summaryrefslogtreecommitdiffstats
path: root/src/render/backend/renderview.cpp
blob: 2e1e2fce492d036b1e41f32dedd97d9c9a0eabb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/****************************************************************************
**
** Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB).
** Copyright (C) 2015 The Qt Company Ltd and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "renderview_p.h"
#include <Qt3DRender/qmaterial.h>
#include <Qt3DRender/qrenderaspect.h>
#include <Qt3DRender/qrendertarget.h>
#include <Qt3DRender/qlight.h>
#include <Qt3DRender/private/sphere_p.h>

#include <Qt3DRender/private/cameraselectornode_p.h>
#include <Qt3DRender/private/framegraphnode_p.h>
#include <Qt3DRender/private/layerfilternode_p.h>
#include <Qt3DRender/private/qparameter_p.h>
#include <Qt3DRender/private/cameralens_p.h>
#include <Qt3DRender/private/rendercommand_p.h>
#include <Qt3DRender/private/effect_p.h>
#include <Qt3DRender/private/entity_p.h>
#include <Qt3DRender/private/renderer_p.h>
#include <Qt3DRender/private/nodemanagers_p.h>
#include <Qt3DRender/private/layer_p.h>
#include <Qt3DRender/private/renderlogging_p.h>
#include <Qt3DRender/private/renderpassfilternode_p.h>
#include <Qt3DRender/private/renderpass_p.h>
#include <Qt3DRender/private/geometryrenderer_p.h>
#include <Qt3DRender/private/renderstateset_p.h>
#include <Qt3DRender/private/techniquefilternode_p.h>
#include <Qt3DRender/private/viewportnode_p.h>
#include <Qt3DRender/private/buffermanager_p.h>

#include <Qt3DRender/qparametermapping.h>

#include <Qt3DCore/qentity.h>

#include <QtGui/qsurface.h>

#include <algorithm>

#include <QDebug>

QT_BEGIN_NAMESPACE

namespace Qt3DRender {
namespace Render {

static const int MAX_LIGHTS = 8;

namespace  {

const int qNodeIdTypeId = qMetaTypeId<Qt3DCore::QNodeId>();

// TODO: Should we treat lack of layer data as implicitly meaning that an
// entity is in all layers?
bool isEntityInLayers(const Entity *entity, const QStringList &layers)
{
    if (layers.isEmpty())
        return true;

    QList<Layer *> renderLayers = entity->renderComponents<Layer>();
    Q_FOREACH (Layer *layer, renderLayers) {
        if (layer->isEnabled())
            Q_FOREACH (const QString &layerName, layer->layers())
                if (layers.contains(layerName))
                    return true;
    }
    return false;
}

bool isEntityFrustumCulled(const Entity *entity, const Plane *planes)
{
    const Sphere *s = entity->worldBoundingVolumeWithChildren();
    for (int i = 0; i < 6; ++i) {
        if (QVector3D::dotProduct(s->center(), planes[i].normal) + planes[i].d < -s->radius())
            return true;
    }
    return false;
}

void destroyUniformValue(const QUniformValue *value, Qt3DCore::QFrameAllocator *allocator)
{
    QUniformValue *v = const_cast<QUniformValue *>(value);
    if (v->isTexture())
        allocator->deallocate(static_cast<TextureUniform *>(v));
    else
        allocator->deallocate(v);
}

} // anonymouse namespace

RenderView::StandardUniformsPFuncsHash RenderView::ms_standardUniformSetters = RenderView::initializeStandardUniformSetters();
QStringList RenderView::ms_standardAttributesNames = RenderView::initializeStandardAttributeNames();

RenderView::StandardUniformsPFuncsHash RenderView::initializeStandardUniformSetters()
{
    RenderView::StandardUniformsPFuncsHash setters;

    setters.insert(QStringLiteral("modelMatrix"), &RenderView::modelMatrix);
    setters.insert(QStringLiteral("viewMatrix"), &RenderView::viewMatrix);
    setters.insert(QStringLiteral("projectionMatrix"), &RenderView::projectionMatrix);
    setters.insert(QStringLiteral("modelView"), &RenderView::modelViewMatrix);
    setters.insert(QStringLiteral("modelViewProjection"), &RenderView::modelViewProjectionMatrix);
    setters.insert(QStringLiteral("mvp"), &RenderView::modelViewProjectionMatrix);
    setters.insert(QStringLiteral("inverseModelMatrix"), &RenderView::inverseModelMatrix);
    setters.insert(QStringLiteral("inverViewMatrix"), &RenderView::inverseViewMatrix);
    setters.insert(QStringLiteral("inverseProjectionMatrix"), &RenderView::inverseProjectionMatrix);
    setters.insert(QStringLiteral("inverseModelView"), &RenderView::inverseModelViewMatrix);
    setters.insert(QStringLiteral("inverseModelViewProjection"), &RenderView::inverseModelViewProjectionMatrix);
    setters.insert(QStringLiteral("modelNormalMatrix"), &RenderView::modelNormalMatrix);
    setters.insert(QStringLiteral("modelViewNormal"), &RenderView::modelViewNormalMatrix);
    setters.insert(QStringLiteral("viewportMatrix"), &RenderView::viewportMatrix);
    setters.insert(QStringLiteral("inverseViewportMatrix"), &RenderView::inverseViewportMatrix);
    setters.insert(QStringLiteral("time"), &RenderView::time);
    setters.insert(QStringLiteral("eyePosition"), &RenderView::eyePosition);

