
#include <QtCore/qvarlengtharray.h>
#include <Qt3DAnimation/private/animationlogging_p.h>

#include <numeric>

QT_BEGIN_NAMESPACE

namespace {
const auto slerpThreshold = 0.01f;
}

namespace Qt3DAnimation {
namespace Animation {

inline QVector<float> valueToVector(const QVector3D &value)
{
    return { value.x(), value.y(), value.z() };
}

inline QVector<float> valueToVector(const QQuaternion &value)
{
    return { value.scalar(), value.x(), value.y(), value.z() };
}

ClipEvaluationData evaluationDataForClip(AnimationClip *clip,
                                         const AnimatorEvaluationData &animatorData)
{
    // global time values expected in seconds
    ClipEvaluationData result;
    result.currentLoop = animatorData.currentLoop;
    result.localTime = localTimeFromElapsedTime(animatorData.currentTime, animatorData.elapsedTime,
                                                animatorData.playbackRate, clip->duration(),
                                                animatorData.loopCount, result.currentLoop);
    result.isFinalFrame = isFinalFrame(result.localTime, clip->duration(),
                                       result.currentLoop, animatorData.loopCount,
                                       animatorData.playbackRate);
    const bool hasNormalizedTime = isValidNormalizedTime(animatorData.normalizedLocalTime);
    result.normalizedLocalTime = hasNormalizedTime ? animatorData.normalizedLocalTime
                                                   : result.localTime / clip->duration();
    return result;
}

double localTimeFromElapsedTime(double t_current_local,
                                double t_elapsed_global,
                                double playbackRate,
                                double duration,
                                int loopCount,
                                int &currentLoop)
{
    // Calculate the new local time.
    // playhead + rate * dt
    // where playhead is completed loops * duration + current loop local time
    double t_local = currentLoop * duration + t_current_local + playbackRate * t_elapsed_global;
    double loopNumber = 0;
    if (loopCount == 1) {
        t_local = qBound(0.0, t_local, duration);
    } else if (loopCount < 0) {
        // Loops forever
        (void) std::modf(t_local / duration, &loopNumber);
        t_local = std::fmod(t_local, duration);
    } else {
        // N loops
        t_local = qBound(0.0, t_local, double(loopCount) * duration);
        (void) std::modf(t_local / duration, &loopNumber);
        t_local = std::fmod(t_local, duration);

        // Ensure we clamp to end of final loop

        if (int(loopNumber) == loopCount || int(loopNumber) < 0) {
            loopNumber = loopCount - 1;
            t_local = playbackRate >= 0.0 ? duration : 0.0;
        }
    }

    qCDebug(Jobs) << "current loop =" << loopNumber
                  << "t =" << t_local
                  << "duration =" << duration;

    currentLoop = int(loopNumber);

    return t_local;
}

double phaseFromElapsedTime(double t_current_local,
                            double t_elapsed_global,
                            double playbackRate,
                            double duration,
                            int loopCount,
                            int &currentLoop)
{
    const double t_local = localTimeFromElapsedTime(t_current_local, t_elapsed_global, playbackRate,
                                                    duration, loopCount, currentLoop);
    return t_local / duration;
}

/*!
    \internal

    Calculates the indices required to map from the component ordering within the
    provided \a channel, into the standard channel orderings expected by Qt types.

    For example, given a channel representing a rotation with the components ordered
    as X, Y, Z, Y, this function will return the indices [3, 0, 1, 2] which can then
    later be used as part of the format vector in the formatClipResults() function to
    remap the channels into the standard W, X, Y, Z order required by QQuaternion.
*/
ComponentIndices channelComponentsToIndices(const Channel &channel,
                                            int dataType,
                                            int expectedComponentCount,
                                            int offset)
{
#if defined Q_COMPILER_UNIFORM_INIT
    static const QVector<char> standardSuffixes = { 'X', 'Y', 'Z', 'W' };
    static const QVector<char> quaternionSuffixes = { 'W', 'X', 'Y', 'Z' };
    static const QVector<char> colorSuffixesRGB = { 'R', 'G', 'B' };
    static const QVector<char> colorSuffixesRGBA = { 'R', 'G', 'B', 'A' };
#else
    static const QVector<char> standardSuffixes = (QVector<char>() << 'X' << 'Y' << 'Z' << 'W');
    static const QVector<char> quaternionSuffixes = (QVector<char>() << 'W' << 'X' << 'Y' << 'Z');
    static const QVector<char> colorSuffixesRGB = (QVector<char>() << 'R' << 'G' << 'B');
    static const QVector<char> colorSuffixesRGBA = (QVector<char>() << 'R' << 'G' << 'B' << 'A');
#endif

