aboutsummaryrefslogtreecommitdiffstats
path: root/gnuwin32/bin/data/m4sugar/m4sugar.m4
diff options
context:
space:
mode:
Diffstat (limited to 'gnuwin32/bin/data/m4sugar/m4sugar.m4')
-rw-r--r--gnuwin32/bin/data/m4sugar/m4sugar.m43307
1 files changed, 0 insertions, 3307 deletions
diff --git a/gnuwin32/bin/data/m4sugar/m4sugar.m4 b/gnuwin32/bin/data/m4sugar/m4sugar.m4
deleted file mode 100644
index b732abc7..00000000
--- a/gnuwin32/bin/data/m4sugar/m4sugar.m4
+++ /dev/null
@@ -1,3307 +0,0 @@
-divert(-1)# -*- Autoconf -*-
-# This file is part of Autoconf.
-# Base M4 layer.
-# Requires GNU M4.
-#
-# Copyright (C) 1999-2013 Free Software Foundation, Inc.
-
-# This file is part of Autoconf. This program is free
-# software; you can redistribute it and/or modify it under the
-# terms of the GNU General Public License as published by the
-# Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# Under Section 7 of GPL version 3, you are granted additional
-# permissions described in the Autoconf Configure Script Exception,
-# version 3.0, as published by the Free Software Foundation.
-#
-# You should have received a copy of the GNU General Public License
-# and a copy of the Autoconf Configure Script Exception along with
-# this program; see the files COPYINGv3 and COPYING.EXCEPTION
-# respectively. If not, see <http://www.gnu.org/licenses/>.
-
-# Written by Akim Demaille.
-
-# Set the quotes, whatever the current quoting system.
-changequote()
-changequote([, ])
-
-# Some old m4's don't support m4exit. But they provide
-# equivalent functionality by core dumping because of the
-# long macros we define.
-ifdef([__gnu__], ,
-[errprint(M4sugar requires GNU M4. Install it before installing M4sugar or
-set the M4 environment variable to its absolute file name.)
-m4exit(2)])
-
-
-## ------------------------------- ##
-## 1. Simulate --prefix-builtins. ##
-## ------------------------------- ##
-
-# m4_define
-# m4_defn
-# m4_undefine
-define([m4_define], defn([define]))
-define([m4_defn], defn([defn]))
-define([m4_undefine], defn([undefine]))
-
-m4_undefine([define])
-m4_undefine([defn])
-m4_undefine([undefine])
-
-
-# m4_copy(SRC, DST)
-# -----------------
-# Define DST as the definition of SRC.
-# What's the difference between:
-# 1. m4_copy([from], [to])
-# 2. m4_define([to], [from($@)])
-# Well, obviously 1 is more expensive in space. Maybe 2 is more expensive
-# in time, but because of the space cost of 1, it's not that obvious.
-# Nevertheless, one huge difference is the handling of `$0'. If `from'
-# uses `$0', then with 1, `to''s `$0' is `to', while it is `from' in 2.
-# The user would certainly prefer to see `to'.
-#
-# This definition is in effect during m4sugar initialization, when
-# there are no pushdef stacks; later on, we redefine it to something
-# more powerful for all other clients to use.
-m4_define([m4_copy],
-[m4_define([$2], m4_defn([$1]))])
-
-
-# m4_rename(SRC, DST)
-# -------------------
-# Rename the macro SRC to DST.
-m4_define([m4_rename],
-[m4_copy([$1], [$2])m4_undefine([$1])])
-
-
-# m4_rename_m4(MACRO-NAME)
-# ------------------------
-# Rename MACRO-NAME to m4_MACRO-NAME.
-m4_define([m4_rename_m4],
-[m4_rename([$1], [m4_$1])])
-
-
-# m4_copy_unm4(m4_MACRO-NAME)
-# ---------------------------
-# Copy m4_MACRO-NAME to MACRO-NAME.
-m4_define([m4_copy_unm4],
-[m4_copy([$1], m4_bpatsubst([$1], [^m4_\(.*\)], [[\1]]))])
-
-
-# Some m4 internals have names colliding with tokens we might use.
-# Rename them a` la `m4 --prefix-builtins'. Conditionals first, since
-# some subsequent renames are conditional.
-m4_rename_m4([ifdef])
-m4_rename([ifelse], [m4_if])
-
-m4_rename_m4([builtin])
-m4_rename_m4([changecom])
-m4_rename_m4([changequote])
-m4_ifdef([changeword],dnl conditionally available in 1.4.x
-[m4_undefine([changeword])])
-m4_rename_m4([debugfile])
-m4_rename_m4([debugmode])
-m4_rename_m4([decr])
-m4_rename_m4([divnum])
-m4_rename_m4([dumpdef])
-m4_rename_m4([errprint])
-m4_rename_m4([esyscmd])
-m4_rename_m4([eval])
-m4_rename_m4([format])
-m4_undefine([include])
-m4_rename_m4([incr])
-m4_rename_m4([index])
-m4_rename_m4([indir])
-m4_rename_m4([len])
-m4_rename([m4exit], [m4_exit])
-m4_undefine([m4wrap])
-m4_ifdef([mkstemp],dnl added in M4 1.4.8
-[m4_rename_m4([mkstemp])
-m4_copy([m4_mkstemp], [m4_maketemp])
-m4_undefine([maketemp])],
-[m4_rename_m4([maketemp])
-m4_copy([m4_maketemp], [m4_mkstemp])])
-m4_rename([patsubst], [m4_bpatsubst])
-m4_rename_m4([popdef])
-m4_rename_m4([pushdef])
-m4_rename([regexp], [m4_bregexp])
-m4_rename_m4([shift])
-m4_undefine([sinclude])
-m4_rename_m4([substr])
-m4_ifdef([symbols],dnl present only in alpha-quality 1.4o
-[m4_rename_m4([symbols])])
-m4_rename_m4([syscmd])
-m4_rename_m4([sysval])
-m4_rename_m4([traceoff])
-m4_rename_m4([traceon])
-m4_rename_m4([translit])
-
-# _m4_defn(ARG)
-# -------------
-# _m4_defn is for internal use only - it bypasses the wrapper, so it
-# must only be used on one argument at a time, and only on macros
-# known to be defined. Make sure this still works if the user renames
-# m4_defn but not _m4_defn.
-m4_copy([m4_defn], [_m4_defn])
-
-# _m4_divert_raw(NUM)
-# -------------------
-# _m4_divert_raw is for internal use only. Use this instead of
-# m4_builtin([divert], NUM), so that tracing diversion flow is easier.
-m4_rename([divert], [_m4_divert_raw])
-
-# _m4_popdef(ARG...)
-# ------------------
-# _m4_popdef is for internal use only - it bypasses the wrapper, so it
-# must only be used on macros known to be defined. Make sure this
-# still works if the user renames m4_popdef but not _m4_popdef.
-m4_copy([m4_popdef], [_m4_popdef])
-
-# _m4_undefine(ARG...)
-# --------------------
-# _m4_undefine is for internal use only - it bypasses the wrapper, so
-# it must only be used on macros known to be defined. Make sure this
-# still works if the user renames m4_undefine but not _m4_undefine.
-m4_copy([m4_undefine], [_m4_undefine])
-
-# _m4_undivert(NUM...)
-# --------------------
-# _m4_undivert is for internal use only, and should always be given
-# arguments. Use this instead of m4_builtin([undivert], NUM...), so
-# that tracing diversion flow is easier.
-m4_rename([undivert], [_m4_undivert])
-
-
-## ------------------- ##
-## 2. Error messages. ##
-## ------------------- ##
-
-
-# m4_location
-# -----------
-# Output the current file, colon, and the current line number.
-m4_define([m4_location],
-[__file__:__line__])
-
-
-# m4_errprintn(MSG)
-# -----------------
-# Same as `errprint', but with the missing end of line.
-m4_define([m4_errprintn],
-[m4_errprint([$1
-])])
-
-
-# m4_warning(MSG)
-# ---------------
-# Warn the user.
-m4_define([m4_warning],
-[m4_errprintn(m4_location[: warning: $1])])
-
-
-# m4_fatal(MSG, [EXIT-STATUS])
-# ----------------------------
-# Fatal the user. :)
-m4_define([m4_fatal],
-[m4_errprintn(m4_location[: error: $1]
-m4_expansion_stack)m4_exit(m4_if([$2],, 1, [$2]))])
-
-
-# m4_assert(EXPRESSION, [EXIT-STATUS = 1])
-# ----------------------------------------
-# This macro ensures that EXPRESSION evaluates to true, and exits if
-# EXPRESSION evaluates to false.