    return setters;
}

QStringList RenderView::initializeStandardAttributeNames()
{
    QStringList attributesNames;

    attributesNames << QAttribute::defaultPositionAttributeName();
    attributesNames << QAttribute::defaultTextureCoordinateAttributeName();
    attributesNames << QAttribute::defaultNormalAttributeName();
    attributesNames << QAttribute::defaultColorAttributeName();
    attributesNames << QAttribute::defaultTangentAttributeName();

    return attributesNames;
}

QUniformValue *RenderView::modelMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(model, m_allocator);
}

QUniformValue *RenderView::viewMatrix(const QMatrix4x4 &) const
{
    return QUniformValue::fromVariant(*m_data->m_viewMatrix, m_allocator);
}

QUniformValue *RenderView::projectionMatrix(const QMatrix4x4 &) const
{
    return QUniformValue::fromVariant(m_data->m_renderCamera->projection(), m_allocator);
}

QUniformValue *RenderView::modelViewMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(*m_data->m_viewMatrix * model, m_allocator);
}

QUniformValue *RenderView::modelViewProjectionMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(*m_data->m_viewProjectionMatrix * model, m_allocator);
}

QUniformValue *RenderView::inverseModelMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(model.inverted(), m_allocator);
}

QUniformValue *RenderView::inverseViewMatrix(const QMatrix4x4 &) const
{
    return QUniformValue::fromVariant(m_data->m_viewMatrix->inverted(), m_allocator);
}

QUniformValue *RenderView::inverseProjectionMatrix(const QMatrix4x4 &) const
{
    QMatrix4x4 projection;
    if (m_data->m_renderCamera)
        projection = m_data->m_renderCamera->projection();
    return QUniformValue::fromVariant(projection.inverted(), m_allocator);
}

QUniformValue *RenderView::inverseModelViewMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant((*m_data->m_viewMatrix * model).inverted(), m_allocator);
}

QUniformValue *RenderView::inverseModelViewProjectionMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant((*m_data->m_viewProjectionMatrix * model).inverted(0), m_allocator);
}

QUniformValue *RenderView::modelNormalMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(QVariant::fromValue(model.normalMatrix()), m_allocator);
}

QUniformValue *RenderView::modelViewNormalMatrix(const QMatrix4x4 &model) const
{
    return QUniformValue::fromVariant(QVariant::fromValue((*m_data->m_viewMatrix * model).normalMatrix()), m_allocator);
}

// TODO: Move this somewhere global where GraphicsContext::setViewport() can use it too
static QRectF resolveViewport(const QRectF &fractionalViewport, const QSize &surfaceSize)
{
    return QRectF(fractionalViewport.x() * surfaceSize.width(),
                  (1.0 - fractionalViewport.y() - fractionalViewport.height()) * surfaceSize.height(),
                  fractionalViewport.width() * surfaceSize.width(),
                  fractionalViewport.height() * surfaceSize.height());
}

QUniformValue *RenderView::viewportMatrix(const QMatrix4x4 &model) const
{
    // TODO: Can we avoid having to pass the model matrix in to these functions?
    Q_UNUSED(model);
    QMatrix4x4 viewportMatrix;
    viewportMatrix.viewport(resolveViewport(*m_viewport, m_surfaceSize));
    return QUniformValue::fromVariant(QVariant::fromValue(viewportMatrix), m_allocator);

}

QUniformValue *RenderView::inverseViewportMatrix(const QMatrix4x4 &model) const
{
    Q_UNUSED(model);
    QMatrix4x4 viewportMatrix;
    viewportMatrix.viewport(resolveViewport(*m_viewport, m_surfaceSize));
    QMatrix4x4 inverseViewportMatrix = viewportMatrix.inverted();
    return QUniformValue::fromVariant(QVariant::fromValue(inverseViewportMatrix), m_allocator);

}

QUniformValue *RenderView::time(const QMatrix4x4 &model) const
{
    Q_UNUSED(model);
    qint64 time = m_renderer->time();
    float t = time / 1000000000.0f;
    return QUniformValue::fromVariant(QVariant(t), m_allocator);
}

QUniformValue *RenderView::eyePosition(const QMatrix4x4 &model) const
{
    Q_UNUSED(model);
    return QUniformValue::fromVariant(QVariant::fromValue(m_data->m_eyePos), m_allocator);
}