    switch (dataType) {
    case QVariant::Quaternion:
        return channelComponentsToIndicesHelper(channel, expectedComponentCount,
                                                offset, quaternionSuffixes);
    case QVariant::Color:
        if (expectedComponentCount == 3)
            return channelComponentsToIndicesHelper(channel, expectedComponentCount,
                                                    offset, colorSuffixesRGB);
        Q_ASSERT(expectedComponentCount == 4);
        return channelComponentsToIndicesHelper(channel, expectedComponentCount,
                                                offset, colorSuffixesRGBA);
    default:
        return channelComponentsToIndicesHelper(channel, expectedComponentCount,
                                                offset, standardSuffixes);
    }
}

ComponentIndices channelComponentsToIndicesHelper(const Channel &channel,
                                                  int expectedComponentCount,
                                                  int offset,
                                                  const QVector<char> &suffixes)
{
    const int actualComponentCount = channel.channelComponents.size();
    if (actualComponentCount != expectedComponentCount) {
        qWarning() << "Data type expects" << expectedComponentCount
                   << "but found" << actualComponentCount << "components in the animation clip";
    }

    ComponentIndices indices(expectedComponentCount);

    // Generate the set of channel suffixes
    QVector<char> channelSuffixes;
    channelSuffixes.reserve(expectedComponentCount);
    for (int i = 0; i < expectedComponentCount; ++i) {
        const QString &componentName = channel.channelComponents[i].name;

        // An unset component name indicates that the no mapping is necessary
        // and the index can be used as-is.
        if (componentName.isEmpty()) {
            indices[i] = i + offset;
            continue;
        }

        char channelSuffix = componentName.at(componentName.length() - 1).toLatin1();
        channelSuffixes.push_back(channelSuffix);
    }

    // We can short-circuit if the channels were all unnamed (in order)
    if (channelSuffixes.isEmpty())
        return indices;

    // Find index of standard index in channel indexes
    for (int i = 0; i < expectedComponentCount; ++i) {
        int index = channelSuffixes.indexOf(suffixes[i]);
        if (index != -1)
            indices[i] = index + offset;
        else
            indices[i] = -1;
    }

    return indices;
}

ClipResults evaluateClipAtLocalTime(AnimationClip *clip, float localTime)
{
    QVector<float> channelResults;
    Q_ASSERT(clip);

    // Ensure we have enough storage to hold the evaluations
    channelResults.resize(clip->channelCount());

    // Iterate over channels and evaluate the fcurves
    const QVector<Channel> &channels = clip->channels();
    int i = 0;
    for (const Channel &channel : channels) {
        if (channel.name.contains(QStringLiteral("Rotation")) &&
                        channel.channelComponents.size() == 4) {

            // Try to SLERP
            const int nbKeyframes = channel.channelComponents[0].fcurve.keyframeCount();
            const bool canSlerp = std::find_if(std::begin(channel.channelComponents)+1,
                                               std::end(channel.channelComponents),
                                               [nbKeyframes](const ChannelComponent &v) {
                return v.fcurve.keyframeCount() != nbKeyframes;
            }) == std::end(channel.channelComponents);

            if (!canSlerp) {
                // Interpolate per component
                for (const auto &channelComponent : qAsConst(channel.channelComponents)) {
                    const int lowerKeyframeBound = channelComponent.fcurve.lowerKeyframeBound(localTime);
                    channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerKeyframeBound);
                }
            } else {
                // There's only one keyframe. We cant compute omega. Interpolate per component
                if (channel.channelComponents[0].fcurve.keyframeCount() == 1) {
                    for (const auto &channelComponent : qAsConst(channel.channelComponents))
                        channelResults[i++] = channelComponent.fcurve.keyframe(0).value;
                } else {
                    auto quaternionFromChannel = [channel](const int keyframe) {
                        const float w = channel.channelComponents[0].fcurve.keyframe(keyframe).value;
                        const float x = channel.channelComponents[1].fcurve.keyframe(keyframe).value;
                        const float y = channel.channelComponents[2].fcurve.keyframe(keyframe).value;
                        const float z = channel.channelComponents[3].fcurve.keyframe(keyframe).value;
                        QQuaternion quat{w,x,y,z};
                        quat.normalize();
                        return quat;
                    };

