summaryrefslogtreecommitdiffstats
path: root/src/plugins/renderers/opengl/renderer/renderview.cpp
blob: 007fb07e08c9d0d9972d165fe0b3adbc7b69e000 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
/****************************************************************************
**
** Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB).
** Copyright (C) 2016 The Qt Company Ltd and/or its subsidiary(-ies).
** Contact: https://www.qt.io/licensing/
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "renderview_p.h"
#include <Qt3DRender/qmaterial.h>
#include <Qt3DRender/qrenderaspect.h>
#include <Qt3DRender/qrendertarget.h>
#include <Qt3DRender/qabstractlight.h>
#include <Qt3DRender/private/sphere_p.h>

#include <Qt3DRender/private/cameraselectornode_p.h>
#include <Qt3DRender/private/framegraphnode_p.h>
#include <Qt3DRender/private/layerfilternode_p.h>
#include <Qt3DRender/private/qparameter_p.h>
#include <Qt3DRender/private/cameralens_p.h>
#include <Qt3DRender/private/effect_p.h>
#include <Qt3DRender/private/entity_p.h>
#include <Qt3DRender/private/nodemanagers_p.h>
#include <Qt3DRender/private/layer_p.h>
#include <Qt3DRender/private/renderlogging_p.h>
#include <Qt3DRender/private/renderpassfilternode_p.h>
#include <Qt3DRender/private/renderpass_p.h>
#include <Qt3DRender/private/geometryrenderer_p.h>
#include <Qt3DRender/private/techniquefilternode_p.h>
#include <Qt3DRender/private/viewportnode_p.h>
#include <Qt3DRender/private/buffermanager_p.h>
#include <Qt3DRender/private/geometryrenderermanager_p.h>
#include <Qt3DRender/private/rendercapture_p.h>
#include <Qt3DRender/private/buffercapture_p.h>
#include <Qt3DRender/private/stringtoint_p.h>
#include <Qt3DRender/private/renderlogging_p.h>
#include <Qt3DRender/private/renderstateset_p.h>
#include <rendercommand_p.h>
#include <renderer_p.h>
#include <graphicscontext_p.h>
#include <submissioncontext_p.h>
#include <glresourcemanagers_p.h>
#include <Qt3DCore/qentity.h>
#include <QtGui/qsurface.h>
#include <algorithm>
#include <atomic>
#include <gllights_p.h>
#include <QDebug>
#if defined(QT3D_RENDER_VIEW_JOB_TIMINGS)
#include <QElapsedTimer>
#endif

QT_BEGIN_NAMESPACE

namespace Qt3DRender {
namespace Render {
namespace OpenGL {

namespace  {

// register our QNodeId's as a metatype during program loading
const int Q_DECL_UNUSED qNodeIdTypeId = qMetaTypeId<Qt3DCore::QNodeId>();

std::atomic_bool wasInitialized{};

} // anonymous namespace

RenderView::StandardUniformsNameToTypeHash RenderView::ms_standardUniformSetters;


RenderView::StandardUniformsNameToTypeHash RenderView::initializeStandardUniformSetters()
{
    RenderView::StandardUniformsNameToTypeHash setters;

    setters.insert(Shader::modelMatrixNameId, ModelMatrix);
    setters.insert(Shader::viewMatrixNameId, ViewMatrix);
    setters.insert(Shader::projectionMatrixNameId, ProjectionMatrix);
    setters.insert(Shader::modelViewMatrixNameId, ModelViewMatrix);
    setters.insert(Shader::viewProjectionMatrixNameId, ViewProjectionMatrix);
    setters.insert(Shader::modelViewProjectionNameId, ModelViewProjectionMatrix);
    setters.insert(Shader::mvpNameId, ModelViewProjectionMatrix);
    setters.insert(Shader::inverseModelMatrixNameId, InverseModelMatrix);
    setters.insert(Shader::inverseViewMatrixNameId, InverseViewMatrix);
    setters.insert(Shader::inverseProjectionMatrixNameId, InverseProjectionMatrix);
    setters.insert(Shader::inverseModelViewNameId, InverseModelViewMatrix);
    setters.insert(Shader::inverseViewProjectionMatrixNameId, InverseViewProjectionMatrix);
    setters.insert(Shader::inverseModelViewProjectionNameId, InverseModelViewProjectionMatrix);
    setters.insert(Shader::modelNormalMatrixNameId, ModelNormalMatrix);
    setters.insert(Shader::modelViewNormalNameId, ModelViewNormalMatrix);
    setters.insert(Shader::viewportMatrixNameId, ViewportMatrix);
    setters.insert(Shader::inverseViewportMatrixNameId, InverseViewportMatrix);
    setters.insert(Shader::aspectRatioNameId, AspectRatio);
    setters.insert(Shader::exposureNameId, Exposure);
    setters.insert(Shader::gammaNameId, Gamma);
    setters.insert(Shader::timeNameId, Time);
    setters.insert(Shader::eyePositionNameId, EyePosition);
    setters.insert(Shader::skinningPaletteNameId, SkinningPalette);

    return setters;
}

// TODO: Move this somewhere global where GraphicsContext::setViewport() can use it too
static QRectF resolveViewport(const QRectF &fractionalViewport, const QSize &surfaceSize)
{
    return QRectF(fractionalViewport.x() * surfaceSize.width(),
                  (1.0 - fractionalViewport.y() - fractionalViewport.height()) * surfaceSize.height(),
                  fractionalViewport.width() * surfaceSize.width(),
                  fractionalViewport.height() * surfaceSize.height());
}

static Matrix4x4 getProjectionMatrix(const CameraLens *lens)
{
    return lens ? lens->projection() : Matrix4x4();
}

