summaryrefslogtreecommitdiffstats
path: root/src/core/transforms/qmath3d_p.h
blob: a4f33f0b6af69627ef0197acc55cd1678ffa7dc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/****************************************************************************
**
** Copyright (C) 2015 Konstantin Ritt.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef QT3DCORE_QMATH3D_P_H
#define QT3DCORE_QMATH3D_P_H

//
//  W A R N I N G
//  -------------
//
// This file is not part of the Qt3D API.  It exists purely as an
// implementation detail.  This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//
#include <QtGui/qmatrix4x4.h>
#include <QtGui/qquaternion.h>
#include <QtGui/qvector3d.h>
#include <Qt3DCore/private/sqt_p.h>

#include <cmath>

QT_BEGIN_NAMESPACE

inline void composeQMatrix4x4(const QVector3D &position, const QQuaternion &orientation, const QVector3D &scale, QMatrix4x4 &m)
{
    const QMatrix3x3 rot3x3(orientation.toRotationMatrix());

    // set up final matrix with scale, rotation and translation
    m(0, 0) = scale.x() * rot3x3(0, 0); m(0, 1) = scale.y() * rot3x3(0, 1); m(0, 2) = scale.z() * rot3x3(0, 2); m(0, 3) = position.x();
    m(1, 0) = scale.x() * rot3x3(1, 0); m(1, 1) = scale.y() * rot3x3(1, 1); m(1, 2) = scale.z() * rot3x3(1, 2); m(1, 3) = position.y();
    m(2, 0) = scale.x() * rot3x3(2, 0); m(2, 1) = scale.y() * rot3x3(2, 1); m(2, 2) = scale.z() * rot3x3(2, 2); m(2, 3) = position.z();
    // no projection term
    m(3, 0) = 0.0f; m(3, 1) = 0.0f; m(3, 2) = 0.0f; m(3, 3) = 1.0f;
}

inline void decomposeQMatrix3x3(const QMatrix3x3 &m, QMatrix3x3 &Q, QVector3D &D, QVector3D &U)
{
    // Factor M = QR = QDU where Q is orthogonal, D is diagonal,
    // and U is upper triangular with ones on its diagonal.
    // Algorithm uses Gram-Schmidt orthogonalization (the QR algorithm).
    //
    // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
    //   q0 = m0/|m0|
    //   q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
    //   q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
    //
    // where |V| indicates length of vector V and A*B indicates dot
    // product of vectors A and B.  The matrix R has entries
    //
    //   r00 = q0*m0  r01 = q0*m1  r02 = q0*m2
    //   r10 = 0      r11 = q1*m1  r12 = q1*m2
    //   r20 = 0      r21 = 0      r22 = q2*m2
    //
    // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
    // u02 = r02/r00, and u12 = r12/r11.

    // Q = rotation
    // D = scaling
    // U = shear

    // D stores the three diagonal entries r00, r11, r22
    // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12

    // build orthogonal matrix Q
    float invLen = 1.0f / std::sqrt(m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0));
    Q(0, 0) = m(0, 0) * invLen;
    Q(1, 0) = m(1, 0) * invLen;
    Q(2, 0) = m(2, 0) * invLen;

    float dot = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1);
    Q(0, 1) = m(0, 1) - dot * Q(0, 0);
    Q(1, 1) = m(1, 1) - dot * Q(1, 0);
    Q(2, 1) = m(2, 1) - dot * Q(2, 0);
    invLen = 1.0f / std::sqrt(Q(0, 1) * Q(0, 1) + Q(1, 1) * Q(1, 1) + Q(2, 1) * Q(2, 1));
    Q(0, 1) *= invLen;
    Q(1, 1) *= invLen;
    Q(2, 1) *= invLen;

    dot = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2);
    Q(0, 2) = m(0, 2) - dot * Q(0, 0);
    Q(1, 2) = m(1, 2) - dot * Q(1, 0);
    Q(2, 2) = m(2, 2) - dot * Q(2, 0);
    dot = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2);
    Q(0, 2) -= dot * Q(0, 1);
    Q(1, 2) -= dot * Q(1, 1);
    Q(2, 2) -= dot * Q(2, 1);
    invLen = 1.0f / std::sqrt(Q(0, 2) * Q(0, 2) + Q(1, 2) * Q(1, 2) + Q(2, 2) * Q(2, 2));
    Q(0, 2) *= invLen;
    Q(1, 2) *= invLen;
    Q(2, 2) *= invLen;

