summaryrefslogtreecommitdiffstats
path: root/src/extras/shaders/gl3/light.inc.frag
blob: ce5c581cf6545e78dc777674dd03702ac5ad3194 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
const int MAX_LIGHTS = 8;
const int TYPE_POINT = 0;
const int TYPE_DIRECTIONAL = 1;
const int TYPE_SPOT = 2;
struct Light {
    int type;
    vec3 position;
    vec3 color;
    float intensity;
    vec3 direction;
    float constantAttenuation;
    float linearAttenuation;
    float quadraticAttenuation;
    float cutOffAngle;
};
uniform Light lights[MAX_LIGHTS];
uniform int lightCount;

// Pre-convolved environment maps
struct EnvironmentLight {
    samplerCube irradiance; // For diffuse contribution
    samplerCube specular; // For specular contribution
};
uniform EnvironmentLight envLight;
uniform int envLightCount = 0;

void adsModelNormalMapped(const in vec3 worldPos,
                          const in vec3 tsNormal,
                          const in vec3 worldEye,
                          const in float shininess,
                          const in mat3 tangentMatrix,
                          out vec3 diffuseColor,
                          out vec3 specularColor)
{
    diffuseColor = vec3(0.0);
    specularColor = vec3(0.0);

    // We perform all work in tangent space, so we convert quantities from world space
    vec3 tsPos = tangentMatrix * worldPos;
    vec3 n = normalize(tsNormal);
    vec3 v = normalize(tangentMatrix * (worldEye - worldPos));
    vec3 s = vec3(0.0);

    for (int i = 0; i < lightCount; ++i) {
        float att = 1.0;
        float sDotN = 0.0;

        if (lights[i].type != TYPE_DIRECTIONAL) {
            // Point and Spot lights

            // Transform the light position from world to tangent space
            vec3 tsLightPos = tangentMatrix * lights[i].position;
            vec3 sUnnormalized = tsLightPos - tsPos;
            s = normalize(sUnnormalized); // Light direction in tangent space

            // Calculate the attenuation factor
            sDotN = dot(s, n);
            if (sDotN > 0.0) {
                if (lights[i].constantAttenuation != 0.0
                 || lights[i].linearAttenuation != 0.0
                 || lights[i].quadraticAttenuation != 0.0) {
                    float dist = length(sUnnormalized);
                    att = 1.0 / (lights[i].constantAttenuation +
                                 lights[i].linearAttenuation * dist +
                                 lights[i].quadraticAttenuation * dist * dist);
                }

                // The light direction is in world space, convert to tangent space
                if (lights[i].type == TYPE_SPOT) {
                    // Check if fragment is inside or outside of the spot light cone
                    vec3 tsLightDirection = tangentMatrix * lights[i].direction;
                    if (degrees(acos(dot(-s, tsLightDirection))) > lights[i].cutOffAngle)
                        sDotN = 0.0;
                }
            }
        } else {
            // Directional lights
            // The light direction is in world space, convert to tangent space
            s = normalize(tangentMatrix * -lights[i].direction);
            sDotN = dot(s, n);
        }

        // Calculate the diffuse factor
        float diffuse = max(sDotN, 0.0);

        // Calculate the specular factor
        float specular = 0.0;
        if (diffuse > 0.0 && shininess > 0.0) {
            float normFactor = (shininess + 2.0) / 2.0;
            vec3 r = reflect(-s, n);   // Reflection direction in tangent space
            specular = normFactor * pow(max(dot(r, v), 0.0), shininess);
        }

        // Accumulate the diffuse and specular contributions
        diffuseColor += att * lights[i].intensity * diffuse * lights[i].color;
        specularColor += att * lights[i].intensity * specular * lights[i].color;
    }
}

void adsModel(const in vec3 worldPos,
              const in vec3 worldNormal,
              const in vec3 worldEye,
              const in float shininess,
              out vec3 diffuseColor,
              out vec3 specularColor)
{
    diffuseColor = vec3(0.0);
    specularColor = vec3(0.0);