UniformValue RenderView::standardUniformValue(RenderView::StandardUniform standardUniformType,
                                              const Entity *entity) const
{
    const Matrix4x4 &model = *(entity->worldTransform());

    switch (standardUniformType) {
    case ModelMatrix:
        return UniformValue(model);
    case ViewMatrix:
        return UniformValue(m_viewMatrix);
    case ProjectionMatrix:
        return UniformValue(getProjectionMatrix(m_renderCameraLens));
    case ModelViewMatrix:
        return UniformValue(m_viewMatrix * model);
    case ViewProjectionMatrix:
        return UniformValue(getProjectionMatrix(m_renderCameraLens) * m_viewMatrix);
    case ModelViewProjectionMatrix:
        return UniformValue(m_viewProjectionMatrix * model);
    case InverseModelMatrix:
        return UniformValue(model.inverted());
    case InverseViewMatrix:
        return UniformValue(m_viewMatrix.inverted());
    case InverseProjectionMatrix: {
        return UniformValue(getProjectionMatrix(m_renderCameraLens).inverted());
    }
    case InverseModelViewMatrix:
        return UniformValue((m_viewMatrix * model).inverted());
    case InverseViewProjectionMatrix: {
        const Matrix4x4 viewProjectionMatrix = getProjectionMatrix(m_renderCameraLens) * m_viewMatrix;
        return UniformValue(viewProjectionMatrix.inverted());
    }
    case InverseModelViewProjectionMatrix:
        return UniformValue((m_viewProjectionMatrix * model).inverted());
    case ModelNormalMatrix:
        return UniformValue(convertToQMatrix4x4(model).normalMatrix());
    case ModelViewNormalMatrix:
        return UniformValue(convertToQMatrix4x4(m_viewMatrix * model).normalMatrix());
    case ViewportMatrix: {
        QMatrix4x4 viewportMatrix;
        // TO DO: Implement on Matrix4x4
        viewportMatrix.viewport(resolveViewport(m_viewport, m_surfaceSize));
        return UniformValue(Matrix4x4(viewportMatrix));
    }
    case InverseViewportMatrix: {
        QMatrix4x4 viewportMatrix;
        // TO DO: Implement on Matrix4x4
        viewportMatrix.viewport(resolveViewport(m_viewport, m_surfaceSize));
        return UniformValue(Matrix4x4(viewportMatrix.inverted()));
    }
    case AspectRatio:
        return float(m_surfaceSize.width()) / std::max(1.f, float(m_surfaceSize.height()));
    case Exposure:
        return UniformValue(m_renderCameraLens ? m_renderCameraLens->exposure() : 0.0f);
    case Gamma:
        return UniformValue(m_gamma);
    case Time:
        return UniformValue(float(m_renderer->time() / 1000000000.0f));
    case EyePosition:
        return UniformValue(m_eyePos);
    case SkinningPalette: {
        const Armature *armature = entity->renderComponent<Armature>();
        if (!armature) {
            qCWarning(Jobs, "Requesting skinningPalette uniform but no armature set on entity");
            return UniformValue();
        }
        return armature->skinningPaletteUniform();
    }
    default:
        Q_UNREACHABLE();
        return UniformValue();
    }
}

RenderView::RenderView()
{
    if (Q_UNLIKELY(!wasInitialized.exchange(true))) {
        // Needed as we can control the init order of static/global variables across compile units
        // and this hash relies on the static StringToInt class

        RenderView::ms_standardUniformSetters = RenderView::initializeStandardUniformSetters();
    }
}

RenderView::~RenderView()
{
}

namespace {

template<int SortType>
struct AdjacentSubRangeFinder
{
    static bool adjacentSubRange(const RenderCommand &, const RenderCommand &)
    {
        Q_UNREACHABLE();
        return false;
    }
};

template<>
struct AdjacentSubRangeFinder<QSortPolicy::StateChangeCost>
{
    static bool adjacentSubRange(const RenderCommand &a, const RenderCommand &b)
    {
        return a.m_changeCost == b.m_changeCost;
    }
};

template<>
struct AdjacentSubRangeFinder<QSortPolicy::BackToFront>
{
    static bool adjacentSubRange(const RenderCommand &a, const RenderCommand &b)
    {
        return qFuzzyCompare(a.m_depth, b.m_depth);
    }
};

template<>
struct AdjacentSubRangeFinder<QSortPolicy::Material>
{
    static bool adjacentSubRange(const RenderCommand &a, const RenderCommand &b)
    {
        return a.m_glShader == b.m_glShader;
    }
};

template<>
struct AdjacentSubRangeFinder<QSortPolicy::FrontToBack>
{
    static bool adjacentSubRange(const RenderCommand &a, const RenderCommand &b)
    {
        return qFuzzyCompare(a.m_depth, b.m_depth);
    }
};

template<>
struct AdjacentSubRangeFinder<QSortPolicy::Texture>
{
    static bool adjacentSubRange(const RenderCommand &a, const RenderCommand &b)
    {
        // Two renderCommands are adjacent if one contains all the other command's textures
        const std::vector<ShaderParameterPack::NamedResource> &texturesA = a.m_parameterPack.textures();
        const std::vector<ShaderParameterPack::NamedResource> &texturesB = b.m_parameterPack.textures();

        const bool bBigger = texturesB.size() > texturesA.size();
        const std::vector<ShaderParameterPack::NamedResource> &smallestVector = bBigger ? texturesA : texturesB;
        const std::vector<ShaderParameterPack::NamedResource> &biggestVector = bBigger ? texturesB : texturesA;

        const auto e = biggestVector.cend();
        for (const ShaderParameterPack::NamedResource &tex : smallestVector) {
            if (std::find(biggestVector.begin(), e, tex) == e)
                return false;
        }

        return true;
    }
};

template<typename Predicate>
int advanceUntilNonAdjacent(const EntityRenderCommandDataView *view,
                            const size_t beg, const size_t end, Predicate pred)
{
    const std::vector<size_t> &commandIndices = view->indices;
    const std::vector<RenderCommand> &commands = view->data.commands;
    size_t i = beg + 1;
    if (i < end) {
        const size_t startIdx = commandIndices[beg];
        while (i < end) {
            const size_t targetIdx = commandIndices[i];
            if (!pred(commands[startIdx], commands[targetIdx]))
                break;
            ++i;
        }
    }
    return i;
}


template<int SortType>
struct SubRangeSorter
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
        Q_UNUSED(view)
        Q_UNUSED(begin)
        Q_UNUSED(end)
        Q_UNREACHABLE();
    }
};

template<>
struct SubRangeSorter<QSortPolicy::StateChangeCost>
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
        std::vector<size_t> &commandIndices = view->indices;
        const std::vector<RenderCommand> &commands = view->data.commands;
        std::stable_sort(commandIndices.begin() + begin, commandIndices.begin() + end,
                         [&commands] (const size_t &iA, const size_t &iB) {
            const RenderCommand &a = commands[iA];
            const RenderCommand &b = commands[iB];
            return a.m_changeCost > b.m_changeCost;
        });
    }
};

template<>
struct SubRangeSorter<QSortPolicy::BackToFront>
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
        std::vector<size_t> &commandIndices = view->indices;
        const std::vector<RenderCommand> &commands = view->data.commands;
        std::stable_sort(commandIndices.begin() + begin, commandIndices.begin() + end,
                         [&commands] (const size_t &iA, const size_t &iB) {
            const RenderCommand &a = commands[iA];
            const RenderCommand &b = commands[iB];
            return a.m_depth > b.m_depth;
        });
    }
};