RenderView::RenderView()
    : m_renderer(Q_NULLPTR)
    , m_devicePixelRatio(1.)
    , m_allocator(Q_NULLPTR)
    , m_data(Q_NULLPTR)
    , m_clearColor(Q_NULLPTR)
    , m_viewport(Q_NULLPTR)
    , m_surface(Q_NULLPTR)
    , m_clearBuffer(QClearBuffer::None)
    , m_stateSet(Q_NULLPTR)
    , m_noDraw(false)
    , m_compute(false)
    , m_frustumCulling(false)
{
    m_workGroups[0] = 1;
    m_workGroups[1] = 1;
    m_workGroups[2] = 1;
}

RenderView::~RenderView()
{
    if (m_allocator == Q_NULLPTR) // Mainly needed for unit tests
        return;

    Q_FOREACH (RenderCommand *command, m_commands) {
        // Deallocate all uniform values of the QUniformPack of each RenderCommand
        const QHash<QString, const QUniformValue* > uniforms = command->m_parameterPack.uniforms();
        const QHash<QString, const QUniformValue* >::const_iterator end = uniforms.constEnd();
        QHash<QString, const QUniformValue* >::const_iterator it = uniforms.constBegin();

        for (; it != end; ++it)
            destroyUniformValue(it.value(), m_allocator);

        if (command->m_stateSet != Q_NULLPTR) // We do not delete the RenderState as that is stored statically
            m_allocator->deallocate<RenderStateSet>(command->m_stateSet);

        // Deallocate RenderCommand
        m_allocator->deallocate<RenderCommand>(command);
    }

    // Deallocate viewMatrix/viewProjectionMatrix
    m_allocator->deallocate<QMatrix4x4>(m_data->m_viewMatrix);
    m_allocator->deallocate<QMatrix4x4>(m_data->m_viewProjectionMatrix);
    // Deallocate viewport rect
    m_allocator->deallocate<QRectF>(m_viewport);
    // Deallocate clearColor
    m_allocator->deallocate<QColor>(m_clearColor);
    // Deallocate m_data
    m_allocator->deallocate<InnerData>(m_data);
    // Deallocate m_stateSet
    if (m_stateSet)
        m_allocator->deallocate<RenderStateSet>(m_stateSet);
}

// We need to overload the delete operator so that when the Renderer deletes the list of RenderViews, each RenderView
// can clear itself with the frame allocator and deletes its RenderViews
void RenderView::operator delete(void *ptr)
{
    RenderView *rView = static_cast<RenderView *>(ptr);
    if (rView != Q_NULLPTR && rView->m_allocator != Q_NULLPTR)
        rView->m_allocator->deallocateRawMemory(rView, sizeof(RenderView));
}

// Since placement new is used we need a matching operator delete, at least MSVC complains otherwise
void RenderView::operator delete(void *ptr, void *)
{
    RenderView *rView = static_cast<RenderView *>(ptr);
    if (rView != Q_NULLPTR && rView->m_allocator != Q_NULLPTR)
        rView->m_allocator->deallocateRawMemory(rView, sizeof(RenderView));
}

void RenderView::sort()
{
    // Compares the bitsetKey of the RenderCommands
    // Key[Depth | StateCost | Shader]
    std::sort(m_commands.begin(), m_commands.end(), compareCommands);

    // Minimize uniform changes
    int i = 0;
    while (i < m_commands.size()) {
        int j = i;

        // Advance while commands share the same shader
        while (i < m_commands.size() && m_commands[j]->m_shaderDna == m_commands[i]->m_shaderDna)
            ++i;

        if (i - j > 0) { // Several commands have the same shader, so we minimize uniform changes
            QHash<QString, const QUniformValue *> cachedUniforms = m_commands[j++]->m_parameterPack.uniforms();

            while (j < i) {
                QHash<QString, const QUniformValue *> &uniforms = m_commands[j]->m_parameterPack.m_uniforms;
                QHash<QString, const QUniformValue *>::iterator it = uniforms.begin();

                while (it != uniforms.end()) {
                    bool found = false;
                    // We are comparing the values:
                    // - raw uniform values
                    // - the texture Node id if the uniform represents a texture
                    // since all textures are assigned texture units before the RenderCommands
                    // sharing the same material (shader) are rendered, we can't have the case
                    // where two uniforms, referencing the same texture eventually have 2 different
                    // texture unit values
                    if (cachedUniforms.contains(it.key())) {
                        const QUniformValue *refValue = cachedUniforms.value(it.key());
                        if (*const_cast<QUniformValue *>(refValue) == *it.value()) {
                            destroyUniformValue(it.value(), m_allocator);
                            it = uniforms.erase(it);
                            found = true;
                        }
                    }
                    if (!found) {
                        cachedUniforms.insert(it.key(), it.value());
                        ++it;
                    }
                }
                ++j;
            }
        }
        ++i;
    }
}

void RenderView::setRenderer(Renderer *renderer)
{
    m_renderer = renderer;
    m_manager = renderer->nodeManagers();
    m_data->m_uniformBlockBuilder.shaderDataManager = m_manager->shaderDataManager();
}