-m4_define([m4_assert],
-[m4_if(m4_eval([$1]), 0,
- [m4_fatal([assert failed: $1], [$2])])])
-
-
-
-## ------------- ##
-## 3. Warnings. ##
-## ------------- ##
-
-
-# _m4_warn(CATEGORY, MESSAGE, [STACK-TRACE])
-# ------------------------------------------
-# Report a MESSAGE to the user if the CATEGORY of warnings is enabled.
-# This is for traces only.
-# If present, STACK-TRACE is a \n-separated list of "LOCATION: MESSAGE",
-# where the last line (and no other) ends with "the top level".
-#
-# Within m4, the macro is a no-op. This macro really matters
-# when autom4te post-processes the trace output.
-m4_define([_m4_warn], [])
-
-
-# m4_warn(CATEGORY, MESSAGE)
-# --------------------------
-# Report a MESSAGE to the user if the CATEGORY of warnings is enabled.
-m4_define([m4_warn],
-[_m4_warn([$1], [$2],
-m4_ifdef([_m4_expansion_stack], [m4_expansion_stack]))])
-
-
-
-## ------------------- ##
-## 4. File inclusion. ##
-## ------------------- ##
-
-
-# We also want to neutralize include (and sinclude for symmetry),
-# but we want to extend them slightly: warn when a file is included
-# several times. This is, in general, a dangerous operation, because
-# too many people forget to quote the first argument of m4_define.
-#
-# For instance in the following case:
-# m4_define(foo, [bar])
-# then a second reading will turn into
-# m4_define(bar, [bar])
-# which is certainly not what was meant.
-
-# m4_include_unique(FILE)
-# -----------------------
-# Declare that the FILE was loading; and warn if it has already
-# been included.
-m4_define([m4_include_unique],
-[m4_ifdef([m4_include($1)],
- [m4_warn([syntax], [file `$1' included several times])])dnl
-m4_define([m4_include($1)])])
-
-
-# m4_include(FILE)
-# ----------------
-# Like the builtin include, but warns against multiple inclusions.
-m4_define([m4_include],
-[m4_include_unique([$1])dnl
-m4_builtin([include], [$1])])
-
-
-# m4_sinclude(FILE)
-# -----------------
-# Like the builtin sinclude, but warns against multiple inclusions.
-m4_define([m4_sinclude],
-[m4_include_unique([$1])dnl
-m4_builtin([sinclude], [$1])])
-
-
-
-## ------------------------------------ ##
-## 5. Additional branching constructs. ##
-## ------------------------------------ ##
-
-# Both `m4_ifval' and `m4_ifset' tests against the empty string. The
-# difference is that `m4_ifset' is specialized on macros.
-#
-# In case of arguments of macros, eg. $1, it makes little difference.
-# In the case of a macro `FOO', you don't want to check `m4_ifval(FOO,
-# TRUE)', because if `FOO' expands with commas, there is a shifting of
-# the arguments. So you want to run `m4_ifval([FOO])', but then you just
-# compare the *string* `FOO' against `', which, of course fails.
-#
-# So you want the variation `m4_ifset' that expects a macro name as $1.
-# If this macro is both defined and defined to a non empty value, then
-# it runs TRUE, etc.
-
-
-# m4_ifblank(COND, [IF-BLANK], [IF-TEXT])
-# m4_ifnblank(COND, [IF-TEXT], [IF-BLANK])
-# ----------------------------------------
-# If COND is empty, or consists only of blanks (space, tab, newline),
-# then expand IF-BLANK, otherwise expand IF-TEXT. This differs from
-# m4_ifval only if COND has just whitespace, but it helps optimize in
-# spite of users who mistakenly leave trailing space after what they
-# thought was an empty argument:
-# macro(
-# []
-# )
-#
-# Writing one macro in terms of the other causes extra overhead, so
-# we inline both definitions.
-m4_define([m4_ifblank],
-[m4_if(m4_translit([[$1]], [ ][ ][
-]), [], [$2], [$3])])
-
-m4_define([m4_ifnblank],
-[m4_if(m4_translit([[$1]], [ ][ ][
-]), [], [$3], [$2])])
-
-
-# m4_ifval(COND, [IF-TRUE], [IF-FALSE])
-# -------------------------------------
-# If COND is not the empty string, expand IF-TRUE, otherwise IF-FALSE.
-# Comparable to m4_ifdef.
-m4_define([m4_ifval],
-[m4_if([$1], [], [$3], [$2])])
-
-
-# m4_n(TEXT)
-# ----------
-# If TEXT is not empty, return TEXT and a new line, otherwise nothing.
-m4_define([m4_n],
-[m4_if([$1],
- [], [],
- [$1
-])])
-
-
-# m4_ifvaln(COND, [IF-TRUE], [IF-FALSE])
-# --------------------------------------
-# Same as `m4_ifval', but add an extra newline to IF-TRUE or IF-FALSE
-# unless that argument is empty.
-m4_define([m4_ifvaln],
-[m4_if([$1],
- [], [m4_n([$3])],
- [m4_n([$2])])])
-
-
-# m4_ifset(MACRO, [IF-TRUE], [IF-FALSE])
-# --------------------------------------
-# If MACRO has no definition, or of its definition is the empty string,
-# expand IF-FALSE, otherwise IF-TRUE.
-m4_define([m4_ifset],
-[m4_ifdef([$1],
- [m4_ifval(_m4_defn([$1]), [$2], [$3])],
- [$3])])
-
-
-# m4_ifndef(NAME, [IF-NOT-DEFINED], [IF-DEFINED])
-# -----------------------------------------------
-m4_define([m4_ifndef],
-[m4_ifdef([$1], [$3], [$2])])
-
-
-# m4_case(SWITCH, VAL1, IF-VAL1, VAL2, IF-VAL2, ..., DEFAULT)
-# -----------------------------------------------------------
-# m4 equivalent of
-# switch (SWITCH)
-# {
-# case VAL1:
-# IF-VAL1;
-# break;
-# case VAL2:
-# IF-VAL2;
-# break;
-# ...
-# default:
-# DEFAULT;
-# break;
-# }.
-# All the values are optional, and the macro is robust to active
-# symbols properly quoted.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_case],
-[m4_if([$#], 0, [],
- [$#], 1, [],
- [$#], 2, [$2],
- [$1], [$2], [$3],
- [$0([$1], m4_shift3($@))])])
-
-
-# m4_bmatch(SWITCH, RE1, VAL1, RE2, VAL2, ..., DEFAULT)
-# -----------------------------------------------------
-# m4 equivalent of
-#
-# if (SWITCH =~ RE1)
-# VAL1;
-# elif (SWITCH =~ RE2)
-# VAL2;
-# elif ...
-# ...
-# else
-# DEFAULT
-#
-# All the values are optional, and the macro is robust to active symbols
-# properly quoted.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_bmatch],
-[m4_if([$#], 0, [m4_fatal([$0: too few arguments: $#])],
- [$#], 1, [m4_fatal([$0: too few arguments: $#: $1])],
- [$#], 2, [$2],
- [m4_if(m4_bregexp([$1], [$2]), -1, [$0([$1], m4_shift3($@))],
- [$3])])])
-
-# m4_argn(N, ARGS...)
-# -------------------
-# Extract argument N (greater than 0) from ARGS. Example:
-# m4_define([b], [B])
-# m4_argn([2], [a], [b], [c]) => b
-#
-# Rather than using m4_car(m4_shiftn([$1], $@)), we exploit the fact that
-# GNU m4 can directly reference any argument, through an indirect macro.
-m4_define([m4_argn],
-[m4_assert([0 < $1])]dnl
-[m4_pushdef([_$0], [_m4_popdef([_$0])]m4_dquote([$]m4_incr([$1])))_$0($@)])
-
-
-# m4_car(ARGS...)
-# m4_cdr(ARGS...)
-# ---------------
-# Manipulate m4 lists. m4_car returns the first argument. m4_cdr
-# bundles all but the first argument into a quoted list. These two
-# macros are generally used with list arguments, with quoting removed
-# to break the list into multiple m4 ARGS.
-m4_define([m4_car], [[$1]])
-m4_define([m4_cdr],
-[m4_if([$#], 0, [m4_fatal([$0: cannot be called without arguments])],
- [$#], 1, [],
- [m4_dquote(m4_shift($@))])])
-
-# _m4_cdr(ARGS...)