template<>
struct SubRangeSorter<QSortPolicy::Material>
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
        std::vector<size_t> &commandIndices = view->indices;
        const std::vector<RenderCommand> &commands = view->data.commands;
        std::stable_sort(commandIndices.begin() + begin, commandIndices.begin() + end,
                         [&commands] (const size_t &iA, const size_t &iB) {
            const RenderCommand &a = commands[iA];
            const RenderCommand &b = commands[iB];
            return a.m_glShader > b.m_glShader;
        });
    }
};

template<>
struct SubRangeSorter<QSortPolicy::FrontToBack>
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
        std::vector<size_t> &commandIndices = view->indices;
        const std::vector<RenderCommand> &commands = view->data.commands;
        std::stable_sort(commandIndices.begin() + begin, commandIndices.begin() + end,
                         [&commands] (const size_t &iA, const size_t &iB) {
            const RenderCommand &a = commands[iA];
            const RenderCommand &b = commands[iB];
            return a.m_depth < b.m_depth;
        });
    }
};

template<>
struct SubRangeSorter<QSortPolicy::Texture>
{
    static void sortSubRange(EntityRenderCommandDataView *view, size_t begin, const size_t end)
    {
#ifndef Q_OS_WIN
        std::vector<size_t> &commandIndices = view->indices;
        const std::vector<RenderCommand> &commands = view->data.commands;
        std::stable_sort(commandIndices.begin() + begin, commandIndices.begin() + end,
                         [&commands] (const int &iA, const int &iB) {
            const RenderCommand &a = commands[iA];
            const RenderCommand &b = commands[iB];
            const std::vector<ShaderParameterPack::NamedResource> &texturesA = a.m_parameterPack.textures();
            const std::vector<ShaderParameterPack::NamedResource> &texturesB = b.m_parameterPack.textures();

            const bool bBigger = texturesB.size() > texturesA.size();
            const std::vector<ShaderParameterPack::NamedResource> &smallestVector = bBigger ? texturesA : texturesB;
            const std::vector<ShaderParameterPack::NamedResource> &biggestVector = bBigger ? texturesB : texturesA;

            int identicalTextureCount = 0;
            const auto e = biggestVector.cend();
            for (const ShaderParameterPack::NamedResource &tex : smallestVector) {
                if (std::find(biggestVector.begin(), e, tex) != e)
                    ++identicalTextureCount;
            }

            return identicalTextureCount < smallestVector.size();
        });
#endif
    }
};

int findSubRange(const EntityRenderCommandDataView *view,
                 const int begin, const int end,
                 const QSortPolicy::SortType sortType)
{
    switch (sortType) {
    case QSortPolicy::StateChangeCost:
        return advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::StateChangeCost>::adjacentSubRange);
    case QSortPolicy::BackToFront:
        return advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::BackToFront>::adjacentSubRange);
    case QSortPolicy::Material:
        return advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::Material>::adjacentSubRange);
    case QSortPolicy::FrontToBack:
        return advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::FrontToBack>::adjacentSubRange);
    case QSortPolicy::Texture:
        return advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::Texture>::adjacentSubRange);
    case QSortPolicy::Uniform:
        return end;
    default:
        Q_UNREACHABLE();
        return end;
    }
}

void sortByMaterial(EntityRenderCommandDataView *view, int begin, const int end)
{
    // We try to arrange elements so that their rendering cost is minimized for a given shader
    std::vector<size_t> &commandIndices = view->indices;
    const std::vector<RenderCommand> &commands = view->data.commands;
    int rangeEnd = advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::Material>::adjacentSubRange);
    while (begin != end) {
        if (begin + 1 < rangeEnd) {
            std::stable_sort(commandIndices.begin() + begin + 1, commandIndices.begin() + rangeEnd,
                             [&commands] (const int &iA, const int &iB) {
                const RenderCommand &a = commands[iA];
                const RenderCommand &b = commands[iB];
                return a.m_material.handle() < b.m_material.handle();
            });
        }
        begin = rangeEnd;
        rangeEnd = advanceUntilNonAdjacent(view, begin, end, AdjacentSubRangeFinder<QSortPolicy::Material>::adjacentSubRange);
    }
}

void sortCommandRange(EntityRenderCommandDataView *view, int begin, int end, const int level,
                      const QVector<Qt3DRender::QSortPolicy::SortType> &sortingTypes)
{
    if (level >= sortingTypes.size())
        return;

    switch (sortingTypes.at(level)) {
    case QSortPolicy::StateChangeCost:
        SubRangeSorter<QSortPolicy::StateChangeCost>::sortSubRange(view, begin, end);
        break;
    case QSortPolicy::BackToFront:
        SubRangeSorter<QSortPolicy::BackToFront>::sortSubRange(view, begin, end);
        break;
    case QSortPolicy::Material:
        // Groups all same shader DNA together
        SubRangeSorter<QSortPolicy::Material>::sortSubRange(view, begin, end);
        // Group all same material together (same parameters most likely)
        sortByMaterial(view, begin, end);
        break;
    case QSortPolicy::FrontToBack:
        SubRangeSorter<QSortPolicy::FrontToBack>::sortSubRange(view, begin, end);
        break;
    case QSortPolicy::Texture:
        SubRangeSorter<QSortPolicy::Texture>::sortSubRange(view, begin, end);
        break;
    case QSortPolicy::Uniform:
        break;
    default:
        Q_UNREACHABLE();
    }

    // For all sub ranges of adjacent item for sortType[i]
    // Perform filtering with sortType[i + 1]
    int rangeEnd = findSubRange(view, begin, end, sortingTypes.at(level));
    while (begin != end) {
        sortCommandRange(view, begin, rangeEnd, level + 1, sortingTypes);
        begin = rangeEnd;
        rangeEnd = findSubRange(view, begin, end, sortingTypes.at(level));
    }
}

} // anonymous

void RenderView::sort()
{
    assert(m_renderCommandDataView);
    // Compares the bitsetKey of the RenderCommands
    // Key[Depth | StateCost | Shader]
    sortCommandRange(m_renderCommandDataView.data(), 0, m_renderCommandDataView->size(), 0, m_sortingTypes);

    // For RenderCommand with the same shader
    // We compute the adjacent change cost

     // Only perform uniform minimization if we explicitly asked for it
     if (!m_sortingTypes.contains(QSortPolicy::Uniform))
        return;