// Returns an array of Passes with the accompanying Parameter list
RenderRenderPassList RenderView::passesAndParameters(ParameterInfoList *parameters, Entity *node, bool useDefaultMaterial)
{
    // Find the material, effect, technique and set of render passes to use
    Material *material = Q_NULLPTR;
    Effect *effect = Q_NULLPTR;
    if ((material = node->renderComponent<Material>()) != Q_NULLPTR && material->isEnabled())
        effect = m_renderer->nodeManagers()->effectManager()->lookupResource(material->effect());
    Technique *technique = findTechniqueForEffect(m_renderer, this, effect);

    // Order set:
    // 1 Pass Filter
    // 2 Technique Filter
    // 3 Material
    // 4 Effect
    // 5 Technique
    // 6 RenderPass

    // Add Parameters define in techniqueFilter and passFilter
    // passFilter have priority over techniqueFilter
    if (m_data->m_passFilter)
        parametersFromParametersProvider(parameters, m_renderer->nodeManagers()->parameterManager(),
                                         m_data->m_passFilter);
    if (m_data->m_techniqueFilter)
        parametersFromParametersProvider(parameters, m_renderer->nodeManagers()->parameterManager(),
                                         m_data->m_techniqueFilter);
    // Get the parameters for our selected rendering setup (override what was defined in the technique/pass filter)
    parametersFromMaterialEffectTechnique(parameters, m_manager->parameterManager(), material, effect, technique);

    RenderRenderPassList passes;
    if (technique) {
        passes = findRenderPassesForTechnique(m_manager, this, technique);
    } else if (useDefaultMaterial) {
        material = m_manager->data<Material, MaterialManager>(m_renderer->defaultMaterialHandle());
        effect = m_manager->data<Effect, EffectManager>(m_renderer->defaultEffectHandle());
        technique = m_manager->data<Technique, TechniqueManager>(m_renderer->defaultTechniqueHandle());
        passes << m_manager->data<RenderPass, RenderPassManager>(m_renderer->defaultRenderPassHandle());
    }
    return passes;
}

void RenderView::gatherLights(Entity *node)
{
    const QList<Light *> lights = node->renderComponents<Light>();
    if (!lights.isEmpty())
        m_lightSources.append(LightSource(node, lights));

    // Traverse children
    Q_FOREACH (Entity *child, node->children())
        gatherLights(child);
}

class LightSourceCompare
{
public:
    LightSourceCompare(Entity *node) { p = node->worldBoundingVolume()->center(); }
    bool operator()(const RenderView::LightSource &a, const RenderView::LightSource &b) const {
        const float distA = p.distanceToPoint(a.entity->worldBoundingVolume()->center());
        const float distB = p.distanceToPoint(b.entity->worldBoundingVolume()->center());
        return distA < distB;
    }

private:
    QVector3D p;
};

// Tries to order renderCommand by shader so as to minimize shader changes
void RenderView::buildRenderCommands(Entity *node, const Plane *planes)
{
    // Skip branches that are not enabled
    if (!node->isEnabled())
        return;

    // Build renderCommand for current node
    if (isEntityInLayers(node, m_data->m_layers)) {

        // Note: in theory going to both code paths is possible but
        // would most likely be the result of the user not knowing what he's doing
        // so we don't handle that case
        if (m_compute) {
            // 1) Look for Compute Entities if Entity -> components [ ComputeJob, Material ]
            // when the RenderView is part of a DispatchCompute branch
            buildComputeRenderCommands(node);
        } else {
            // 2) Look for Drawable  Entities if Entity -> components [ GeometryRenderer, Material ]
            // when the RenderView is not part of a DispatchCompute branch
            // Investigate if it's worth doing as separate jobs
            buildDrawRenderCommands(node, planes);
        }
    }

    // Traverse children
    Q_FOREACH (Entity *child, node->children())
        buildRenderCommands(child, planes);
}

void RenderView::buildDrawRenderCommands(Entity *node, const Plane *planes)
{
    if (m_frustumCulling && isEntityFrustumCulled(node, planes))
        return;

    GeometryRenderer *geometryRenderer = Q_NULLPTR;
    if (node->componentHandle<GeometryRenderer, 16>() != HGeometryRenderer()
            && (geometryRenderer = node->renderComponent<GeometryRenderer>()) != Q_NULLPTR
            && geometryRenderer->isEnabled()) {

        ParameterInfoList parameters;
        RenderRenderPassList passes = passesAndParameters(&parameters, node, true);
        // There is a geometry renderer
        if (geometryRenderer != Q_NULLPTR && !geometryRenderer->geometryId().isNull()) {

            // 1 RenderCommand per RenderPass pass on an Entity with a Mesh
            Q_FOREACH (RenderPass *pass, passes) {
                // Add the RenderPass Parameters
                ParameterInfoList globalParameters = parameters;
                parametersFromParametersProvider(&globalParameters, m_manager->parameterManager(), pass);