    // We perform all work in world space
    vec3 n = normalize(worldNormal);
    vec3 v = normalize(worldEye - worldPos);
    vec3 s = vec3(0.0);

    for (int i = 0; i < lightCount; ++i) {
        float att = 1.0;
        float sDotN = 0.0;

        if (lights[i].type != TYPE_DIRECTIONAL) {
            // Point and Spot lights

            // Light position is already in world space
            vec3 sUnnormalized = lights[i].position - worldPos;
            s = normalize(sUnnormalized); // Light direction

            // Calculate the attenuation factor
            sDotN = dot(s, n);
            if (sDotN > 0.0) {
                if (lights[i].constantAttenuation != 0.0
                 || lights[i].linearAttenuation != 0.0
                 || lights[i].quadraticAttenuation != 0.0) {
                    float dist = length(sUnnormalized);
                    att = 1.0 / (lights[i].constantAttenuation +
                                 lights[i].linearAttenuation * dist +
                                 lights[i].quadraticAttenuation * dist * dist);
                }

                // The light direction is in world space already
                if (lights[i].type == TYPE_SPOT) {
                    // Check if fragment is inside or outside of the spot light cone
                    if (degrees(acos(dot(-s, lights[i].direction))) > lights[i].cutOffAngle)
                        sDotN = 0.0;
                }
            }
        } else {
            // Directional lights
            // The light direction is in world space already
            s = normalize(-lights[i].direction);
            sDotN = dot(s, n);
        }

        // Calculate the diffuse factor
        float diffuse = max(sDotN, 0.0);

        // Calculate the specular factor
        float specular = 0.0;
        if (diffuse > 0.0 && shininess > 0.0) {
            float normFactor = (shininess + 2.0) / 2.0;
            vec3 r = reflect(-s, n);   // Reflection direction in world space
            specular = normFactor * pow(max(dot(r, v), 0.0), shininess);
        }

        // Accumulate the diffuse and specular contributions
        diffuseColor += att * lights[i].intensity * diffuse * lights[i].color;
        specularColor += att * lights[i].intensity * specular * lights[i].color;
    }
}

void adModel(const in vec3 worldPos,
             const in vec3 worldNormal,
             out vec3 diffuseColor)
{
    diffuseColor = vec3(0.0);

    // We perform all work in world space
    vec3 n = normalize(worldNormal);
    vec3 s = vec3(0.0);

    for (int i = 0; i < lightCount; ++i) {
        float att = 1.0;
        float sDotN = 0.0;

        if (lights[i].type != TYPE_DIRECTIONAL) {
            // Point and Spot lights

            // Light position is already in world space
            vec3 sUnnormalized = lights[i].position - worldPos;
            s = normalize(sUnnormalized); // Light direction

            // Calculate the attenuation factor
            sDotN = dot(s, n);
            if (sDotN > 0.0) {
                if (lights[i].constantAttenuation != 0.0
                 || lights[i].linearAttenuation != 0.0
                 || lights[i].quadraticAttenuation != 0.0) {
                    float dist = length(sUnnormalized);
                    att = 1.0 / (lights[i].constantAttenuation +
                                 lights[i].linearAttenuation * dist +
                                 lights[i].quadraticAttenuation * dist * dist);
                }

                // The light direction is in world space already
                if (lights[i].type == TYPE_SPOT) {
                    // Check if fragment is inside or outside of the spot light cone
                    if (degrees(acos(dot(-s, lights[i].direction))) > lights[i].cutOffAngle)
                        sDotN = 0.0;
                }
            }
        } else {
            // Directional lights
            // The light direction is in world space already
            s = normalize(-lights[i].direction);
            sDotN = dot(s, n);
        }

        // Calculate the diffuse factor
        float diffuse = max(sDotN, 0.0);

        // Accumulate the diffuse contributions
        diffuseColor += att * lights[i].intensity * diffuse * lights[i].color;
    }
}