-# ----------------
-# Like m4_cdr, except include a leading comma unless only one argument
-# remains. Why? Because comparing a large list against [] is more
-# expensive in expansion time than comparing the number of arguments; so
-# _m4_cdr can be used to reduce the number of arguments when it is time
-# to end recursion.
-m4_define([_m4_cdr],
-[m4_if([$#], 1, [],
- [, m4_dquote(m4_shift($@))])])
-
-
-
-# m4_cond(TEST1, VAL1, IF-VAL1, TEST2, VAL2, IF-VAL2, ..., [DEFAULT])
-# -------------------------------------------------------------------
-# Similar to m4_if, except that each TEST is expanded when encountered.
-# If the expansion of TESTn matches the string VALn, the result is IF-VALn.
-# The result is DEFAULT if no tests passed. This macro allows
-# short-circuiting of expensive tests, where it pays to arrange quick
-# filter tests to run first.
-#
-# For an example, consider a previous implementation of _AS_QUOTE_IFELSE:
-#
-# m4_if(m4_index([$1], [\]), [-1], [$2],
-# m4_eval(m4_index([$1], [\\]) >= 0), [1], [$2],
-# m4_eval(m4_index([$1], [\$]) >= 0), [1], [$2],
-# m4_eval(m4_index([$1], [\`]) >= 0), [1], [$3],
-# m4_eval(m4_index([$1], [\"]) >= 0), [1], [$3],
-# [$2])
-#
-# Here, m4_index is computed 5 times, and m4_eval 4, even if $1 contains
-# no backslash. It is more efficient to do:
-#
-# m4_cond([m4_index([$1], [\])], [-1], [$2],
-# [m4_eval(m4_index([$1], [\\]) >= 0)], [1], [$2],
-# [m4_eval(m4_index([$1], [\$]) >= 0)], [1], [$2],
-# [m4_eval(m4_index([$1], [\`]) >= 0)], [1], [$3],
-# [m4_eval(m4_index([$1], [\"]) >= 0)], [1], [$3],
-# [$2])
-#
-# In the common case of $1 with no backslash, only one m4_index expansion
-# occurs, and m4_eval is avoided altogether.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_cond],
-[m4_if([$#], [0], [m4_fatal([$0: cannot be called without arguments])],
- [$#], [1], [$1],
- m4_eval([$# % 3]), [2], [m4_fatal([$0: missing an argument])],
- [_$0($@)])])
-
-m4_define([_m4_cond],
-[m4_if(($1), [($2)], [$3],
- [$#], [3], [],
- [$#], [4], [$4],
- [$0(m4_shift3($@))])])
-
-
-## ---------------------------------------- ##
-## 6. Enhanced version of some primitives. ##
-## ---------------------------------------- ##
-
-# m4_bpatsubsts(STRING, RE1, SUBST1, RE2, SUBST2, ...)
-# ----------------------------------------------------
-# m4 equivalent of
-#
-# $_ = STRING;
-# s/RE1/SUBST1/g;
-# s/RE2/SUBST2/g;
-# ...
-#
-# All the values are optional, and the macro is robust to active symbols
-# properly quoted.
-#
-# I would have liked to name this macro `m4_bpatsubst', unfortunately,
-# due to quotation problems, I need to double quote $1 below, therefore
-# the anchors are broken :( I can't let users be trapped by that.
-#
-# Recall that m4_shift3 always results in an argument. Hence, we need
-# to distinguish between a final deletion vs. ending recursion.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_bpatsubsts],
-[m4_if([$#], 0, [m4_fatal([$0: too few arguments: $#])],
- [$#], 1, [m4_fatal([$0: too few arguments: $#: $1])],
- [$#], 2, [m4_unquote(m4_builtin([patsubst], [[$1]], [$2]))],
- [$#], 3, [m4_unquote(m4_builtin([patsubst], [[$1]], [$2], [$3]))],
- [_$0($@m4_if(m4_eval($# & 1), 0, [,]))])])
-m4_define([_m4_bpatsubsts],
-[m4_if([$#], 2, [$1],
- [$0(m4_builtin([patsubst], [[$1]], [$2], [$3]),
- m4_shift3($@))])])
-
-
-# m4_copy(SRC, DST)
-# -----------------
-# Define the pushdef stack DST as a copy of the pushdef stack SRC;
-# give an error if DST is already defined. This is particularly nice
-# for copying self-modifying pushdef stacks, where the top definition
-# includes one-shot initialization that is later popped to the normal
-# definition. This version intentionally does nothing if SRC is
-# undefined.
-#
-# Some macros simply can't be renamed with this method: namely, anything
-# involved in the implementation of m4_stack_foreach_sep.
-m4_define([m4_copy],
-[m4_ifdef([$2], [m4_fatal([$0: won't overwrite defined macro: $2])],
- [m4_stack_foreach_sep([$1], [m4_pushdef([$2],], [)])])]dnl
-[m4_ifdef([m4_location($1)], [m4_define([m4_location($2)], m4_location)])])
-
-
-# m4_copy_force(SRC, DST)
-# m4_rename_force(SRC, DST)
-# -------------------------
-# Like m4_copy/m4_rename, except blindly overwrite any existing DST.
-# Note that m4_copy_force tolerates undefined SRC, while m4_rename_force
-# does not.
-m4_define([m4_copy_force],
-[m4_ifdef([$2], [_m4_undefine([$2])])m4_copy($@)])
-
-m4_define([m4_rename_force],
-[m4_ifdef([$2], [_m4_undefine([$2])])m4_rename($@)])
-
-
-# m4_define_default(MACRO, VALUE)
-# -------------------------------
-# If MACRO is undefined, set it to VALUE.
-m4_define([m4_define_default],
-[m4_ifndef([$1], [m4_define($@)])])
-
-
-# m4_default(EXP1, EXP2)
-# m4_default_nblank(EXP1, EXP2)
-# -----------------------------
-# Returns EXP1 if not empty/blank, otherwise EXP2. Expand the result.
-#
-# m4_default is called on hot paths, so inline the contents of m4_ifval,
-# for one less round of expansion.
-m4_define([m4_default],
-[m4_if([$1], [], [$2], [$1])])
-
-m4_define([m4_default_nblank],
-[m4_ifblank([$1], [$2], [$1])])
-
-
-# m4_default_quoted(EXP1, EXP2)
-# m4_default_nblank_quoted(EXP1, EXP2)
-# ------------------------------------
-# Returns EXP1 if non empty/blank, otherwise EXP2. Leave the result quoted.
-#
-# For comparison:
-# m4_define([active], [ACTIVE])
-# m4_default([active], [default]) => ACTIVE
-# m4_default([], [active]) => ACTIVE
-# -m4_default([ ], [active])- => - -
-# -m4_default_nblank([ ], [active])- => -ACTIVE-
-# m4_default_quoted([active], [default]) => active
-# m4_default_quoted([], [active]) => active
-# -m4_default_quoted([ ], [active])- => - -
-# -m4_default_nblank_quoted([ ], [active])- => -active-
-#
-# m4_default macro is called on hot paths, so inline the contents of m4_ifval,
-# for one less round of expansion.
-m4_define([m4_default_quoted],
-[m4_if([$1], [], [[$2]], [[$1]])])
-
-m4_define([m4_default_nblank_quoted],
-[m4_ifblank([$1], [[$2]], [[$1]])])
-
-
-# m4_defn(NAME)
-# -------------
-# Like the original, except guarantee a warning when using something which is
-# undefined (unlike M4 1.4.x). This replacement is not a full-featured
-# replacement: if any of the defined macros contain unbalanced quoting, but
-# when pasted together result in a well-quoted string, then only native m4
-# support is able to get it correct. But that's where quadrigraphs come in
-# handy, if you really need unbalanced quotes inside your macros.
-#
-# This macro is called frequently, so minimize the amount of additional
-# expansions by skipping m4_ifndef. Better yet, if __m4_version__ exists,
-# (added in M4 1.6), then let m4 do the job for us (see m4_init).
-m4_define([m4_defn],
-[m4_if([$#], [0], [[$0]],
- [$#], [1], [m4_ifdef([$1], [_m4_defn([$1])],
- [m4_fatal([$0: undefined macro: $1])])],
- [m4_map_args([$0], $@)])])
-
-
-# m4_dumpdef(NAME...)
-# -------------------
-# In m4 1.4.x, dumpdef writes to the current debugfile, rather than
-# stderr. This in turn royally confuses autom4te; so we follow the
-# lead of newer m4 and always dump to stderr. Unlike the original,
-# this version requires an argument, since there is no convenient way
-# in m4 1.4.x to grab the names of all defined macros. Newer m4
-# always dumps to stderr, regardless of the current debugfile; it also
-# provides m4symbols as a way to grab all current macro names. But
-# dumpdefs is not frequently called, so we don't need to worry about
-# conditionally using these newer features. Also, this version
-# doesn't sort multiple arguments.