                RenderCommand *command = m_allocator->allocate<RenderCommand>();
                command->m_depth = m_data->m_eyePos.distanceToPoint(node->worldBoundingVolume()->center());
                command->m_geometry = m_manager->lookupHandle<Geometry, GeometryManager, HGeometry>(geometryRenderer->geometryId());
                command->m_geometryRenderer = node->componentHandle<GeometryRenderer, 16>();
                // For RenderPass based states we use the globally set RenderState
                // if no renderstates are defined as part of the pass. That means:
                // RenderPass { renderStates: [] } will use the states defined by
                // StateSet in the FrameGraph
                if (!pass->renderStates().isEmpty()) {
                    command->m_stateSet = buildRenderStateSet(pass->renderStates(), m_allocator);
                    // Merge per pass stateset with global stateset
                    // so that the local stateset only overrides
                    if (m_stateSet != Q_NULLPTR)
                        command->m_stateSet->merge(m_stateSet);
                    command->m_changeCost = m_renderer->defaultRenderState()->changeCost(command->m_stateSet);
                }

                // Pick which lights to take in to account.
                // For now decide based on the distance by taking the MAX_LIGHTS closest lights.
                // Replace with more sophisticated mechanisms later.
                std::sort(m_lightSources.begin(), m_lightSources.end(), LightSourceCompare(node));
                QVector<LightSource> activeLightSources; // NB! the total number of lights here may still exceed MAX_LIGHTS
                int lightCount = 0;
                for (int i = 0; i < m_lightSources.count() && lightCount < MAX_LIGHTS; ++i) {
                    activeLightSources.append(m_lightSources[i]);
                    lightCount += m_lightSources[i].lights.count();
                }

                setShaderAndUniforms(command, pass, globalParameters, *(node->worldTransform()), activeLightSources);

                buildSortingKey(command);
                m_commands.append(command);
            }
        }
    }
}

void RenderView::buildComputeRenderCommands(Entity *node)
{
    // If the RenderView contains only a ComputeDispatch then it cares about
    // A ComputeDispatch is also implicitely a NoDraw operation
    // enabled flag
    // layer component
    // material/effect/technique/parameters/filters/
    ComputeJob *computeJob = Q_NULLPTR;
    if (node->componentHandle<ComputeJob, 16>() != HComputeJob()
            && (computeJob = node->renderComponent<ComputeJob>()) != Q_NULLPTR
            && computeJob->isEnabled()) {

        ParameterInfoList parameters;
        RenderRenderPassList passes = passesAndParameters(&parameters, node, true);

        Q_FOREACH (RenderPass *pass, passes) {
            // Add the RenderPass Parameters
            ParameterInfoList globalParameters = parameters;
            parametersFromParametersProvider(&globalParameters, m_manager->parameterManager(), pass);

            RenderCommand *command = m_allocator->allocate<RenderCommand>();
            command->m_type = RenderCommand::Compute;
            setShaderAndUniforms(command,
                                 pass,
                                 globalParameters,
                                 *(node->worldTransform()),
                                 QVector<LightSource>());
            m_commands.append(command);
        }
    }
}

const AttachmentPack &RenderView::attachmentPack() const
{
    return m_attachmentPack;
}

void RenderView::setUniformValue(ShaderParameterPack &uniformPack, const QString &name, const QVariant &value)
{
    if (const QUniformValue *val = uniformPack.uniform(name))
        destroyUniformValue(val, m_allocator);

    Texture *tex = Q_NULLPTR;
    // At this point a uniform value can only be a scalar type
    // or a Qt3DCore::QNodeId corresponding to a Texture
    // ShaderData/Buffers would be handled as UBO/SSBO and would therefore
    // not be in the default uniform block
    if (static_cast<QMetaType::Type>(value.userType()) == qNodeIdTypeId) {
        if ((tex = m_manager->textureManager()->lookupResource(value.value<Qt3DCore::QNodeId>()))
                != Q_NULLPTR) {
            uniformPack.setTexture(name, tex->peerUuid());
            TextureUniform *texUniform = m_allocator->allocate<TextureUniform>();
            texUniform->setTextureId(tex->peerUuid());
            uniformPack.setUniform(name, texUniform);
        }
    } else {
        uniformPack.setUniform(name, QUniformValue::fromVariant(value, m_allocator));
    }
}

void RenderView::setStandardUniformValue(ShaderParameterPack &uniformPack, const QString &glslName, const QString &name, const QMatrix4x4 &worldTransform)
{
    if (const QUniformValue *val = uniformPack.uniform(glslName))
        destroyUniformValue(val, m_allocator);

    uniformPack.setUniform(glslName, (this->*ms_standardUniformSetters[name])(worldTransform));
}

void RenderView::setUniformBlockValue(ShaderParameterPack &uniformPack,
                                      Shader *shader,
                                      const ShaderUniformBlock &block,
                                      const QVariant &value)
{
    Q_UNUSED(shader)

    if (static_cast<QMetaType::Type>(value.userType()) == qNodeIdTypeId) {

        Buffer *buffer = Q_NULLPTR;
        if ((buffer = m_manager->bufferManager()->lookupResource(value.value<Qt3DCore::QNodeId>())) != Q_NULLPTR) {
            BlockToUBO uniformBlockUBO;
            uniformBlockUBO.m_blockIndex = block.m_index;
            uniformBlockUBO.m_bufferID = buffer->peerUuid();
            uniformPack.setUniformBuffer(uniformBlockUBO);
            // Buffer update to GL buffer will be done at render time
        }