                    const int lowerKeyframeBound = std::max(0, channel.channelComponents[0].fcurve.lowerKeyframeBound(localTime));
                    const auto lowerQuat = quaternionFromChannel(lowerKeyframeBound);
                    const auto higherQuat = quaternionFromChannel(lowerKeyframeBound + 1);
                    auto cosHalfTheta = QQuaternion::dotProduct(lowerQuat, higherQuat);
                    // If the two keyframe quaternions are equal, just return the first one as the interpolated value.
                    if (std::abs(cosHalfTheta) >= 1.0f) {
                        channelResults[i++] = lowerQuat.scalar();
                        channelResults[i++] = lowerQuat.x();
                        channelResults[i++] = lowerQuat.y();
                        channelResults[i++] = lowerQuat.z();
                    } else {
                        const auto sinHalfTheta = std::sqrt(1.0f - std::pow(cosHalfTheta,2.0f));
                        if (std::abs(sinHalfTheta) < ::slerpThreshold) {
                            auto initial_i = i;
                            for (const auto &channelComponent : qAsConst(channel.channelComponents))
                                channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerKeyframeBound);

                            // Normalize the resulting quaternion
                            QQuaternion quat{channelResults[initial_i], channelResults[initial_i+1], channelResults[initial_i+2], channelResults[initial_i+3]};
                            quat.normalize();
                            channelResults[initial_i+0] = quat.scalar();
                            channelResults[initial_i+1] = quat.x();
                            channelResults[initial_i+2] = quat.y();
                            channelResults[initial_i+3] = quat.z();
                        } else {
                            const auto reverseQ1 = cosHalfTheta < 0 ? -1.0f : 1.0f;
                            cosHalfTheta *= reverseQ1;
                            const auto halfTheta = std::acos(cosHalfTheta);
                            for (const auto &channelComponent : qAsConst(channel.channelComponents))
                                channelResults[i++] = channelComponent.fcurve.evaluateAtTimeAsSlerp(localTime,
                                                                                                    lowerKeyframeBound,
                                                                                                    halfTheta,
                                                                                                    sinHalfTheta,
                                                                                                    reverseQ1);
                        }
                    }
                }
            }
        } else {
            // If the channel is not a Rotation, apply linear interpolation per channel component
            // TODO How do we handle other interpolations. For exammple, color interpolation
            // in a linear perceptual way or other non linear spaces?
            for (const auto &channelComponent : qAsConst(channel.channelComponents)) {
                const int lowerKeyframeBound = channelComponent.fcurve.lowerKeyframeBound(localTime);
                channelResults[i++] = channelComponent.fcurve.evaluateAtTime(localTime, lowerKeyframeBound);
            }
        }
    }
    return channelResults;
}

ClipResults evaluateClipAtPhase(AnimationClip *clip, float phase)
{
    // Calculate the clip local time from the phase and clip duration
    const double localTime = phase * clip->duration();
    return evaluateClipAtLocalTime(clip, localTime);
}

template<typename Container>
Container mapChannelResultsToContainer(const MappingData &mappingData,
                                       const QVector<float> &channelResults)
{
    Container r;
    r.reserve(channelResults.size());

    const ComponentIndices channelIndices = mappingData.channelIndices;
    for (const int channelIndex : channelIndices)
        r.push_back(channelResults.at(channelIndex));

    return r;
}

QVariant buildPropertyValue(const MappingData &mappingData, const QVector<float> &channelResults)
{
    const int vectorOfFloatType = qMetaTypeId<QVector<float>>();

    if (mappingData.type == vectorOfFloatType)
        return QVariant::fromValue(channelResults);

    switch (mappingData.type) {
    case QMetaType::Float:
    case QVariant::Double: {
        return QVariant::fromValue(channelResults[mappingData.channelIndices[0]]);
    }

    case QVariant::Vector2D: {
        const QVector2D vector(channelResults[mappingData.channelIndices[0]],
                channelResults[mappingData.channelIndices[1]]);
        return QVariant::fromValue(vector);
    }

    case QVariant::Vector3D: {
        const QVector3D vector(channelResults[mappingData.channelIndices[0]],
                channelResults[mappingData.channelIndices[1]],
                channelResults[mappingData.channelIndices[2]]);
        return QVariant::fromValue(vector);
    }