-#
-# If we detect m4 1.6 or newer, then provide an alternate definition,
-# installed during m4_init, that allows builtins through.
-# Unfortunately, there is no nice way in m4 1.4.x to dump builtins.
-m4_define([m4_dumpdef],
-[m4_if([$#], [0], [m4_fatal([$0: missing argument])],
- [$#], [1], [m4_ifdef([$1], [m4_errprintn(
- [$1: ]m4_dquote(_m4_defn([$1])))], [m4_fatal([$0: undefined macro: $1])])],
- [m4_map_args([$0], $@)])])
-
-m4_define([_m4_dumpdef],
-[m4_if([$#], [0], [m4_fatal([$0: missing argument])],
- [$#], [1], [m4_builtin([dumpdef], [$1])],
- [m4_map_args_sep([m4_builtin([dumpdef],], [)], [], $@)])])
-
-
-# m4_dumpdefs(NAME...)
-# --------------------
-# Similar to `m4_dumpdef(NAME)', but if NAME was m4_pushdef'ed, display its
-# value stack (most recent displayed first). Also, this version silently
-# ignores undefined macros, rather than erroring out.
-#
-# This macro cheats, because it relies on the current definition of NAME
-# while the second argument of m4_stack_foreach_lifo is evaluated (which
-# would be undefined according to the API).
-m4_define([m4_dumpdefs],
-[m4_if([$#], [0], [m4_fatal([$0: missing argument])],
- [$#], [1], [m4_stack_foreach_lifo([$1], [m4_dumpdef([$1])m4_ignore])],
- [m4_map_args([$0], $@)])])
-
-# m4_esyscmd_s(COMMAND)
-# ---------------------
-# Like m4_esyscmd, except strip any trailing newlines, thus behaving
-# more like shell command substitution.
-m4_define([m4_esyscmd_s],
-[m4_chomp_all(m4_esyscmd([$1]))])
-
-
-# m4_popdef(NAME)
-# ---------------
-# Like the original, except guarantee a warning when using something which is
-# undefined (unlike M4 1.4.x).
-#
-# This macro is called frequently, so minimize the amount of additional
-# expansions by skipping m4_ifndef. Better yet, if __m4_version__ exists,
-# (added in M4 1.6), then let m4 do the job for us (see m4_init).
-m4_define([m4_popdef],
-[m4_if([$#], [0], [[$0]],
- [$#], [1], [m4_ifdef([$1], [_m4_popdef([$1])],
- [m4_fatal([$0: undefined macro: $1])])],
- [m4_map_args([$0], $@)])])
-
-
-# m4_shiftn(N, ...)
-# -----------------
-# Returns ... shifted N times. Useful for recursive "varargs" constructs.
-#
-# Autoconf does not use this macro, because it is inherently slower than
-# calling the common cases of m4_shift2 or m4_shift3 directly. But it
-# might as well be fast for other clients, such as Libtool. One way to
-# do this is to expand $@ only once in _m4_shiftn (otherwise, for long
-# lists, the expansion of m4_if takes twice as much memory as what the
-# list itself occupies, only to throw away the unused branch). The end
-# result is strictly equivalent to
-# m4_if([$1], 1, [m4_shift(,m4_shift(m4_shift($@)))],
-# [_m4_shiftn(m4_decr([$1]), m4_shift(m4_shift($@)))])
-# but with the final `m4_shift(m4_shift($@)))' shared between the two
-# paths. The first leg uses a no-op m4_shift(,$@) to balance out the ().
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_shiftn],
-[m4_assert(0 < $1 && $1 < $#)_$0($@)])
-
-m4_define([_m4_shiftn],
-[m4_if([$1], 1, [m4_shift(],
- [$0(m4_decr([$1])]), m4_shift(m4_shift($@)))])
-
-# m4_shift2(...)
-# m4_shift3(...)
-# --------------
-# Returns ... shifted twice, and three times. Faster than m4_shiftn.
-m4_define([m4_shift2], [m4_shift(m4_shift($@))])
-m4_define([m4_shift3], [m4_shift(m4_shift(m4_shift($@)))])
-
-# _m4_shift2(...)
-# _m4_shift3(...)
-# ---------------
-# Like m4_shift2 or m4_shift3, except include a leading comma unless shifting
-# consumes all arguments. Why? Because in recursion, it is nice to
-# distinguish between 1 element left and 0 elements left, based on how many
-# arguments this shift expands to.
-m4_define([_m4_shift2],
-[m4_if([$#], [2], [],
- [, m4_shift(m4_shift($@))])])
-m4_define([_m4_shift3],
-[m4_if([$#], [3], [],
- [, m4_shift(m4_shift(m4_shift($@)))])])
-
-
-# m4_undefine(NAME)
-# -----------------
-# Like the original, except guarantee a warning when using something which is
-# undefined (unlike M4 1.4.x).
-#
-# This macro is called frequently, so minimize the amount of additional
-# expansions by skipping m4_ifndef. Better yet, if __m4_version__ exists,
-# (added in M4 1.6), then let m4 do the job for us (see m4_init).
-m4_define([m4_undefine],
-[m4_if([$#], [0], [[$0]],
- [$#], [1], [m4_ifdef([$1], [_m4_undefine([$1])],
- [m4_fatal([$0: undefined macro: $1])])],
- [m4_map_args([$0], $@)])])
-
-# _m4_wrap(PRE, POST)
-# -------------------
-# Helper macro for m4_wrap and m4_wrap_lifo. Allows nested calls to
-# m4_wrap within wrapped text. Use _m4_defn and _m4_popdef for speed.
-m4_define([_m4_wrap],
-[m4_ifdef([$0_text],
- [m4_define([$0_text], [$1]_m4_defn([$0_text])[$2])],
- [m4_builtin([m4wrap], [m4_unquote(
- _m4_defn([$0_text])_m4_popdef([$0_text]))])m4_define([$0_text], [$1$2])])])
-
-# m4_wrap(TEXT)
-# -------------
-# Append TEXT to the list of hooks to be executed at the end of input.
-# Whereas the order of the original may be LIFO in the underlying m4,
-# this version is always FIFO.
-m4_define([m4_wrap],
-[_m4_wrap([], [$1[]])])
-
-# m4_wrap_lifo(TEXT)
-# ------------------
-# Prepend TEXT to the list of hooks to be executed at the end of input.
-# Whereas the order of m4_wrap may be FIFO in the underlying m4, this
-# version is always LIFO.
-m4_define([m4_wrap_lifo],
-[_m4_wrap([$1[]])])
-
-## ------------------------- ##
-## 7. Quoting manipulation. ##
-## ------------------------- ##
-
-
-# m4_apply(MACRO, LIST)
-# ---------------------
-# Invoke MACRO, with arguments provided from the quoted list of
-# comma-separated quoted arguments. If LIST is empty, invoke MACRO
-# without arguments. The expansion will not be concatenated with
-# subsequent text.
-m4_define([m4_apply],
-[m4_if([$2], [], [$1], [$1($2)])[]])
-
-# _m4_apply(MACRO, LIST)
-# ----------------------
-# Like m4_apply, except do nothing if LIST is empty.
-m4_define([_m4_apply],
-[m4_if([$2], [], [], [$1($2)[]])])
-
-
-# m4_count(ARGS)
-# --------------
-# Return a count of how many ARGS are present.
-m4_define([m4_count], [$#])
-
-
-# m4_curry(MACRO, ARG...)
-# -----------------------
-# Perform argument currying. The expansion of this macro is another
-# macro that takes exactly one argument, appends it to the end of the
-# original ARG list, then invokes MACRO. For example:
-# m4_curry([m4_curry], [m4_reverse], [1])([2])([3]) => 3, 2, 1
-# Not quite as practical as m4_incr, but you could also do:
-# m4_define([add], [m4_eval(([$1]) + ([$2]))])
-# m4_define([add_one], [m4_curry([add], [1])])
-# add_one()([2]) => 3
-m4_define([m4_curry], [$1(m4_shift($@,)_$0])
-m4_define([_m4_curry], [[$1])])
-
-
-# m4_do(STRING, ...)