    // guarantee that orthogonal matrix has determinant 1 (no reflections)
    const float det = Q(0, 0) * Q(1, 1) * Q(2, 2) + Q(0, 1) * Q(1, 2) * Q(2, 0) +
                      Q(0, 2) * Q(1, 0) * Q(2, 1) - Q(0, 2) * Q(1, 1) * Q(2, 0) -
                      Q(0, 1) * Q(1, 0) * Q(2, 2) - Q(0, 0) * Q(1, 2) * Q(2, 1);
    if (det < 0.0f)
        Q *= -1.0f;

    // build "right" matrix R
    QMatrix3x3 R(Qt::Uninitialized);
    R(0, 0) = Q(0, 0) * m(0, 0) + Q(1, 0) * m(1, 0) + Q(2, 0) * m(2, 0);
    R(0, 1) = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1);
    R(1, 1) = Q(0, 1) * m(0, 1) + Q(1, 1) * m(1, 1) + Q(2, 1) * m(2, 1);
    R(0, 2) = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2);
    R(1, 2) = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2);
    R(2, 2) = Q(0, 2) * m(0, 2) + Q(1, 2) * m(1, 2) + Q(2, 2) * m(2, 2);

    // the scaling component
    D[0] = R(0, 0);
    D[1] = R(1, 1);
    D[2] = R(2, 2);

    // the shear component
    U[0] = R(0, 1) / D[0];
    U[1] = R(0, 2) / D[0];
    U[2] = R(1, 2) / D[1];
}

inline bool hasScale(const QMatrix4x4 &m)
{
    // If the columns are orthonormal and form a right-handed system, then there is no scale
    float t(m.determinant());
    if (!qFuzzyIsNull(t - 1.0f))
        return true;
    t = m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0);
    if (!qFuzzyIsNull(t - 1.0f))
        return true;
    t = m(0, 1) * m(0, 1) + m(1, 1) * m(1, 1) + m(2, 1) * m(2, 1);
    if (!qFuzzyIsNull(t - 1.0f))
        return true;
    t = m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2);
    if (!qFuzzyIsNull(t - 1.0f))
        return true;
    return false;
}

inline void decomposeQMatrix4x4(const QMatrix4x4 &m, QVector3D &position, QQuaternion &orientation, QVector3D &scale)
{
    Q_ASSERT(m.isAffine());

    const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>());

    QMatrix3x3 rot3x3(Qt::Uninitialized);
    if (hasScale(m)) {
        decomposeQMatrix3x3(m3x3, rot3x3, scale, position);
    } else {
        // we know there is no scaling part; no need for QDU decomposition
        scale = QVector3D(1.0f, 1.0f, 1.0f);
        rot3x3 = m3x3;
    }
    orientation = QQuaternion::fromRotationMatrix(rot3x3);
    position = QVector3D(m(0, 3), m(1, 3), m(2, 3));
}

inline void decomposeQMatrix4x4(const QMatrix4x4 &m, Qt3DCore::Sqt &sqt)
{
    Q_ASSERT(m.isAffine());

    const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>());

    QMatrix3x3 rot3x3(Qt::Uninitialized);
    if (hasScale(m)) {
        decomposeQMatrix3x3(m3x3, rot3x3, sqt.scale, sqt.translation);
    } else {
        // we know there is no scaling part; no need for QDU decomposition
        sqt.scale = QVector3D(1.0f, 1.0f, 1.0f);
        rot3x3 = m3x3;
    }
    sqt.rotation = QQuaternion::fromRotationMatrix(rot3x3);
    sqt.translation = QVector3D(m(0, 3), m(1, 3), m(2, 3));
}

QT_END_NAMESPACE

#endif // QT3DCORE_QMATH3D_P_H