    case QVariant::Vector4D: {
        const QVector4D vector(channelResults[mappingData.channelIndices[0]],
                channelResults[mappingData.channelIndices[1]],
                channelResults[mappingData.channelIndices[2]],
                channelResults[mappingData.channelIndices[3]]);
        return QVariant::fromValue(vector);
    }

    case QVariant::Quaternion: {
        QQuaternion q(channelResults[mappingData.channelIndices[0]],
                channelResults[mappingData.channelIndices[1]],
                channelResults[mappingData.channelIndices[2]],
                channelResults[mappingData.channelIndices[3]]);
        q.normalize();
        return QVariant::fromValue(q);
    }

    case QVariant::Color: {
        // A color can either be a vec3 or a vec4
        const QColor color =
                QColor::fromRgbF(channelResults[mappingData.channelIndices[0]],
                channelResults[mappingData.channelIndices[1]],
                channelResults[mappingData.channelIndices[2]],
                mappingData.channelIndices.size() > 3 ? channelResults[mappingData.channelIndices[3]] : 1.0f);
        return QVariant::fromValue(color);
    }

    case QVariant::List: {
        const QVariantList results = mapChannelResultsToContainer<QVariantList>(
                    mappingData, channelResults);
        return QVariant::fromValue(results);
    }
    default:
        qWarning() << "Unhandled animation type" << mappingData.type;
        break;
    }

    return QVariant();
}

AnimationRecord prepareAnimationRecord(Qt3DCore::QNodeId animatorId,
                                       const QVector<MappingData> &mappingDataVec,
                                       const QVector<float> &channelResults,
                                       bool finalFrame,
                                       float normalizedLocalTime)
{
    AnimationRecord record;
    record.finalFrame = finalFrame;
    record.animatorId = animatorId;
    record.normalizedTime = normalizedLocalTime;

    QVarLengthArray<Skeleton *, 4> dirtySkeletons;

    // Iterate over the mappings
    for (const MappingData &mappingData : mappingDataVec) {
        if (!mappingData.propertyName)
            continue;

        // Build the new value from the channel/fcurve evaluation results
        const QVariant v = buildPropertyValue(mappingData, channelResults);
        if (!v.isValid())
            continue;

        // TODO: Avoid wrapping joint transform components up in a variant, just
        // to immediately unwrap them again. Refactor buildPropertyValue() to call
        // helper functions that we can call directly here for joints.
        if (mappingData.skeleton && mappingData.jointIndex != -1) {
            // Remember that this skeleton is dirty. We will ask each dirty skeleton
            // to send its set of local poses to observers below.
            if (!dirtySkeletons.contains(mappingData.skeleton))
                dirtySkeletons.push_back(mappingData.skeleton);

            switch (mappingData.jointTransformComponent) {
            case Scale:
                mappingData.skeleton->setJointScale(mappingData.jointIndex, v.value<QVector3D>());
                break;

            case Rotation:
                mappingData.skeleton->setJointRotation(mappingData.jointIndex, v.value<QQuaternion>());
                break;

            case Translation:
                mappingData.skeleton->setJointTranslation(mappingData.jointIndex, v.value<QVector3D>());
                break;

            default:
                Q_UNREACHABLE();
                break;
            }
        } else {
            record.targetChanges.push_back({mappingData.targetId, mappingData.propertyName, v});
        }
    }

    for (const auto skeleton : dirtySkeletons)
        record.skeletonChanges.push_back({skeleton->peerId(), skeleton->joints()});

    return record;
}

QVector<AnimationCallbackAndValue> prepareCallbacks(const QVector<MappingData> &mappingDataVec,
                                                    const QVector<float> &channelResults)
{
    QVector<AnimationCallbackAndValue> callbacks;
    for (const MappingData &mappingData : mappingDataVec) {
        if (!mappingData.callback)
            continue;
        const QVariant v = buildPropertyValue(mappingData, channelResults);
        if (v.isValid()) {
            AnimationCallbackAndValue callback;
            callback.callback = mappingData.callback;
            callback.flags = mappingData.callbackFlags;
            callback.value = v;
            callbacks.append(callback);
        }
    }
    return callbacks;
}