-# ------------------
-# This macro invokes all its arguments (in sequence, of course). It is
-# useful for making your macros more structured and readable by dropping
-# unnecessary dnl's and have the macros indented properly. No concatenation
-# occurs after a STRING; use m4_unquote(m4_join(,STRING)) for that.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_do],
-[m4_if([$#], 0, [],
- [$#], 1, [$1[]],
- [$1[]$0(m4_shift($@))])])
-
-
-# m4_dquote(ARGS)
-# ---------------
-# Return ARGS as a quoted list of quoted arguments.
-m4_define([m4_dquote], [[$@]])
-
-
-# m4_dquote_elt(ARGS)
-# -------------------
-# Return ARGS as an unquoted list of double-quoted arguments.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_dquote_elt],
-[m4_if([$#], [0], [],
- [$#], [1], [[[$1]]],
- [[[$1]],$0(m4_shift($@))])])
-
-
-# m4_echo(ARGS)
-# -------------
-# Return the ARGS, with the same level of quoting. Whitespace after
-# unquoted commas are consumed.
-m4_define([m4_echo], [$@])
-
-
-# m4_expand(ARG)
-# _m4_expand(ARG)
-# ---------------
-# Return the expansion of ARG as a single string. Unlike
-# m4_quote($1), this preserves whitespace following single-quoted
-# commas that appear within ARG. It also deals with shell case
-# statements.
-#
-# m4_define([active], [ACT, IVE])
-# m4_define([active2], [[ACT, IVE]])
-# m4_quote(active, active2)
-# => ACT,IVE,ACT, IVE
-# m4_expand([active, active2])
-# => ACT, IVE, ACT, IVE
-#
-# Unfortunately, due to limitations in m4, ARG must expand to
-# something with balanced quotes (use quadrigraphs to get around
-# this), and should not contain the unlikely delimiters -=<{( or
-# )}>=-. It is possible to have unbalanced quoted `(' or `)', as well
-# as unbalanced unquoted `)'. m4_expand can handle unterminated
-# comments or dnl on the final line, at the expense of speed; it also
-# aids in detecting attempts to incorrectly change the current
-# diversion inside ARG. Meanwhile, _m4_expand is faster but must be
-# given a terminated expansion, and has no safety checks for
-# mis-diverted text.
-#
-# Exploit that extra unquoted () will group unquoted commas and the
-# following whitespace. m4_bpatsubst can't handle newlines inside $1,
-# and m4_substr strips quoting. So we (ab)use m4_changequote, using
-# temporary quotes to remove the delimiters that conveniently included
-# the unquoted () that were added prior to the changequote.
-#
-# Thanks to shell case statements, too many people are prone to pass
-# underquoted `)', so we try to detect that by passing a marker as a
-# fourth argument; if the marker is not present, then we assume that
-# we encountered an early `)', and re-expand the first argument, but
-# this time with one more `(' in the second argument and in the
-# open-quote delimiter. We must also ignore the slop from the
-# previous try. The final macro is thus half line-noise, half art.
-m4_define([m4_expand],
-[m4_pushdef([m4_divert], _m4_defn([_m4_divert_unsafe]))]dnl
-[m4_pushdef([m4_divert_push], _m4_defn([_m4_divert_unsafe]))]dnl
-[m4_chomp(_$0([$1
-]))_m4_popdef([m4_divert], [m4_divert_push])])
-
-m4_define([_m4_expand], [$0_([$1], [(], -=<{($1)}>=-, [}>=-])])
-
-m4_define([_m4_expand_],
-[m4_if([$4], [}>=-],
- [m4_changequote([-=<{$2], [)}>=-])$3m4_changequote([, ])],
- [$0([$1], [($2], -=<{($2$1)}>=-, [}>=-])m4_ignore$2])])
-
-
-# m4_ignore(ARGS)
-# ---------------
-# Expands to nothing. Useful for conditionally ignoring an arbitrary
-# number of arguments (see _m4_list_cmp for an example).
-m4_define([m4_ignore])
-
-
-# m4_make_list(ARGS)
-# ------------------
-# Similar to m4_dquote, this creates a quoted list of quoted ARGS. This
-# version is less efficient than m4_dquote, but separates each argument
-# with a comma and newline, rather than just comma, for readability.
-# When developing an m4sugar algorithm, you could temporarily use
-# m4_pushdef([m4_dquote],m4_defn([m4_make_list]))
-# around your code to make debugging easier.
-m4_define([m4_make_list], [m4_join([,
-], m4_dquote_elt($@))])
-
-
-# m4_noquote(STRING)
-# ------------------
-# Return the result of ignoring all quotes in STRING and invoking the
-# macros it contains. Among other things, this is useful for enabling
-# macro invocations inside strings with [] blocks (for instance regexps
-# and help-strings). On the other hand, since all quotes are disabled,
-# any macro expanded during this time that relies on nested [] quoting
-# will likely crash and burn. This macro is seldom useful; consider
-# m4_unquote or m4_expand instead.
-m4_define([m4_noquote],
-[m4_changequote([-=<{(],[)}>=-])$1-=<{()}>=-m4_changequote([,])])
-
-
-# m4_quote(ARGS)
-# --------------
-# Return ARGS as a single argument. Any whitespace after unquoted commas
-# is stripped. There is always output, even when there were no arguments.
-#
-# It is important to realize the difference between `m4_quote(exp)' and
-# `[exp]': in the first case you obtain the quoted *result* of the
-# expansion of EXP, while in the latter you just obtain the string
-# `exp'.
-m4_define([m4_quote], [[$*]])
-
-
-# _m4_quote(ARGS)
-# ---------------
-# Like m4_quote, except that when there are no arguments, there is no
-# output. For conditional scenarios (such as passing _m4_quote as the
-# macro name in m4_mapall), this feature can be used to distinguish between
-# one argument of the empty string vs. no arguments. However, in the
-# normal case with arguments present, this is less efficient than m4_quote.
-m4_define([_m4_quote],
-[m4_if([$#], [0], [], [[$*]])])
-
-
-# m4_reverse(ARGS)
-# ----------------
-# Output ARGS in reverse order.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_reverse],
-[m4_if([$#], [0], [], [$#], [1], [[$1]],
- [$0(m4_shift($@)), [$1]])])
-
-
-# m4_unquote(ARGS)
-# ----------------
-# Remove one layer of quotes from each ARG, performing one level of
-# expansion. For one argument, m4_unquote([arg]) is more efficient than
-# m4_do([arg]), but for multiple arguments, the difference is that
-# m4_unquote separates arguments with commas while m4_do concatenates.
-# Follow this macro with [] if concatenation with subsequent text is
-# undesired.
-m4_define([m4_unquote], [$*])
-
-
-## -------------------------- ##
-## 8. Implementing m4 loops. ##
-## -------------------------- ##
-
-
-# m4_for(VARIABLE, FIRST, LAST, [STEP = +/-1], EXPRESSION)
-# --------------------------------------------------------
-# Expand EXPRESSION defining VARIABLE to FROM, FROM + 1, ..., TO with
-# increments of STEP. Both limits are included, and bounds are
-# checked for consistency. The algorithm is robust to indirect
-# VARIABLE names. Changing VARIABLE inside EXPRESSION will not impact
-# the number of iterations.
-#
-# Uses _m4_defn for speed, and avoid dnl in the macro body. Factor
-# the _m4_for call so that EXPRESSION is only parsed once.
-m4_define([m4_for],
-[m4_pushdef([$1], m4_eval([$2]))]dnl
-[m4_cond([m4_eval(([$3]) > ([$2]))], 1,
- [m4_pushdef([_m4_step], m4_eval(m4_default_quoted([$4],
- 1)))m4_assert(_m4_step > 0)_$0(_m4_defn([$1]),
- m4_eval((([$3]) - ([$2])) / _m4_step * _m4_step + ([$2])), _m4_step,],
- [m4_eval(([$3]) < ([$2]))], 1,
- [m4_pushdef([_m4_step], m4_eval(m4_default_quoted([$4],
- -1)))m4_assert(_m4_step < 0)_$0(_m4_defn([$1]),
- m4_eval((([$2]) - ([$3])) / -(_m4_step) * _m4_step + ([$2])), _m4_step,],
- [m4_pushdef([_m4_step])_$0(_m4_defn([$1]), _m4_defn([$1]), 0,])]dnl
-[[m4_define([$1],], [)$5])m4_popdef([_m4_step], [$1])])
-
-# _m4_for(COUNT, LAST, STEP, PRE, POST)
-# -------------------------------------
-# Core of the loop, no consistency checks, all arguments are plain
-# numbers. Expand PRE[COUNT]POST, then alter COUNT by STEP and
-# iterate if COUNT is not LAST.