    // Minimize uniform changes
    int i = 0;
    std::vector<RenderCommand> &commands = m_renderCommandDataView->data.commands;
    const std::vector<size_t> &indices = m_renderCommandDataView->indices;
    const size_t commandSize = indices.size();

    while (i < commandSize) {
        size_t j = i;

        // Advance while commands share the same shader
        while (i < commandSize &&
               commands[indices[j]].m_glShader == commands[indices[i]].m_glShader)
            ++i;

        if (i - j > 0) { // Several commands have the same shader, so we minimize uniform changes
            PackUniformHash cachedUniforms = commands[indices[j++]].m_parameterPack.uniforms();

            while (j < i) {
                // We need the reference here as we are modifying the original container
                // not the copy
                PackUniformHash &uniforms = commands[indices[j]].m_parameterPack.m_uniforms;

                for (size_t u = 0; u < uniforms.keys.size();) {
                    // We are comparing the values:
                    // - raw uniform values
                    // - the texture Node id if the uniform represents a texture
                    // since all textures are assigned texture units before the RenderCommands
                    // sharing the same material (shader) are rendered, we can't have the case
                    // where two uniforms, referencing the same texture eventually have 2 different
                    // texture unit values
                    const int uniformNameId = uniforms.keys.at(u);
                    const UniformValue &refValue = cachedUniforms.value(uniformNameId);
                    const UniformValue &newValue = uniforms.values.at(u);
                    if (newValue == refValue) {
                        uniforms.erase(u);
                    } else {
                        // Record updated value so that subsequent comparison
                        // for the next command will be made againts latest
                        // uniform value
                        cachedUniforms.insert(uniformNameId, newValue);
                        ++u;
                    }
                }
                ++j;
            }
        }
    }
}

void RenderView::setRenderer(Renderer *renderer)
{
    m_renderer = renderer;
    m_manager = renderer->nodeManagers();
}

RenderStateSet *RenderView::getOrCreateStateSet()
{
    if (!m_stateSet)
        m_stateSet.reset(new RenderStateSet());
    return m_stateSet.data();
}

void RenderView::addClearBuffers(const ClearBuffers *cb) {
    QClearBuffers::BufferTypeFlags type = cb->type();

    if (type & QClearBuffers::StencilBuffer) {
        m_clearStencilValue = cb->clearStencilValue();
        m_clearBuffer |= QClearBuffers::StencilBuffer;
    }
    if (type & QClearBuffers::DepthBuffer) {
        m_clearDepthValue = cb->clearDepthValue();
        m_clearBuffer |= QClearBuffers::DepthBuffer;
    }
    // keep track of global ClearColor (if set) and collect all DrawBuffer-specific
    // ClearColors
    if (type & QClearBuffers::ColorBuffer) {
        ClearBufferInfo clearBufferInfo;
        clearBufferInfo.clearColor = cb->clearColor();

        if (cb->clearsAllColorBuffers()) {
            m_globalClearColorBuffer = clearBufferInfo;
            m_clearBuffer |= QClearBuffers::ColorBuffer;
        } else {
            if (cb->bufferId()) {
                const RenderTargetOutput *targetOutput = m_manager->attachmentManager()->lookupResource(cb->bufferId());
                if (targetOutput) {
                    clearBufferInfo.attchmentPoint = targetOutput->point();
                    // Note: a job is later performed to find the drawIndex from the buffer attachment point
                    // using the AttachmentPack
                    m_specificClearColorBuffers.push_back(clearBufferInfo);
                }
            }
        }
    }
}

// If we are there, we know that entity had a GeometryRenderer + Material
EntityRenderCommandData RenderView::buildDrawRenderCommands(const QVector<Entity *> &entities,
                                                            int offset, int count) const
{
    GLShaderManager *glShaderManager = m_renderer->glResourceManagers()->glShaderManager();
    EntityRenderCommandData commands;

    commands.reserve(count);

    for (int i = 0; i < count; ++i) {
        const int idx = offset + i;
        Entity *entity = entities.at(idx);
        GeometryRenderer *geometryRenderer = nullptr;
        HGeometryRenderer geometryRendererHandle = entity->componentHandle<GeometryRenderer>();

        // There is a geometry renderer with geometry
        if ((geometryRenderer = m_manager->geometryRendererManager()->data(geometryRendererHandle)) != nullptr
                && geometryRenderer->isEnabled()
                && !geometryRenderer->geometryId().isNull()) {

            const Qt3DCore::QNodeId materialComponentId = entity->componentUuid<Material>();
            const HMaterial materialHandle = entity->componentHandle<Material>();
            const  QVector<RenderPassParameterData> renderPassData = m_parameters.value(materialComponentId);

            HGeometry geometryHandle = m_manager->geometryManager()->lookupHandle(geometryRenderer->geometryId());
            Geometry *geometry = m_manager->geometryManager()->data(geometryHandle);

            // 1 RenderCommand per RenderPass pass on an Entity with a Mesh
            for (const RenderPassParameterData &passData : renderPassData) {
                // Add the RenderPass Parameters
                RenderCommand command = {};
                command.m_geometryRenderer = geometryRendererHandle;
                command.m_geometry = geometryHandle;

                command.m_material = materialHandle;
                // For RenderPass based states we use the globally set RenderState
                // if no renderstates are defined as part of the pass. That means:
                // RenderPass { renderStates: [] } will use the states defined by
                // StateSet in the FrameGraph
                RenderPass *pass = passData.pass;
                if (pass->hasRenderStates()) {
                    command.m_stateSet = RenderStateSetPtr::create();
                    addStatesToRenderStateSet(command.m_stateSet.data(), pass->renderStates(), m_manager->renderStateManager());
                    if (m_stateSet)
                        command.m_stateSet->merge(m_stateSet.data());
                    command.m_changeCost = m_renderer->defaultRenderState()->changeCost(command.m_stateSet.data());
                }
                command.m_shaderId = pass->shaderProgram();
                command.m_glShader = glShaderManager->lookupResource(command.m_shaderId);

                // It takes two frames to have a valid command as we can only
                // reference a glShader at frame n if it has been loaded at frame n - 1
                if (!command.m_glShader)
                    continue;