// TODO: Optimize this even more by combining the work done here with the functions:
// buildRequiredChannelsAndTypes() and assignChannelComponentIndices(). We are
// currently repeating the iteration over mappings and extracting/generating
// channel names, types and joint indices.
QVector<MappingData> buildPropertyMappings(const QVector<ChannelMapping*> &channelMappings,
                                           const QVector<ChannelNameAndType> &channelNamesAndTypes,
                                           const QVector<ComponentIndices> &channelComponentIndices,
                                           const QVector<QBitArray> &sourceClipMask)
{
    // Accumulate the required number of mappings
    int maxMappingDatas = 0;
    for (const auto mapping : channelMappings) {
        switch (mapping->mappingType()) {
        case ChannelMapping::ChannelMappingType:
        case ChannelMapping::CallbackMappingType:
            ++maxMappingDatas;
            break;

        case ChannelMapping::SkeletonMappingType: {
            Skeleton *skeleton = mapping->skeleton();
            maxMappingDatas += 3 * skeleton->jointCount(); // S, R, T
            break;
        }
        }
    }
    QVector<MappingData> mappingDataVec;
    mappingDataVec.reserve(maxMappingDatas);

    // Iterate over the mappings
    for (const auto mapping : channelMappings) {
        switch (mapping->mappingType()) {
        case ChannelMapping::ChannelMappingType:
        case ChannelMapping::CallbackMappingType: {
            // Populate the data we need, easy stuff first
            MappingData mappingData;
            mappingData.targetId = mapping->targetId();
            mappingData.propertyName = mapping->propertyName();
            mappingData.type = mapping->type();
            mappingData.callback = mapping->callback();
            mappingData.callbackFlags = mapping->callbackFlags();

            if (mappingData.type == static_cast<int>(QVariant::Invalid)) {
                qWarning() << "Unknown type for node id =" << mappingData.targetId
                           << "and property =" << mapping->propertyName()
                           << "and callback =" << mapping->callback();
                continue;
            }

            // Try to find matching channel name and type
            const ChannelNameAndType nameAndType = { mapping->channelName(),
                                                     mapping->type(),
                                                     mapping->componentCount(),
                                                     mapping->peerId()
                                                   };
            const int index = channelNamesAndTypes.indexOf(nameAndType);
            if (index != -1) {
                // Do we have any animation data for this channel? If not, don't bother
                // adding a mapping for it.
                const bool hasChannelIndices = sourceClipMask[index].count(true) != 0;
                if (!hasChannelIndices)
                    continue;

                // We got one!
                mappingData.channelIndices = channelComponentIndices[index];
                mappingDataVec.push_back(mappingData);
            }
            break;
        }

        case ChannelMapping::SkeletonMappingType: {
            const QVector<ChannelNameAndType> jointProperties
                    = { { QLatin1String("Location"), static_cast<int>(QVariant::Vector3D), Translation },
                        { QLatin1String("Rotation"), static_cast<int>(QVariant::Quaternion), Rotation },
                        { QLatin1String("Scale"), static_cast<int>(QVariant::Vector3D), Scale } };
            const QHash<QString, const char *> channelNameToPropertyName
                    = { { QLatin1String("Location"), "translation" },
                        { QLatin1String("Rotation"), "rotation" },
                        { QLatin1String("Scale"), "scale" } };
            Skeleton *skeleton = mapping->skeleton();
            const int jointCount = skeleton->jointCount();
            for (int jointIndex = 0; jointIndex < jointCount; ++jointIndex) {
                // Populate the data we need, easy stuff first
                MappingData mappingData;
                mappingData.targetId = mapping->skeletonId();
                mappingData.skeleton = mapping->skeleton();

                const int propertyCount = jointProperties.size();
                for (int propertyIndex = 0; propertyIndex < propertyCount; ++propertyIndex) {
                    // Get the name, type and index
                    ChannelNameAndType nameAndType = jointProperties[propertyIndex];
                    nameAndType.jointIndex = jointIndex;
                    nameAndType.mappingId = mapping->peerId();

                    // Try to find matching channel name and type
                    const int index = channelNamesAndTypes.indexOf(nameAndType);
                    if (index == -1)
                        continue;

                    // Do we have any animation data for this channel? If not, don't bother
                    // adding a mapping for it.
                    const bool hasChannelIndices = sourceClipMask[index].count(true) != 0;
                    if (!hasChannelIndices)
                        continue;

                    if (index != -1) {
                        // We got one!
                        mappingData.propertyName = channelNameToPropertyName[nameAndType.name];
                        mappingData.type = nameAndType.type;
                        mappingData.channelIndices = channelComponentIndices[index];
                        mappingData.jointIndex = jointIndex;