-m4_define([_m4_for],
-[$4[$1]$5[]m4_if([$1], [$2], [],
- [$0(m4_eval([$1 + $3]), [$2], [$3], [$4], [$5])])])
-
-
-# Implementing `foreach' loops in m4 is much more tricky than it may
-# seem. For example, the old M4 1.4.4 manual had an incorrect example,
-# which looked like this (when translated to m4sugar):
-#
-# | # foreach(VAR, (LIST), STMT)
-# | m4_define([foreach],
-# | [m4_pushdef([$1])_foreach([$1], [$2], [$3])m4_popdef([$1])])
-# | m4_define([_arg1], [$1])
-# | m4_define([_foreach],
-# | [m4_if([$2], [()], ,
-# | [m4_define([$1], _arg1$2)$3[]_foreach([$1], (m4_shift$2), [$3])])])
-#
-# But then if you run
-#
-# | m4_define(a, 1)
-# | m4_define(b, 2)
-# | m4_define(c, 3)
-# | foreach([f], [([a], [(b], [c)])], [echo f
-# | ])
-#
-# it gives
-#
-# => echo 1
-# => echo (2,3)
-#
-# which is not what is expected.
-#
-# Of course the problem is that many quotes are missing. So you add
-# plenty of quotes at random places, until you reach the expected
-# result. Alternatively, if you are a quoting wizard, you directly
-# reach the following implementation (but if you really did, then
-# apply to the maintenance of m4sugar!).
-#
-# | # foreach(VAR, (LIST), STMT)
-# | m4_define([foreach], [m4_pushdef([$1])_foreach($@)m4_popdef([$1])])
-# | m4_define([_arg1], [[$1]])
-# | m4_define([_foreach],
-# | [m4_if($2, [()], ,
-# | [m4_define([$1], [_arg1$2])$3[]_foreach([$1], [(m4_shift$2)], [$3])])])
-#
-# which this time answers
-#
-# => echo a
-# => echo (b
-# => echo c)
-#
-# Bingo!
-#
-# Well, not quite.
-#
-# With a better look, you realize that the parens are more a pain than
-# a help: since anyway you need to quote properly the list, you end up
-# with always using an outermost pair of parens and an outermost pair
-# of quotes. Rejecting the parens both eases the implementation, and
-# simplifies the use:
-#
-# | # foreach(VAR, (LIST), STMT)
-# | m4_define([foreach], [m4_pushdef([$1])_foreach($@)m4_popdef([$1])])
-# | m4_define([_arg1], [$1])
-# | m4_define([_foreach],
-# | [m4_if($2, [], ,
-# | [m4_define([$1], [_arg1($2)])$3[]_foreach([$1], [m4_shift($2)], [$3])])])
-#
-#
-# Now, just replace the `$2' with `m4_quote($2)' in the outer `m4_if'
-# to improve robustness, and you come up with a nice implementation
-# that doesn't require extra parentheses in the user's LIST.
-#
-# But wait - now the algorithm is quadratic, because every recursion of
-# the algorithm keeps the entire LIST and merely adds another m4_shift to
-# the quoted text. If the user has a lot of elements in LIST, you can
-# bring the system to its knees with the memory m4 then requires, or trip
-# the m4 --nesting-limit recursion factor. The only way to avoid
-# quadratic growth is ensure m4_shift is expanded prior to the recursion.
-# Hence the design below.
-#
-# The M4 manual now includes a chapter devoted to this issue, with
-# the lessons learned from m4sugar. And still, this design is only
-# optimal for M4 1.6; see foreach.m4 for yet more comments on why
-# M4 1.4.x uses yet another implementation.
-
-
-# m4_foreach(VARIABLE, LIST, EXPRESSION)
-# --------------------------------------
-#
-# Expand EXPRESSION assigning each value of the LIST to VARIABLE.
-# LIST should have the form `item_1, item_2, ..., item_n', i.e. the
-# whole list must *quoted*. Quote members too if you don't want them
-# to be expanded.
-#
-# This macro is robust to active symbols:
-# | m4_define(active, [ACT, IVE])
-# | m4_foreach(Var, [active, active], [-Var-])
-# => -ACT--IVE--ACT--IVE-
-#
-# | m4_foreach(Var, [[active], [active]], [-Var-])
-# => -ACT, IVE--ACT, IVE-
-#
-# | m4_foreach(Var, [[[active]], [[active]]], [-Var-])
-# => -active--active-
-#
-# This macro is called frequently, so avoid extra expansions such as
-# m4_ifval and dnl. Also, since $2 might be quite large, try to use it
-# as little as possible in _m4_foreach; each extra use requires that much
-# more memory for expansion. So, rather than directly compare $2 against
-# [] and use m4_car/m4_cdr for recursion, we instead unbox the list (which
-# requires swapping the argument order in the helper), insert an ignored
-# third argument, and use m4_shift3 to detect when recursion is complete,
-# at which point this looks very much like m4_map_args.
-m4_define([m4_foreach],
-[m4_if([$2], [], [],
- [m4_pushdef([$1])_$0([m4_define([$1],], [)$3], [],
- $2)m4_popdef([$1])])])
-
-# _m4_foreach(PRE, POST, IGNORED, ARG...)
-# ---------------------------------------
-# Form the common basis of the m4_foreach and m4_map macros. For each
-# ARG, expand PRE[ARG]POST[]. The IGNORED argument makes recursion
-# easier, and must be supplied rather than implicit.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([_m4_foreach],
-[m4_if([$#], [3], [],
- [$1[$4]$2[]$0([$1], [$2], m4_shift3($@))])])
-
-
-# m4_foreach_w(VARIABLE, LIST, EXPRESSION)
-# ----------------------------------------
-# Like m4_foreach, but the list is whitespace separated. Depending on
-# EXPRESSION, it may be more efficient to use m4_map_args_w.
-#
-# This macro is robust to active symbols:
-# m4_foreach_w([Var], [ active
-# b act\
-# ive ], [-Var-])end
-# => -active--b--active-end
-#
-# This used to use a slower implementation based on m4_foreach:
-# m4_foreach([$1], m4_split(m4_normalize([$2]), [ ]), [$3])
-m4_define([m4_foreach_w],
-[m4_pushdef([$1])m4_map_args_w([$2],
- [m4_define([$1],], [)$3])m4_popdef([$1])])
-
-
-# m4_map(MACRO, LIST)
-# m4_mapall(MACRO, LIST)
-# ----------------------
-# Invoke MACRO($1), MACRO($2) etc. where $1, $2... are the elements of
-# LIST. $1, $2... must in turn be lists, appropriate for m4_apply.
-# If LIST contains an empty sublist, m4_map skips the expansion of
-# MACRO, while m4_mapall expands MACRO with no arguments.
-#
-# Since LIST may be quite large, we want to minimize how often it
-# appears in the expansion. Rather than use m4_car/m4_cdr iteration,
-# we unbox the list, and use _m4_foreach for iteration. For m4_map,
-# an empty list behaves like an empty sublist and gets ignored; for
-# m4_mapall, we must special-case the empty list.
-m4_define([m4_map],
-[_m4_foreach([_m4_apply([$1],], [)], [], $2)])
-
-m4_define([m4_mapall],
-[m4_if([$2], [], [],
- [_m4_foreach([m4_apply([$1],], [)], [], $2)])])
-
-
-# m4_map_sep(MACRO, [SEPARATOR], LIST)
-# m4_mapall_sep(MACRO, [SEPARATOR], LIST)
-# ---------------------------------------
-# Invoke MACRO($1), SEPARATOR, MACRO($2), ..., MACRO($N) where $1,
-# $2... $N are the elements of LIST, and are in turn lists appropriate
-# for m4_apply. SEPARATOR is expanded, in order to allow the creation
-# of a list of arguments by using a single-quoted comma as the
-# separator. For each empty sublist, m4_map_sep skips the expansion
-# of MACRO and SEPARATOR, while m4_mapall_sep expands MACRO with no
-# arguments.
-#
-# For m4_mapall_sep, merely expand the first iteration without the
-# separator, then include separator as part of subsequent recursion;
-# but avoid extra expansion of LIST's side-effects via a helper macro.
-# For m4_map_sep, things are trickier - we don't know if the first
-# list element is an empty sublist, so we must define a self-modifying
-# helper macro and use that as the separator instead.