                { // Scoped to show extent

                    // Update the draw command with what's going to be needed for the drawing
                    int primitiveCount = geometryRenderer->vertexCount();
                    int estimatedCount = 0;
                    Attribute *indexAttribute = nullptr;
                    Attribute *indirectAttribute = nullptr;

                    const QVector<Qt3DCore::QNodeId> attributeIds = geometry->attributes();
                    for (Qt3DCore::QNodeId attributeId : attributeIds) {
                        Attribute *attribute = m_manager->attributeManager()->lookupResource(attributeId);
                        switch (attribute->attributeType()) {
                        case QAttribute::IndexAttribute:
                            indexAttribute = attribute;
                            break;
                        case QAttribute::DrawIndirectAttribute:
                            indirectAttribute = attribute;
                            break;
                        case QAttribute::VertexAttribute:
                            estimatedCount = std::max(int(attribute->count()), estimatedCount);
                            break;
                        default:
                            Q_UNREACHABLE();
                            break;
                        }
                    }

                    command.m_drawIndexed = (indexAttribute != nullptr);
                    command.m_drawIndirect = (indirectAttribute != nullptr);

                    // Update the draw command with all the information required for the drawing
                    if (command.m_drawIndexed) {
                        command.m_indexAttributeDataType = GraphicsContext::glDataTypeFromAttributeDataType(indexAttribute->vertexBaseType());
                        command.m_indexAttributeByteOffset = indexAttribute->byteOffset() + geometryRenderer->indexBufferByteOffset();
                    }

                    // Note: we only care about the primitiveCount when using direct draw calls
                    // For indirect draw calls it is assumed the buffer was properly set already
                    if (command.m_drawIndirect) {
                        command.m_indirectAttributeByteOffset = indirectAttribute->byteOffset();
                        command.m_indirectDrawBuffer = m_manager->bufferManager()->lookupHandle(indirectAttribute->bufferId());
                    } else {
                        // Use the count specified by the GeometryRender
                        // If not specify use the indexAttribute count if present
                        // Otherwise tries to use the count from the attribute with the highest count
                        if (primitiveCount == 0) {
                            if (indexAttribute)
                                primitiveCount = indexAttribute->count();
                            else
                                primitiveCount = estimatedCount;
                        }
                    }

                    command.m_primitiveCount = primitiveCount;
                    command.m_primitiveType = geometryRenderer->primitiveType();
                    command.m_primitiveRestartEnabled = geometryRenderer->primitiveRestartEnabled();
                    command.m_restartIndexValue = geometryRenderer->restartIndexValue();
                    command.m_firstInstance = geometryRenderer->firstInstance();
                    command.m_instanceCount = geometryRenderer->instanceCount();
                    command.m_firstVertex = geometryRenderer->firstVertex();
                    command.m_indexOffset = geometryRenderer->indexOffset();
                    command.m_verticesPerPatch = geometryRenderer->verticesPerPatch();
                } // scope


                commands.push_back(entity,
                                   std::move(command),
                                   std::move(passData));
            }
        }
    }

    return commands;
}

EntityRenderCommandData RenderView::buildComputeRenderCommands(const QVector<Entity *> &entities,
                                                               int offset, int count) const
{
    // If the RenderView contains only a ComputeDispatch then it cares about
    // A ComputeDispatch is also implicitely a NoDraw operation
    // enabled flag
    // layer component
    // material/effect/technique/parameters/filters/
    EntityRenderCommandData commands;
    GLShaderManager *glShaderManager = m_renderer->glResourceManagers()->glShaderManager();

    commands.reserve(count);

    for (int i = 0; i < count; ++i) {
        const int idx = offset + i;
        Entity *entity = entities.at(idx);
        ComputeCommand *computeJob = nullptr;
        HComputeCommand computeCommandHandle = entity->componentHandle<ComputeCommand>();
        if ((computeJob = nodeManagers()->computeJobManager()->data(computeCommandHandle)) != nullptr
                && computeJob->isEnabled()) {

            const Qt3DCore::QNodeId materialComponentId = entity->componentUuid<Material>();
            const  QVector<RenderPassParameterData> renderPassData = m_parameters.value(materialComponentId);

            // 1 RenderCommand per RenderPass pass on an Entity with a Mesh
            for (const RenderPassParameterData &passData : renderPassData) {
                // Add the RenderPass Parameters
                RenderCommand command = {};
                RenderPass *pass = passData.pass;

                if (pass->hasRenderStates()) {
                    command.m_stateSet = RenderStateSetPtr::create();
                    addStatesToRenderStateSet(command.m_stateSet.data(), pass->renderStates(), m_manager->renderStateManager());

                    // Merge per pass stateset with global stateset
                    // so that the local stateset only overrides
                    if (m_stateSet != nullptr)
                        command.m_stateSet->merge(m_stateSet.data());
                    command.m_changeCost = m_renderer->defaultRenderState()->changeCost(command.m_stateSet.data());
                }
                command.m_shaderId = pass->shaderProgram();
                command.m_glShader = glShaderManager->lookupResource(command.m_shaderId);

                // It takes two frames to have a valid command as we can only
                // reference a glShader at frame n if it has been loaded at frame n - 1
                if (!command.m_glShader)
                    continue;

                command.m_computeCommand = computeCommandHandle;
                command.m_type = RenderCommand::Compute;
                command.m_workGroups[0] = std::max(m_workGroups[0], computeJob->x());
                command.m_workGroups[1] = std::max(m_workGroups[1], computeJob->y());
                command.m_workGroups[2] = std::max(m_workGroups[2], computeJob->z());

                commands.push_back(entity,
                                   std::move(command),
                                   std::move(passData));
            }
        }
    }

    return commands;
}

void RenderView::updateRenderCommand(const EntityRenderCommandDataSubView &subView)
{
    // Note: since many threads can be building render commands
    // we need to ensure that the UniformBlockValueBuilder they are using
    // is only accessed from the same thread
    UniformBlockValueBuilder *builder = new UniformBlockValueBuilder();
    builder->shaderDataManager = m_manager->shaderDataManager();
    builder->textureManager = m_manager->textureManager();
    m_localData.setLocalData(builder);

    subView.forEach([this] (const Entity *entity,
                            const RenderPassParameterData &passData,
                            RenderCommand &command) {
        if (command.m_type == RenderCommand::Draw) {
            // Project the camera-to-object-center vector onto the camera
            // view vector. This gives a depth value suitable as the key
            // for BackToFront sorting.
            command.m_depth = Vector3D::dotProduct(entity->worldBoundingVolume()->center() - m_eyePos, m_eyeViewDir);

            auto geometryRenderer = m_manager->geometryRendererManager()->data(command.m_geometryRenderer);
            if (geometryRenderer && !qFuzzyCompare(geometryRenderer->sortIndex(), -1.f))
                command.m_depth = geometryRenderer->sortIndex();
        } else { // Compute
            // Note: if frameCount has reached 0 in the previous frame, isEnabled
            // would be false
            ComputeCommand *computeJob = m_manager->computeJobManager()->data(command.m_computeCommand);
            if (computeJob->runType() == QComputeCommand::Manual)
                computeJob->updateFrameCount();
        }