                        // Convert property name for joint transform components to
                        // an enumerated type so we can avoid the string comparisons
                        // when sending the change events after evaluation.
                        // TODO: Replace this logic as we now do it in buildRequiredChannelsAndTypes()
                        if (qstrcmp(mappingData.propertyName, "scale") == 0)
                            mappingData.jointTransformComponent = Scale;
                        else if (qstrcmp(mappingData.propertyName, "rotation") == 0)
                            mappingData.jointTransformComponent = Rotation;
                        else if (qstrcmp(mappingData.propertyName, "translation") == 0)
                            mappingData.jointTransformComponent = Translation;

                        mappingDataVec.push_back(mappingData);
                    }
                }
            }
            break;
        }
        }
    }

    return mappingDataVec;
}

QVector<ChannelNameAndType> buildRequiredChannelsAndTypes(Handler *handler,
                                                          const ChannelMapper *mapper)
{
    ChannelMappingManager *mappingManager = handler->channelMappingManager();
    const QVector<Qt3DCore::QNodeId> mappingIds = mapper->mappingIds();

    // Reserve enough storage assuming each mapping is for a different channel.
    // May be overkill but avoids potential for multiple allocations
    QVector<ChannelNameAndType> namesAndTypes;
    namesAndTypes.reserve(mappingIds.size());

    // Iterate through the mappings and add ones not already used by an earlier mapping.
    // We could add them all then sort and remove duplicates. However, our approach has the
    // advantage of keeping the blend tree format more consistent with the mapping
    // orderings which will have better cache locality when generating events.
    for (const Qt3DCore::QNodeId mappingId : mappingIds) {
        // Get the mapping object
        ChannelMapping *mapping = mappingManager->lookupResource(mappingId);
        Q_ASSERT(mapping);

        switch (mapping->mappingType()) {
        case ChannelMapping::ChannelMappingType:
        case ChannelMapping::CallbackMappingType: {
            // Get the name and type
            const ChannelNameAndType nameAndType{ mapping->channelName(),
                                                  mapping->type(),
                                                  mapping->componentCount(),
                                                  mappingId };

            // Add if not already contained
            if (!namesAndTypes.contains(nameAndType))
                namesAndTypes.push_back(nameAndType);

            break;
        }

        case ChannelMapping::SkeletonMappingType: {
            // Add an entry for each scale/rotation/translation property of each joint index
            // of the target skeleton.
            const QVector<ChannelNameAndType> jointProperties
                    = { { QLatin1String("Location"), static_cast<int>(QVariant::Vector3D), Translation },
                        { QLatin1String("Rotation"), static_cast<int>(QVariant::Quaternion), Rotation },
                        { QLatin1String("Scale"), static_cast<int>(QVariant::Vector3D), Scale } };
            Skeleton *skeleton = handler->skeletonManager()->lookupResource(mapping->skeletonId());
            const int jointCount = skeleton->jointCount();
            for (int jointIndex = 0; jointIndex < jointCount; ++jointIndex) {
                const int propertyCount = jointProperties.size();
                for (int propertyIndex = 0; propertyIndex < propertyCount; ++propertyIndex) {
                    // Get the name, type and index
                    ChannelNameAndType nameAndType = jointProperties[propertyIndex];
                    nameAndType.jointName = skeleton->jointName(jointIndex);
                    nameAndType.jointIndex = jointIndex;
                    nameAndType.mappingId = mappingId;

                    // Add if not already contained
                    if (!namesAndTypes.contains(nameAndType))
                        namesAndTypes.push_back(nameAndType);
                }
            }

            break;
        }
        }
    }

    return namesAndTypes;
}

QVector<ComponentIndices> assignChannelComponentIndices(const QVector<ChannelNameAndType> &namesAndTypes)
{
    QVector<ComponentIndices> channelComponentIndices;
    channelComponentIndices.reserve(namesAndTypes.size());

    int baseIndex = 0;
    for (const auto &entry : namesAndTypes) {
        // Populate indices in order
        const int componentCount = entry.componentCount;
        ComponentIndices indices(componentCount);
        std::iota(indices.begin(), indices.end(), baseIndex);

        // Append to the results
        channelComponentIndices.push_back(indices);