        //ShaderData *shaderData = Q_NULLPTR;
        // if ((shaderData = m_manager->shaderDataManager()->lookupResource(value.value<Qt3DCore::QNodeId>())) != Q_NULLPTR) {
        // UBO are indexed by <ShaderId, ShaderDataId> so that a same QShaderData can be used among different shaders
        // while still making sure that if they have a different layout everything will still work
        // If two shaders define the same block with the exact same layout, in that case the UBO could be shared
        // but how do we know that ? We'll need to compare ShaderUniformBlocks

        // Note: we assume that if a buffer is shared accross multiple shaders
        // then it implies that they share the same layout

        // Temporarly disabled

        //        BufferShaderKey uboKey(shaderData->peerUuid(),
        //                               shader->peerUuid());

        //        BlockToUBO uniformBlockUBO;
        //        uniformBlockUBO.m_blockIndex = block.m_index;
        //        uniformBlockUBO.m_shaderDataID = shaderData->peerUuid();
        //        bool uboNeedsUpdate = false;

        //        // build UBO at uboId if not created before
        //        if (!m_manager->glBufferManager()->contains(uboKey)) {
        //            m_manager->glBufferManager()->getOrCreateResource(uboKey);
        //            uboNeedsUpdate = true;
        //        }

        //        // If shaderData  has been updated (property has changed or one of the nested properties has changed)
        //        // foreach property defined in the QShaderData, we try to fill the value of the corresponding active uniform(s)
        //        // for all the updated properties (all the properties if the UBO was just created)
        //        if (shaderData->updateViewTransform(*m_data->m_viewMatrix) || uboNeedsUpdate) {
        //            // Clear previous values remaining in the hash
        //            m_data->m_uniformBlockBuilder.activeUniformNamesToValue.clear();
        //            // Update only update properties if uboNeedsUpdate is true, otherwise update the whole block
        //            m_data->m_uniformBlockBuilder.updatedPropertiesOnly = uboNeedsUpdate;
        //            // Retrieve names and description of each active uniforms in the uniform block
        //            m_data->m_uniformBlockBuilder.uniforms = shader->activeUniformsForUniformBlock(block.m_index);
        //            // Builds the name-value map for the block
        //            m_data->m_uniformBlockBuilder.buildActiveUniformNameValueMapStructHelper(shaderData, block.m_name);
        //            if (!uboNeedsUpdate)
        //                shaderData->markDirty();
        //            // copy the name-value map into the BlockToUBO
        //            uniformBlockUBO.m_updatedProperties = m_data->m_uniformBlockBuilder.activeUniformNamesToValue;
        //            uboNeedsUpdate = true;
        //        }

        //        uniformBlockUBO.m_needsUpdate = uboNeedsUpdate;
        //        uniformPack.setUniformBuffer(uniformBlockUBO);
        // }
    }
}

void RenderView::setShaderStorageValue(ShaderParameterPack &uniformPack,
                                       Shader *shader,
                                       const ShaderStorageBlock &block,
                                       const QVariant &value)
{
    Q_UNUSED(shader)
    if (static_cast<QMetaType::Type>(value.type()) == qNodeIdTypeId) {
        Buffer *buffer = Q_NULLPTR;
        if ((buffer = m_manager->bufferManager()->lookupResource(value.value<Qt3DCore::QNodeId>())) != Q_NULLPTR) {
            BlockToSSBO shaderStorageBlock;
            shaderStorageBlock.m_blockIndex = block.m_index;
            shaderStorageBlock.m_bufferID = buffer->peerUuid();
            uniformPack.setShaderStorageBuffer(shaderStorageBlock);
            // Buffer update to GL buffer will be done at render time
        }
    }
}

void RenderView::setDefaultUniformBlockShaderDataValue(ShaderParameterPack &uniformPack, Shader *shader, ShaderData *shaderData, const QString &structName)
{
    m_data->m_uniformBlockBuilder.activeUniformNamesToValue.clear();

    // updates transformed properties;
    shaderData->updateViewTransform(*m_data->m_viewMatrix);
    // Force to update the whole block
    m_data->m_uniformBlockBuilder.updatedPropertiesOnly = false;
    // Retrieve names and description of each active uniforms in the uniform block
    m_data->m_uniformBlockBuilder.uniforms = shader->activeUniformsForUniformBlock(-1);
    // Build name-value map for the block
    m_data->m_uniformBlockBuilder.buildActiveUniformNameValueMapStructHelper(shaderData, structName);
    // Set uniform values for each entrie of the block name-value map
    QHash<QString, QVariant>::const_iterator activeValuesIt = m_data->m_uniformBlockBuilder.activeUniformNamesToValue.constBegin();
    const QHash<QString, QVariant>::const_iterator activeValuesEnd = m_data->m_uniformBlockBuilder.activeUniformNamesToValue.constEnd();

    while (activeValuesIt != activeValuesEnd) {
        setUniformValue(uniformPack, activeValuesIt.key(), activeValuesIt.value());
        ++activeValuesIt;
    }
}

void RenderView::buildSortingKey(RenderCommand *command)
{
    // Build a bitset key depending on the SortingCriterion
    int sortCount = m_data->m_sortingCriteria.count();