        // setShaderAndUniforms can initialize a localData
        // make sure this is cleared before we leave this function
        setShaderAndUniforms(&command,
                             passData.parameterInfo,
                             entity);
    });

    // We reset the local data once we are done with it
    m_localData.setLocalData(nullptr);
}

void RenderView::updateMatrices()
{
    if (m_renderCameraNode && m_renderCameraLens && m_renderCameraLens->isEnabled()) {
        const Matrix4x4 cameraWorld = *(m_renderCameraNode->worldTransform());
        setViewMatrix(m_renderCameraLens->viewMatrix(cameraWorld));

        setViewProjectionMatrix(m_renderCameraLens->projection() * viewMatrix());
        //To get the eyePosition of the camera, we need to use the inverse of the
        //camera's worldTransform matrix.
        const Matrix4x4 inverseWorldTransform = viewMatrix().inverted();
        const Vector3D eyePosition(inverseWorldTransform.column(3));
        setEyePosition(eyePosition);

        // Get the viewing direction of the camera. Use the normal matrix to
        // ensure non-uniform scale works too.
        const QMatrix3x3 normalMat = convertToQMatrix4x4(m_viewMatrix).normalMatrix();
        // dir = normalize(QVector3D(0, 0, -1) * normalMat)
        setEyeViewDirection(Vector3D(-normalMat(2, 0), -normalMat(2, 1), -normalMat(2, 2)).normalized());
    }
}

void RenderView::setUniformValue(ShaderParameterPack &uniformPack, int nameId, const UniformValue &value) const
{
    // At this point a uniform value can only be a scalar type
    // or a Qt3DCore::QNodeId corresponding to a Texture or Image
    // ShaderData/Buffers would be handled as UBO/SSBO and would therefore
    // not be in the default uniform block
    if (value.valueType() == UniformValue::NodeId) {
        const Qt3DCore::QNodeId *nodeIds = value.constData<Qt3DCore::QNodeId>();

        const int uniformArraySize = value.byteSize() / sizeof(Qt3DCore::QNodeId);
        UniformValue::ValueType resourceType = UniformValue::TextureValue;

        for (int i = 0; i < uniformArraySize; ++i) {
            const Qt3DCore::QNodeId resourceId = nodeIds[i];

            const Texture *tex =  m_manager->textureManager()->lookupResource(resourceId);
            if (tex != nullptr) {
                uniformPack.setTexture(nameId, i, resourceId);
            } else {
                const ShaderImage *img = m_manager->shaderImageManager()->lookupResource(resourceId);
                if (img != nullptr) {
                    resourceType = UniformValue::ShaderImageValue;
                    uniformPack.setImage(nameId, i, resourceId);
                }
            }
        }

        // This uniform will be overridden in SubmissionContext::setParameters
        // and -1 values will be replaced by valid Texture or Image units
        UniformValue uniformValue(uniformArraySize * sizeof(int), resourceType);
        std::fill(uniformValue.data<int>(), uniformValue.data<int>() + uniformArraySize, -1);
        uniformPack.setUniform(nameId, uniformValue);
    } else {
        uniformPack.setUniform(nameId, value);
    }
}

void RenderView::setStandardUniformValue(ShaderParameterPack &uniformPack,
                                         int nameId,
                                         const Entity *entity) const
{
    uniformPack.setUniform(nameId, standardUniformValue(ms_standardUniformSetters[nameId], entity));
}

void RenderView::setUniformBlockValue(ShaderParameterPack &uniformPack,
                                      const ShaderUniformBlock &block,
                                      const UniformValue &value) const
{
    if (value.valueType() == UniformValue::NodeId) {

        Buffer *buffer = nullptr;
        if ((buffer = m_manager->bufferManager()->lookupResource(*value.constData<Qt3DCore::QNodeId>())) != nullptr) {
            BlockToUBO uniformBlockUBO;
            uniformBlockUBO.m_blockIndex = block.m_index;
            uniformBlockUBO.m_bufferID = buffer->peerId();
            uniformBlockUBO.m_needsUpdate = false;
            uniformPack.setUniformBuffer(std::move(uniformBlockUBO));
            // Buffer update to GL buffer will be done at render time
        }
    }
}

void RenderView::setShaderStorageValue(ShaderParameterPack &uniformPack,
                                       const ShaderStorageBlock &block,
                                       const UniformValue &value) const
{
    if (value.valueType() == UniformValue::NodeId) {
        Buffer *buffer = nullptr;
        if ((buffer = m_manager->bufferManager()->lookupResource(*value.constData<Qt3DCore::QNodeId>())) != nullptr) {
            BlockToSSBO shaderStorageBlock;
            shaderStorageBlock.m_blockIndex = block.m_index;
            shaderStorageBlock.m_bufferID = buffer->peerId();
            shaderStorageBlock.m_bindingIndex = block.m_binding;
            uniformPack.setShaderStorageBuffer(shaderStorageBlock);
            // Buffer update to GL buffer will be done at render time
        }
    }
}

void RenderView::setDefaultUniformBlockShaderDataValue(ShaderParameterPack &uniformPack,
                                                       const GLShader *shader,
                                                       const ShaderData *shaderData,
                                                       const QString &structName) const
{
    UniformBlockValueBuilder *builder = m_localData.localData();
    builder->activeUniformNamesToValue.clear();

    // Set the view matrix to be used to transform "Transformed" properties in the ShaderData
    builder->viewMatrix = m_viewMatrix;
    // Force to update the whole block
    builder->updatedPropertiesOnly = false;
    // Retrieve names and description of each active uniforms in the uniform block
    builder->uniforms = shader->activeUniformsForUniformBlock(-1);
    // Build name-value map for the block
    builder->buildActiveUniformNameValueMapStructHelper(shaderData, structName);
    // Set uniform values for each entrie of the block name-value map
    QHash<int, QVariant>::const_iterator activeValuesIt = builder->activeUniformNamesToValue.constBegin();
    const QHash<int, QVariant>::const_iterator activeValuesEnd = builder->activeUniformNamesToValue.constEnd();