-m4_define([m4_map_sep],
-[m4_pushdef([m4_Sep], [m4_define([m4_Sep], _m4_defn([m4_unquote]))])]dnl
-[_m4_foreach([_m4_apply([m4_Sep([$2])[]$1],], [)], [], $3)m4_popdef([m4_Sep])])
-
-m4_define([m4_mapall_sep],
-[m4_if([$3], [], [], [_$0([$1], [$2], $3)])])
-
-m4_define([_m4_mapall_sep],
-[m4_apply([$1], [$3])_m4_foreach([m4_apply([$2[]$1],], [)], m4_shift2($@))])
-
-# m4_map_args(EXPRESSION, ARG...)
-# -------------------------------
-# Expand EXPRESSION([ARG]) for each argument. More efficient than
-# m4_foreach([var], [ARG...], [EXPRESSION(m4_defn([var]))])
-# Shorthand for m4_map_args_sep([EXPRESSION(], [)], [], ARG...).
-m4_define([m4_map_args],
-[m4_if([$#], [0], [m4_fatal([$0: too few arguments: $#])],
- [$#], [1], [],
- [$#], [2], [$1([$2])[]],
- [_m4_foreach([$1(], [)], $@)])])
-
-
-# m4_map_args_pair(EXPRESSION, [END-EXPR = EXPRESSION], ARG...)
-# -------------------------------------------------------------
-# Perform a pairwise grouping of consecutive ARGs, by expanding
-# EXPRESSION([ARG1], [ARG2]). If there are an odd number of ARGs, the
-# final argument is expanded with END-EXPR([ARGn]).
-#
-# For example:
-# m4_define([show], [($*)m4_newline])dnl
-# m4_map_args_pair([show], [], [a], [b], [c], [d], [e])dnl
-# => (a,b)
-# => (c,d)
-# => (e)
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_map_args_pair],
-[m4_if([$#], [0], [m4_fatal([$0: too few arguments: $#])],
- [$#], [1], [m4_fatal([$0: too few arguments: $#: $1])],
- [$#], [2], [],
- [$#], [3], [m4_default([$2], [$1])([$3])[]],
- [$#], [4], [$1([$3], [$4])[]],
- [$1([$3], [$4])[]$0([$1], [$2], m4_shift(m4_shift3($@)))])])
-
-
-# m4_map_args_sep([PRE], [POST], [SEP], ARG...)
-# ---------------------------------------------
-# Expand PRE[ARG]POST for each argument, with SEP between arguments.
-m4_define([m4_map_args_sep],
-[m4_if([$#], [0], [m4_fatal([$0: too few arguments: $#])],
- [$#], [1], [],
- [$#], [2], [],
- [$#], [3], [],
- [$#], [4], [$1[$4]$2[]],
- [$1[$4]$2[]_m4_foreach([$3[]$1], [$2], m4_shift3($@))])])
-
-
-# m4_map_args_w(STRING, [PRE], [POST], [SEP])
-# -------------------------------------------
-# Perform the expansion of PRE[word]POST[] for each word in STRING
-# separated by whitespace. More efficient than:
-# m4_foreach_w([var], [STRING], [PRE[]m4_defn([var])POST])
-# Additionally, expand SEP between words.
-#
-# As long as we have to use m4_bpatsubst to split the string, we might
-# as well make it also apply PRE and POST; this avoids iteration
-# altogether. But we must be careful of any \ in PRE or POST.
-# _m4_strip returns a quoted string, but that's okay, since it also
-# supplies an empty leading and trailing argument due to our
-# intentional whitespace around STRING. We use m4_substr to strip the
-# empty elements and remove the extra layer of quoting.
-m4_define([m4_map_args_w],
-[_$0(_m4_split([ ]m4_flatten([$1])[ ], [[ ]+],
- m4_if(m4_index([$2$3$4], [\]), [-1], [[$3[]$4[]$2]],
- [m4_bpatsubst([[$3[]$4[]$2]], [\\], [\\\\])])),
- m4_len([[]$3[]$4]), m4_len([$4[]$2[]]))])
-
-m4_define([_m4_map_args_w],
-[m4_substr([$1], [$2], m4_eval(m4_len([$1]) - [$2] - [$3]))])
-
-
-# m4_stack_foreach(MACRO, FUNC)
-# m4_stack_foreach_lifo(MACRO, FUNC)
-# ----------------------------------
-# Pass each stacked definition of MACRO to the one-argument macro FUNC.
-# m4_stack_foreach proceeds in FIFO order, while m4_stack_foreach_lifo
-# processes the topmost definitions first. In addition, FUNC should
-# not push or pop definitions of MACRO, and should not expect anything about
-# the active definition of MACRO (it will not be the topmost, and may not
-# be the one passed to FUNC either).
-#
-# Some macros simply can't be examined with this method: namely,
-# anything involved in the implementation of _m4_stack_reverse.
-m4_define([m4_stack_foreach],
-[_m4_stack_reverse([$1], [m4_tmp-$1])]dnl
-[_m4_stack_reverse([m4_tmp-$1], [$1], [$2(_m4_defn([m4_tmp-$1]))])])
-
-m4_define([m4_stack_foreach_lifo],
-[_m4_stack_reverse([$1], [m4_tmp-$1], [$2(_m4_defn([m4_tmp-$1]))])]dnl
-[_m4_stack_reverse([m4_tmp-$1], [$1])])
-
-# m4_stack_foreach_sep(MACRO, [PRE], [POST], [SEP])
-# m4_stack_foreach_sep_lifo(MACRO, [PRE], [POST], [SEP])
-# ------------------------------------------------------
-# Similar to m4_stack_foreach and m4_stack_foreach_lifo, in that every
-# definition of a pushdef stack will be visited. But rather than
-# passing the definition as a single argument to a macro, this variant
-# expands the concatenation of PRE[]definition[]POST, and expands SEP
-# between consecutive expansions. Note that m4_stack_foreach([a], [b])
-# is equivalent to m4_stack_foreach_sep([a], [b(], [)]).
-m4_define([m4_stack_foreach_sep],
-[_m4_stack_reverse([$1], [m4_tmp-$1])]dnl
-[_m4_stack_reverse([m4_tmp-$1], [$1], [$2[]_m4_defn([m4_tmp-$1])$3], [$4[]])])
-
-m4_define([m4_stack_foreach_sep_lifo],
-[_m4_stack_reverse([$1], [m4_tmp-$1], [$2[]_m4_defn([m4_tmp-$1])$3], [$4[]])]dnl
-[_m4_stack_reverse([m4_tmp-$1], [$1])])
-
-
-# _m4_stack_reverse(OLD, NEW, [ACTION], [SEP])
-# --------------------------------------------
-# A recursive worker for pushdef stack manipulation. Destructively
-# copy the OLD stack into the NEW, and expanding ACTION for each
-# iteration. After the first iteration, SEP is promoted to the front
-# of ACTION (note that SEP should include a trailing [] if it is to
-# avoid interfering with ACTION). The current definition is examined
-# after the NEW has been pushed but before OLD has been popped; this
-# order is important, as ACTION is permitted to operate on either
-# _m4_defn([OLD]) or _m4_defn([NEW]). Since the operation is
-# destructive, this macro is generally used twice, with a temporary
-# macro name holding the swapped copy.
-m4_define([_m4_stack_reverse],
-[m4_ifdef([$1], [m4_pushdef([$2],
- _m4_defn([$1]))$3[]_m4_popdef([$1])$0([$1], [$2], [$4$3])])])
-
-
-
-## --------------------------- ##
-## 9. More diversion support. ##
-## --------------------------- ##
-
-
-# m4_cleardivert(DIVERSION-NAME...)
-# ---------------------------------
-# Discard any text in DIVERSION-NAME.
-#
-# This works even inside m4_expand.
-m4_define([m4_cleardivert],
-[m4_if([$#], [0], [m4_fatal([$0: missing argument])],
- [_m4_divert_raw([-1])m4_undivert($@)_m4_divert_raw(
- _m4_divert(_m4_defn([_m4_divert_diversion]), [-]))])])
-
-
-# _m4_divert(DIVERSION-NAME or NUMBER, [NOWARN])
-# ----------------------------------------------
-# If DIVERSION-NAME is the name of a diversion, return its number,
-# otherwise if it is a NUMBER return it. Issue a warning about
-# the use of a number instead of a name, unless NOWARN is provided.
-m4_define([_m4_divert],
-[m4_ifdef([_m4_divert($1)],
- [m4_indir([_m4_divert($1)])],
- [m4_if([$2], [], [m4_warn([syntax],
- [prefer named diversions])])$1])])
-
-# KILL is only used to suppress output.
-m4_define([_m4_divert(KILL)], -1)
-
-# The empty diversion name is a synonym for 0.