    // If sortCount == 0, no sorting is applied

    // Handle at most 4 filters at once
    for (int i = 0; i < sortCount && i < 4; i++) {
        SortCriterion *sC = m_manager->lookupResource<SortCriterion, SortCriterionManager>(m_data->m_sortingCriteria[i]);

        switch (sC->sortType()) {
        case QSortCriterion::StateChangeCost:
            command->m_sortingType.sorts[i] = command->m_changeCost; // State change cost
            break;
        case QSortCriterion::BackToFront:
            command->m_sortBackToFront = true; // Depth value
            break;
        case QSortCriterion::Material:
            command->m_sortingType.sorts[i] = command->m_shaderDna; // Material
            break;
        default:
            Q_UNREACHABLE();
        }
    }
}

void RenderView::setShaderAndUniforms(RenderCommand *command, RenderPass *rPass, ParameterInfoList &parameters, const QMatrix4x4 &worldTransform,
                                      const QVector<LightSource> &activeLightSources)
{
    // The VAO Handle is set directly in the renderer thread so as to avoid having to use a mutex here
    // Set shader, technique, and effect by basically doing :
    // ShaderProgramManager[MaterialManager[frontentEntity->id()]->Effect->Techniques[TechniqueFilter->name]->RenderPasses[RenderPassFilter->name]];
    // The Renderer knows that if one of those is null, a default material / technique / effect as to be used

    // Find all RenderPasses (in order) matching values set in the RenderPassFilter
    // Get list of parameters for the Material, Effect, and Technique
    // For each ParameterBinder in the RenderPass -> create a QUniformPack
    // Once that works, improve that to try and minimize QUniformPack updates

    if (rPass != Q_NULLPTR) {
        // Index Shader by Shader UUID
        command->m_shader = m_manager->lookupHandle<Shader, ShaderManager, HShader>(rPass->shaderProgram());
        Shader *shader = Q_NULLPTR;
        if ((shader = m_manager->data<Shader, ShaderManager>(command->m_shader)) != Q_NULLPTR) {
            command->m_shaderDna = shader->dna();

            // Builds the QUniformPack, sets shader standard uniforms and store attributes name / glname bindings
            // If a parameter is defined and not found in the bindings it is assumed to be a binding of Uniform type with the glsl name
            // equals to the parameter name
            const QVector<QString> uniformNames = shader->uniformsNames();
            const QVector<QString> attributeNames = shader->attributesNames();
            const QVector<QString> uniformBlockNames = shader->uniformBlockNames();
            const QVector<QString> shaderStorageBlockNames = shader->storageBlockNames();

            // Set fragData Name and index
            // Later on we might want to relink the shader if attachments have changed
            // But for now we set them once and for all
            QHash<QString, int> fragOutputs;
            if (!m_renderTarget.isNull() && !shader->isLoaded()) {
                Q_FOREACH (const Attachment &att, m_attachmentPack.attachments()) {
                    if (att.m_type <= QRenderAttachment::ColorAttachment15)
                        fragOutputs.insert(att.m_name, att.m_type);
                }
            }

            if (!uniformNames.isEmpty() || !attributeNames.isEmpty() || !shaderStorageBlockNames.isEmpty()) {

                // Set default standard uniforms without bindings
                Q_FOREACH (const QString &uniformName, uniformNames) {
                    if (ms_standardUniformSetters.contains(uniformName))
                        setStandardUniformValue(command->m_parameterPack, uniformName, uniformName, worldTransform);
                }

                // Set default attributes
                Q_FOREACH (const QString &attributeName, attributeNames) {
                    if (ms_standardAttributesNames.contains(attributeName))
                        command->m_parameterAttributeToShaderNames.insert(attributeName, attributeName);
                }

                // Set uniforms and attributes explicitly binded
                Q_FOREACH (const ParameterMapping &binding, rPass->bindings()) {
                    ParameterInfoList::iterator it = findParamInfo(&parameters, binding.parameterName());

                    if (it == parameters.end()) {
                        // A Parameters wasn't found with the name binding.parameterName
                        // -> we need to use the binding.shaderVariableName
                        switch (binding.bindingType()) {

                        case QParameterMapping::Attribute:
                            if (attributeNames.contains(binding.shaderVariableName())) {
                                command->m_parameterAttributeToShaderNames.insert(binding.parameterName(), binding.shaderVariableName());
                                break;
                            }
                        case QParameterMapping::StandardUniform:
                            if (uniformNames.contains(binding.shaderVariableName())
                                    && ms_standardUniformSetters.contains(binding.parameterName())) {
                                setStandardUniformValue(command->m_parameterPack, binding.shaderVariableName(), binding.parameterName(), worldTransform);
                                break;
                            }