    // TO DO: Make the ShaderData store UniformValue
    while (activeValuesIt != activeValuesEnd) {
        setUniformValue(uniformPack, activeValuesIt.key(), UniformValue::fromVariant(activeValuesIt.value()));
        ++activeValuesIt;
    }
}

void RenderView::applyParameter(const Parameter *param,
                                RenderCommand *command,
                                const GLShader *shader) const noexcept
{
    const int nameId = param->nameId();
    const UniformValue &uniformValue = param->uniformValue();
    const GLShader::ParameterKind kind = shader->categorizeVariable(nameId);

    switch (kind) {
    case GLShader::Uniform: {
        setUniformValue(command->m_parameterPack, nameId, uniformValue);
        break;
    }
    case GLShader::UBO: {
        setUniformBlockValue(command->m_parameterPack, shader->uniformBlockForBlockNameId(nameId), uniformValue);
        break;
    }
    case GLShader::SSBO: {
        setShaderStorageValue(command->m_parameterPack, shader->storageBlockForBlockNameId(nameId), uniformValue);
        break;
    }
    case GLShader::Struct: {
        ShaderData *shaderData = nullptr;
        if (uniformValue.valueType() == UniformValue::NodeId &&
                (shaderData = m_manager->shaderDataManager()->lookupResource(*uniformValue.constData<Qt3DCore::QNodeId>())) != nullptr) {
            // Try to check if we have a struct or array matching a QShaderData parameter
            setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, shaderData, StringToInt::lookupString(nameId));
        }
        break;
    }
    default:
        break;
    }
}


void RenderView::setShaderAndUniforms(RenderCommand *command,
                                      const ParameterInfoList &parameters,
                                      const Entity *entity) const
{
    // The VAO Handle is set directly in the renderer thread so as to avoid having to use a mutex here
    // Set shader, technique, and effect by basically doing :
    // ShaderProgramManager[MaterialManager[frontentEntity->id()]->Effect->Techniques[TechniqueFilter->name]->RenderPasses[RenderPassFilter->name]];
    // The Renderer knows that if one of those is null, a default material / technique / effect as to be used

    // Find all RenderPasses (in order) matching values set in the RenderPassFilter
    // Get list of parameters for the Material, Effect, and Technique
    // For each ParameterBinder in the RenderPass -> create a QUniformPack
    // Once that works, improve that to try and minimize QUniformPack updates

    GLShader *shader = command->m_glShader;
    if (shader == nullptr || !shader->isLoaded())
        return;

    // If we have already build the uniforms previously, we should
    // only update values of uniforms that have changed
    // If parameters add been added/removed, the command would have been rebuild
    // and the parameter pack would be empty
    const bool updateUniformsOnly = command->m_parameterPack.submissionUniformIndices().size() > 0;

    if (!updateUniformsOnly) {
        // Builds the QUniformPack, sets shader standard uniforms and store attributes name / glname bindings
        // If a parameter is defined and not found in the bindings it is assumed to be a binding of Uniform type with the glsl name
        // equals to the parameter name

        // Set fragData Name and index
        // Later on we might want to relink the shader if attachments have changed
        // But for now we set them once and for all
        if (!m_renderTarget.isNull() && !shader->isLoaded()) {
            QHash<QString, int> fragOutputs;
            const auto atts = m_attachmentPack.attachments();
            for (const Attachment &att : atts) {
                if (att.m_point <= QRenderTargetOutput::Color15)
                    fragOutputs.insert(att.m_name, att.m_point);
            }
            // Set frag outputs in the shaders if hash not empty
            if (!fragOutputs.isEmpty())
                shader->setFragOutputs(fragOutputs);
        }

        // Set default attributes
        command->m_activeAttributes = shader->attributeNamesIds();

        // At this point we know whether the command is a valid draw command or not
        // We still need to process the uniforms as the command could be a compute command
        command->m_isValid = !command->m_activeAttributes.empty();

        // Reserve amount of uniforms we are going to need
        command->m_parameterPack.reserve(shader->parameterPackSize());
    }

    const size_t previousUniformCount = command->m_parameterPack.uniforms().size();
    if (shader->hasActiveVariables()) {
        const QVector<int> &standardUniformNamesIds = shader->standardUniformNameIds();

        // It only makes sense to update the standard uniforms if:
        // - Camera changed
        // - Entity transform changed
        // - Viewport/Surface changed

        for (const int uniformNameId : standardUniformNamesIds)
            setStandardUniformValue(command->m_parameterPack, uniformNameId, entity);

        ParameterInfoList::const_iterator it = parameters.cbegin();
        const ParameterInfoList::const_iterator parametersEnd = parameters.cend();

        while (it != parametersEnd) {
            const Parameter *param = m_manager->data<Parameter, ParameterManager>(it->handle);
            applyParameter(param, command, shader);
            ++it;
        }

        // Lights
        updateLightUniforms(command, entity);
    }

    const size_t actualUniformCount = command->m_parameterPack.uniforms().size();
    // Prepare the ShaderParameterPack based on the active uniforms of the shader
    if (!updateUniformsOnly || previousUniformCount != actualUniformCount)
        shader->prepareUniforms(command->m_parameterPack);
}

void RenderView::updateLightUniforms(RenderCommand *command, const Entity *entity) const
{
    GLShader *shader = command->m_glShader;
    const QVector<int> &lightUniformNamesIds = shader->lightUniformsNamesIds();
    if (!lightUniformNamesIds.empty()) {
        // Pick which lights to take in to account.
        // For now decide based on the distance by taking the MAX_LIGHTS closest lights.
        // Replace with more sophisticated mechanisms later.
        // Copy vector so that we can sort it concurrently and we only want to sort the one for the current command
        QVector<LightSource> lightSources = m_lightSources;

        if (lightSources.size() > 1) {
            const Vector3D entityCenter = entity->worldBoundingVolume()->center();
            std::sort(lightSources.begin(), lightSources.end(),
                      [&] (const LightSource &a, const LightSource &b) {
                const float distA = entityCenter.distanceToPoint(a.entity->worldBoundingVolume()->center());
                const float distB = entityCenter.distanceToPoint(b.entity->worldBoundingVolume()->center());
                return distA < distB;
            });
        }
        m_lightSources = lightSources.mid(0, std::min(lightSources.size(), MAX_LIGHTS));

        int lightIdx = 0;
        for (const LightSource &lightSource : qAsConst(m_lightSources)) {
            if (lightIdx == MAX_LIGHTS)
                break;
            Entity *lightEntity = lightSource.entity;
            const Matrix4x4 lightWorldTransform = *(lightEntity->worldTransform());
            const Vector3D worldPos = lightWorldTransform * Vector3D(0.0f, 0.0f, 0.0f);
            for (Light *light : lightSource.lights) {
                if (!light->isEnabled())
                    continue;