        // Increment baseIndex
        baseIndex += componentCount;
    }

    return channelComponentIndices;
}

QVector<Qt3DCore::QNodeId> gatherValueNodesToEvaluate(Handler *handler,
                                                      Qt3DCore::QNodeId blendTreeRootId)
{
    Q_ASSERT(handler);
    Q_ASSERT(blendTreeRootId.isNull() == false);

    // We need the ClipBlendNodeManager to be able to lookup nodes from their Ids
    ClipBlendNodeManager *nodeManager = handler->clipBlendNodeManager();

    // Visit the tree in a pre-order manner and collect the dependencies
    QVector<Qt3DCore::QNodeId> clipIds;
    ClipBlendNodeVisitor visitor(nodeManager,
                                 ClipBlendNodeVisitor::PreOrder,
                                 ClipBlendNodeVisitor::VisitOnlyDependencies);

    auto func = [&clipIds, nodeManager] (ClipBlendNode *blendNode) {
        // Check if this is a value node itself
        if (blendNode->blendType() == ClipBlendNode::ValueType)
            clipIds.append(blendNode->peerId());

        const auto dependencyIds = blendNode->currentDependencyIds();
        for (const auto dependencyId : dependencyIds) {
            // Look up the blend node and if it's a value type (clip),
            // add it to the set of value node ids that need to be evaluated
            ClipBlendNode *node = nodeManager->lookupNode(dependencyId);
            if (node && node->blendType() == ClipBlendNode::ValueType)
                clipIds.append(dependencyId);
        }
    };
    visitor.traverse(blendTreeRootId, func);

    // Sort and remove duplicates
    std::sort(clipIds.begin(), clipIds.end());
    auto last = std::unique(clipIds.begin(), clipIds.end());
    clipIds.erase(last, clipIds.end());
    return clipIds;
}

ClipFormat generateClipFormatIndices(const QVector<ChannelNameAndType> &targetChannels,
                                     const QVector<ComponentIndices> &targetIndices,
                                     const AnimationClip *clip)
{
    Q_ASSERT(targetChannels.size() == targetIndices.size());

    // Reserve enough storage for all the format indices
    const int channelCount = targetChannels.size();
    ClipFormat f;
    f.namesAndTypes.resize(channelCount);
    f.formattedComponentIndices.resize(channelCount);
    f.sourceClipMask.resize(channelCount);
    int indexCount = 0;
    for (const auto &targetIndexVec : qAsConst(targetIndices))
        indexCount += targetIndexVec.size();
    ComponentIndices &sourceIndices = f.sourceClipIndices;
    sourceIndices.resize(indexCount);

    // Iterate through the target channels
    auto formatIt = sourceIndices.begin();
    for (int i = 0; i < channelCount; ++i) {
        // Find the index of the channel from the clip
        const ChannelNameAndType &targetChannel = targetChannels[i];
        const int clipChannelIndex = clip->channelIndex(targetChannel.name,
                                                        targetChannel.jointIndex);
        const int componentCount = targetIndices[i].size();

        if (clipChannelIndex != -1) {
            // Found a matching channel in the clip. Populate the corresponding
            // entries in the format vector with the *source indices*
            // needed to build the formatted results.
            const int baseIndex = clip->channelComponentBaseIndex(clipChannelIndex);
            const auto channelIndices = channelComponentsToIndices(clip->channels()[clipChannelIndex],
                                                                   targetChannel.type,
                                                                   targetChannel.componentCount,
                                                                   baseIndex);
            std::copy(channelIndices.begin(), channelIndices.end(), formatIt);

            f.sourceClipMask[i].resize(componentCount);
            for (int j = 0; j < componentCount; ++j)
                f.sourceClipMask[i].setBit(j, channelIndices[j] != -1);
        } else {
            // No such channel in this clip. We'll use default values when
            // mapping from the clip to the formatted clip results.
            std::fill(formatIt, formatIt + componentCount, -1);
            f.sourceClipMask[i].fill(false, componentCount);
        }

        f.formattedComponentIndices[i] = targetIndices[i];
        f.namesAndTypes[i] = targetChannels[i];
        formatIt += componentCount;
    }

    return f;
}

ClipResults formatClipResults(const ClipResults &rawClipResults,
                              const ComponentIndices &format)
{
    // Resize the output to match the number of indices
    const int elementCount = format.size();
    ClipResults formattedClipResults(elementCount);