                        case QParameterMapping::FragmentOutput:
                            if (fragOutputs.contains(binding.parameterName())) {
                                fragOutputs.insert(binding.shaderVariableName(), fragOutputs.take(binding.parameterName()));
                                break;
                            }

                        case QParameterMapping::UniformBufferObject:
                            if (uniformBlockNames.contains(binding.parameterName())) {
                                setUniformBlockValue(command->m_parameterPack, shader, shader->uniformBlock(it->name), it->value);
                                break;
                            }

                        case QParameterMapping::ShaderStorageBufferObject:
                            if (shaderStorageBlockNames.contains(binding.parameterName())) {
                                setShaderStorageValue(command->m_parameterPack, shader, shader->storageBlock(it->name), it->value);
                                break;
                            }

                        default:
                            qCWarning(Render::Backend) << Q_FUNC_INFO << "Trying to bind a Parameter that hasn't been defined " << binding.parameterName();
                            break;
                        }
                    }
                }

                // Parameters remaining could be
                // -> uniform scalar / vector
                // -> uniform struct / arrays
                // -> uniform block / array (4.3)
                // -> ssbo block / array (4.3)

                if ((!uniformNames.isEmpty() || !uniformBlockNames.isEmpty() || !shaderStorageBlockNames.isEmpty()) && !parameters.isEmpty()) {
                    ParameterInfoList::iterator it = parameters.begin();
                    const ParameterInfoList::iterator parametersEnd = parameters.end();
                    while (it != parametersEnd) {
                        if (uniformNames.contains(it->name)) { // Parameter is a regular uniform
                            setUniformValue(command->m_parameterPack, it->name, it->value);
                        } else if (uniformBlockNames.indexOf(it->name) != -1) { // Parameter is a uniform block
                            setUniformBlockValue(command->m_parameterPack, shader, shader->uniformBlock(it->name), it->value);
                        } else if (shaderStorageBlockNames.indexOf(it->name) != -1) { // Parameters is a SSBO
                            setShaderStorageValue(command->m_parameterPack, shader, shader->storageBlock(it->name), it->value);
                        } else { // Parameter is a struct
                            const QVariant &v = it->value;
                            ShaderData *shaderData = Q_NULLPTR;
                            if (static_cast<QMetaType::Type>(v.type()) == qNodeIdTypeId &&
                                    (shaderData = m_manager->shaderDataManager()->lookupResource(v.value<Qt3DCore::QNodeId>())) != Q_NULLPTR) {
                                // Try to check if we have a struct or array matching a QShaderData parameter
                                setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, shaderData, it->name);
                            }
                            // Otherwise: param unused by current shader
                        }
                        ++it;
                    }
                }

                // Lights
                const QString LIGHT_COUNT_NAME = QStringLiteral("lightCount");
                const QString LIGHT_POSITION_NAME = QStringLiteral(".position");

                int lightIdx = 0;
                Q_FOREACH (const LightSource &lightSource, activeLightSources) {
                    if (lightIdx == MAX_LIGHTS)
                        break;
                    Entity *lightEntity = lightSource.entity;
                    const QVector3D worldPos = lightEntity->worldBoundingVolume()->center();
                    Q_FOREACH (Light *light, lightSource.lights) {
                        if (lightIdx == MAX_LIGHTS)
                            break;
                        const QString structName = QStringLiteral("lights[") + QString::number(lightIdx) + QLatin1Char(']');
                        setUniformValue(command->m_parameterPack, structName + LIGHT_POSITION_NAME, worldPos);
                        setDefaultUniformBlockShaderDataValue(command->m_parameterPack, shader, light, structName);
                        ++lightIdx;
                    }
                }

                if (uniformNames.contains(LIGHT_COUNT_NAME))
                    setUniformValue(command->m_parameterPack, LIGHT_COUNT_NAME, qMax(1, lightIdx));

                if (activeLightSources.isEmpty()) {
                    setUniformValue(command->m_parameterPack, QStringLiteral("lights[0].type"), int(QLight::PointLight));
                    setUniformValue(command->m_parameterPack, QStringLiteral("lights[0].position"), QVector3D(10.0f, 10.0f, 0.0f));
                    setUniformValue(command->m_parameterPack, QStringLiteral("lights[0].color"), QVector3D(1.0f, 1.0f, 1.0f));
                    setUniformValue(command->m_parameterPack, QStringLiteral("lights[0].intensity"), QVector3D(0.5f, 0.5f, 0.5f));
                }
            }
            // Set frag outputs in the shaders if hash not empty
            if (!fragOutputs.isEmpty())
                shader->setFragOutputs(fragOutputs);
        }
    }
    else {
        qCWarning(Render::Backend) << Q_FUNC_INFO << "Using default effect as none was provided";
    }
}

} // namespace Render
} // namespace Qt3DRender

QT_END_NAMESPACE