                ShaderData *shaderData = m_manager->shaderDataManager()->lookupResource(light->shaderData());
                if (!shaderData)
                    continue;

                if (lightIdx == MAX_LIGHTS)
                    break;

                // Note: implicit conversion of values to UniformValue
                if (lightUniformNamesIds.contains(GLLights::LIGHT_TYPE_NAMES[lightIdx])) {
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_POSITION_NAMES[lightIdx], worldPos);
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_TYPE_NAMES[lightIdx], int(QAbstractLight::PointLight));
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_COLOR_NAMES[lightIdx], Vector3D(1.0f, 1.0f, 1.0f));
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_INTENSITY_NAMES[lightIdx], 0.5f);
                } else if (lightUniformNamesIds.contains(GLLights::LIGHT_TYPE_UNROLL_NAMES[lightIdx])) {
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_POSITION_UNROLL_NAMES[lightIdx], worldPos);
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_TYPE_UNROLL_NAMES[lightIdx], int(QAbstractLight::PointLight));
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_COLOR_UNROLL_NAMES[lightIdx], Vector3D(1.0f, 1.0f, 1.0f));
                    setUniformValue(command->m_parameterPack, GLLights::LIGHT_INTENSITY_UNROLL_NAMES[lightIdx], 0.5f);
                }

                // There is no risk in doing that even if multithreaded
                // since we are sure that a shaderData is unique for a given light
                // and won't ever be referenced as a Component either
                Matrix4x4 *worldTransform = lightEntity->worldTransform();
                if (worldTransform)
                    shaderData->updateWorldTransform(*worldTransform);

                setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, shaderData, GLLights::LIGHT_STRUCT_NAMES[lightIdx]);
                setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, shaderData, GLLights::LIGHT_STRUCT_UNROLL_NAMES[lightIdx]);
                ++lightIdx;
            }
        }

        setUniformValue(command->m_parameterPack, GLLights::LIGHT_COUNT_NAME_ID, UniformValue(qMax((m_environmentLight ? 0 : 1), lightIdx)));

        // If no active light sources and no environment light, add a default light
        if (m_lightSources.isEmpty() && !m_environmentLight) {
            // Note: implicit conversion of values to UniformValue
            if (lightUniformNamesIds.contains(GLLights::LIGHT_TYPE_NAMES[0])) {
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_POSITION_NAMES[0], Vector3D(10.0f, 10.0f, 0.0f));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_TYPE_NAMES[0], int(QAbstractLight::PointLight));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_COLOR_NAMES[0], Vector3D(1.0f, 1.0f, 1.0f));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_INTENSITY_NAMES[0], 0.5f);
            } else if (lightUniformNamesIds.contains(GLLights::LIGHT_TYPE_UNROLL_NAMES[lightIdx])) {
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_POSITION_UNROLL_NAMES[0], Vector3D(10.0f, 10.0f, 0.0f));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_TYPE_UNROLL_NAMES[0], int(QAbstractLight::PointLight));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_COLOR_UNROLL_NAMES[0], Vector3D(1.0f, 1.0f, 1.0f));
                setUniformValue(command->m_parameterPack, GLLights::LIGHT_INTENSITY_UNROLL_NAMES[0], 0.5f);
            }
        }
    }

    // Environment Light
    int envLightCount = 0;
    static const int irradianceStructId = StringToInt::lookupId(QLatin1String("envLight.irradiance"));
    static const int specularStructId = StringToInt::lookupId(QLatin1String("envLight.specular"));
    static const int irradianceId = StringToInt::lookupId(QLatin1String("envLightIrradiance"));
    static const int specularId = StringToInt::lookupId(QLatin1String("envLightSpecular"));
    if (m_environmentLight && m_environmentLight->isEnabled()) {
        ShaderData *shaderData = m_manager->shaderDataManager()->lookupResource(m_environmentLight->shaderData());
        if (shaderData) {
            setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, shaderData, QStringLiteral("envLight"));
            auto irr =
                    shaderData->properties()["irradiance"].value.value<Qt3DCore::QNodeId>();
            auto spec =
                    shaderData->properties()["specular"].value.value<Qt3DCore::QNodeId>();
            setUniformValue(command->m_parameterPack, irradianceId, irr);
            setUniformValue(command->m_parameterPack, specularId, spec);
            envLightCount = 1;
        }
    } else {
        // with some drivers, samplers (like the envbox sampler) need to be bound even though
        // they may not be actually used, otherwise draw calls can fail
        setUniformValue(command->m_parameterPack, irradianceId, m_renderer->submissionContext()->maxTextureUnitsCount());
        setUniformValue(command->m_parameterPack, irradianceStructId, m_renderer->submissionContext()->maxTextureUnitsCount());
        setUniformValue(command->m_parameterPack, specularId, m_renderer->submissionContext()->maxTextureUnitsCount());
        setUniformValue(command->m_parameterPack, specularStructId, m_renderer->submissionContext()->maxTextureUnitsCount());
    }
    setUniformValue(command->m_parameterPack, StringToInt::lookupId(QStringLiteral("envLightCount")), envLightCount);
}

bool RenderView::hasBlitFramebufferInfo() const
{
    return m_hasBlitFramebufferInfo;
}

void RenderView::setHasBlitFramebufferInfo(bool hasBlitFramebufferInfo)
{
    m_hasBlitFramebufferInfo = hasBlitFramebufferInfo;
}

bool RenderView::shouldSkipSubmission() const
{
    if (commandCount() > 0)
        return false;

    if (m_hasBlitFramebufferInfo)
        return false;

    if (m_isDownloadBuffersEnable)
        return false;

    if (m_showDebugOverlay)
        return false;

    if (!m_waitFences.empty() || !m_insertFenceIds.empty())
        return false;

    if (m_clearBuffer != QClearBuffers::None)
        return false;

    if (!m_renderCaptureNodeId.isNull())
        return false;

    return true;
}

BlitFramebufferInfo RenderView::blitFrameBufferInfo() const
{
    return m_blitFrameBufferInfo;
}

void RenderView::setBlitFrameBufferInfo(const BlitFramebufferInfo &blitFrameBufferInfo)
{
    m_blitFrameBufferInfo = blitFrameBufferInfo;
}

bool RenderView::isDownloadBuffersEnable() const
{
    return m_isDownloadBuffersEnable;
}

void RenderView::setIsDownloadBuffersEnable(bool isDownloadBuffersEnable)
{
    m_isDownloadBuffersEnable = isDownloadBuffersEnable;
}

} // namespace OpenGL
} // namespace Render
} // namespace Qt3DRender

QT_END_NAMESPACE