    // Perform a gather operation to format the data

    // TODO: For large numbers of components do this in parallel with
    // for e.g. a parallel_for() like construct
    // TODO: We could potentially avoid having holes in these intermediate
    // vectors by adjusting the component indices stored in the MappingData
    // and format vectors. Needs careful investigation!
    for (int i = 0; i < elementCount; ++i) {
        if (format[i] == -1)
            continue;
        formattedClipResults[i] = rawClipResults[format[i]];
    }

    return formattedClipResults;
}

ClipResults evaluateBlendTree(Handler *handler,
                              BlendedClipAnimator *animator,
                              Qt3DCore::QNodeId blendTreeRootId)
{
    Q_ASSERT(handler);
    Q_ASSERT(blendTreeRootId.isNull() == false);
    const Qt3DCore::QNodeId animatorId = animator->peerId();

    // We need the ClipBlendNodeManager to be able to lookup nodes from their Ids
    ClipBlendNodeManager *nodeManager = handler->clipBlendNodeManager();

    // Visit the tree in a post-order manner and for each interior node call
    // blending function. We only need to visit the nodes that affect the blend
    // tree at this time.
    ClipBlendNodeVisitor visitor(nodeManager,
                                 ClipBlendNodeVisitor::PostOrder,
                                 ClipBlendNodeVisitor::VisitOnlyDependencies);

    // TODO: When jobs can spawn other jobs we could evaluate subtrees of
    // the blend tree in parallel. Since it's just a dependency tree, it maps
    // simply onto the dependencies between jobs.
    auto func = [animatorId] (ClipBlendNode *blendNode) {
        // Look up the blend node and if it's an interior node, perform
        // the blend operation
        if (blendNode->blendType() != ClipBlendNode::ValueType)
            blendNode->blend(animatorId);
    };
    visitor.traverse(blendTreeRootId, func);

    // The clip results stored in the root node for this animator
    // now represent the result of the blend tree evaluation
    ClipBlendNode *blendTreeRootNode = nodeManager->lookupNode(blendTreeRootId);
    Q_ASSERT(blendTreeRootNode);
    return blendTreeRootNode->clipResults(animatorId);
}

QVector<float> defaultValueForChannel(Handler *handler,
                                      const ChannelNameAndType &channelDescription)
{
    QVector<float> result;

    // Does the channel repesent a joint in a skeleton or is it a general channel?
    ChannelMappingManager *mappingManager = handler->channelMappingManager();
    const ChannelMapping *mapping = mappingManager->lookupResource(channelDescription.mappingId);
    switch (mapping->mappingType()) {
    case ChannelMapping::SkeletonMappingType: {
        // Default channel values for a joint in a skeleton, should be taken
        // from the default pose of the joint itself. I.e. if a joint is not
        // explicitly animated, then it should retain it's initial rest pose.
        Skeleton *skeleton = mapping->skeleton();
        const int jointIndex = channelDescription.jointIndex;
        switch (channelDescription.jointTransformComponent) {
        case Translation:
            result = valueToVector(skeleton->jointTranslation(jointIndex));
            break;

        case Rotation:
            result = valueToVector(skeleton->jointRotation(jointIndex));
            break;

        case Scale:
            result = valueToVector(skeleton->jointScale(jointIndex));
            break;

        case NoTransformComponent:
            Q_UNREACHABLE();
            break;
        }
        break;
    }

    case ChannelMapping::ChannelMappingType:
    case ChannelMapping::CallbackMappingType: {
        // Do our best to provide a sensible default value.
        if (channelDescription.type == QMetaType::QQuaternion) {
            result = valueToVector(QQuaternion()); // (1, 0, 0, 0)
            break;
        }

        if (channelDescription.name.toLower() == QLatin1String("scale")) {
            result = valueToVector(QVector3D(1.0f, 1.0f, 1.0f));
            break;
        }

        // Everything else gets all zeros
        const int componentCount = mapping->componentCount();
        result = QVector<float>(componentCount, 0.0f);
        break;
    }

    }

    return result;
}

void applyComponentDefaultValues(const QVector<ComponentValue> &componentDefaults,
                                 ClipResults &formattedClipResults)
{
    for (const auto &componentDefault : componentDefaults)
        formattedClipResults[componentDefault.componentIndex] = componentDefault.value;
}

} // Animation
} // Qt3DAnimation

QT_END_NAMESPACE