-m4_define([_m4_divert()], 0)
-
-
-# m4_divert_stack
-# ---------------
-# Print the diversion stack, if it's nonempty. The caller is
-# responsible for any leading or trailing newline.
-m4_define([m4_divert_stack],
-[m4_stack_foreach_sep_lifo([_m4_divert_stack], [], [], [
-])])
-
-
-# m4_divert_stack_push(MACRO-NAME, DIVERSION-NAME)
-# ------------------------------------------------
-# Form an entry of the diversion stack from caller MACRO-NAME and
-# entering DIVERSION-NAME and push it.
-m4_define([m4_divert_stack_push],
-[m4_pushdef([_m4_divert_stack], m4_location[: $1: $2])])
-
-
-# m4_divert(DIVERSION-NAME)
-# -------------------------
-# Change the diversion stream to DIVERSION-NAME.
-m4_define([m4_divert],
-[m4_popdef([_m4_divert_stack])]dnl
-[m4_define([_m4_divert_diversion], [$1])]dnl
-[m4_divert_stack_push([$0], [$1])]dnl
-[_m4_divert_raw(_m4_divert([$1]))])
-
-
-# m4_divert_push(DIVERSION-NAME, [NOWARN])
-# ----------------------------------------
-# Change the diversion stream to DIVERSION-NAME, while stacking old values.
-# For internal use only: if NOWARN is not empty, DIVERSION-NAME can be a
-# number instead of a name.
-m4_define([m4_divert_push],
-[m4_divert_stack_push([$0], [$1])]dnl
-[m4_pushdef([_m4_divert_diversion], [$1])]dnl
-[_m4_divert_raw(_m4_divert([$1], [$2]))])
-
-
-# m4_divert_pop([DIVERSION-NAME])
-# -------------------------------
-# Change the diversion stream to its previous value, unstacking it.
-# If specified, verify we left DIVERSION-NAME.
-# When we pop the last value from the stack, we divert to -1.
-m4_define([m4_divert_pop],
-[m4_if([$1], [], [],
- [$1], _m4_defn([_m4_divert_diversion]), [],
- [m4_fatal([$0($1): diversion mismatch:
-]m4_divert_stack)])]dnl
-[_m4_popdef([_m4_divert_stack], [_m4_divert_diversion])]dnl
-[m4_ifdef([_m4_divert_diversion], [],
- [m4_fatal([too many m4_divert_pop])])]dnl
-[_m4_divert_raw(_m4_divert(_m4_defn([_m4_divert_diversion]), [-]))])
-
-
-# m4_divert_text(DIVERSION-NAME, CONTENT)
-# ---------------------------------------
-# Output CONTENT into DIVERSION-NAME (which may be a number actually).
-# An end of line is appended for free to CONTENT.
-m4_define([m4_divert_text],
-[m4_divert_push([$1])$2
-m4_divert_pop([$1])])
-
-
-# m4_divert_once(DIVERSION-NAME, CONTENT)
-# ---------------------------------------
-# Output CONTENT into DIVERSION-NAME once, if not already there.
-# An end of line is appended for free to CONTENT.
-m4_define([m4_divert_once],
-[m4_expand_once([m4_divert_text([$1], [$2])])])
-
-
-# _m4_divert_unsafe(DIVERSION-NAME)
-# ---------------------------------
-# Issue a warning that the attempt to change the current diversion to
-# DIVERSION-NAME is unsafe, because this macro is being expanded
-# during argument collection of m4_expand.
-m4_define([_m4_divert_unsafe],
-[m4_fatal([$0: cannot change diversion to `$1' inside m4_expand])])
-
-
-# m4_undivert(DIVERSION-NAME...)
-# ------------------------------
-# Undivert DIVERSION-NAME. Unlike the M4 version, this requires at
-# least one DIVERSION-NAME; also, due to support for named diversions,
-# this should not be used to undivert files.
-m4_define([m4_undivert],
-[m4_if([$#], [0], [m4_fatal([$0: missing argument])],
- [$#], [1], [_m4_undivert(_m4_divert([$1]))],
- [m4_map_args([$0], $@)])])
-
-
-## --------------------------------------------- ##
-## 10. Defining macros with bells and whistles. ##
-## --------------------------------------------- ##
-
-# `m4_defun' is basically `m4_define' but it equips the macro with the
-# needed machinery for `m4_require'. A macro must be m4_defun'd if
-# either it is m4_require'd, or it m4_require's.
-#
-# Two things deserve attention and are detailed below:
-# 1. Implementation of m4_require
-# 2. Keeping track of the expansion stack
-#
-# 1. Implementation of m4_require
-# ===============================
-#
-# Of course m4_defun calls m4_provide, so that a macro which has
-# been expanded is not expanded again when m4_require'd, but the
-# difficult part is the proper expansion of macros when they are
-# m4_require'd.
-#
-# The implementation is based on three ideas, (i) using diversions to
-# prepare the expansion of the macro and its dependencies (by Franc,ois
-# Pinard), (ii) expand the most recently m4_require'd macros _after_
-# the previous macros (by Axel Thimm), and (iii) track instances of
-# provide before require (by Eric Blake).
-#
-#
-# The first idea: why use diversions?
-# -----------------------------------
-#
-# When a macro requires another, the other macro is expanded in new
-# diversion, GROW. When the outer macro is fully expanded, we first
-# undivert the most nested diversions (GROW - 1...), and finally
-# undivert GROW. To understand why we need several diversions,
-# consider the following example:
-#
-# | m4_defun([TEST1], [Test...m4_require([TEST2])1])
-# | m4_defun([TEST2], [Test...m4_require([TEST3])2])
-# | m4_defun([TEST3], [Test...3])
-#
-# Because m4_require is not required to be first in the outer macros, we
-# must keep the expansions of the various levels of m4_require separated.
-# Right before executing the epilogue of TEST1, we have:
-#
-# GROW - 2: Test...3
-# GROW - 1: Test...2
-# GROW: Test...1
-# BODY:
-#
-# Finally the epilogue of TEST1 undiverts GROW - 2, GROW - 1, and
-# GROW into the regular flow, BODY.
-#
-# GROW - 2:
-# GROW - 1:
-# GROW:
-# BODY: Test...3; Test...2; Test...1
-#
-# (The semicolons are here for clarification, but of course are not
-# emitted.) This is what Autoconf 2.0 (I think) to 2.13 (I'm sure)
-# implement.
-#
-#
-# The second idea: first required first out
-# -----------------------------------------
-#
-# The natural implementation of the idea above is buggy and produces
-# very surprising results in some situations. Let's consider the
-# following example to explain the bug:
-#
-# | m4_defun([TEST1], [m4_require([TEST2a])m4_require([TEST2b])])
-# | m4_defun([TEST2a], [])
-# | m4_defun([TEST2b], [m4_require([TEST3])])
-# | m4_defun([TEST3], [m4_require([TEST2a])])
-# |
-# | AC_INIT
-# | TEST1
-#
-# The dependencies between the macros are:
-#
-# 3 --- 2b
-# / \ is m4_require'd by
-# / \ left -------------------- right
-# 2a ------------ 1
-#
-# If you strictly apply the rules given in the previous section you get:
-#
-# GROW - 2: TEST3
-# GROW - 1: TEST2a; TEST2b
-# GROW: TEST1
-# BODY:
-#
-# (TEST2a, although required by TEST3 is not expanded in GROW - 3
-# because is has already been expanded before in GROW - 1, so it has
-# been AC_PROVIDE'd, so it is not expanded again) so when you undivert
-# the stack of diversions, you get:
-#
-# GROW - 2:
-# GROW - 1:
-# GROW:
-# BODY: TEST3; TEST2a; TEST2b; TEST1
-#
-# i.e., TEST2a is expanded after TEST3 although the latter required the
-# former.
-#
-# Starting from 2.50, we use an implementation provided by Axel Thimm.
-# The idea is simple: the order in which macros are emitted must be the
-# same as the one in which macros are expanded. (The bug above can
-# indeed be described as: a macro has been m4_provide'd before its
-# dependent, but it is emitted after: the lack of correlation between
-# emission and expansion order is guilty).
-#
-# How to do that? You keep the stack of diversions to elaborate the
-# macros, but each time a macro is fully expanded, emit it immediately.
-#
-# In the example above, when TEST2a is expanded, but it's epilogue is
-# not run yet, you have:
-#
-# GROW - 2:
-# GROW - 1: TEST2a
-# GROW: Elaboration of TEST1
-# BODY:
-#
-# The epilogue of TEST2a emits it immediately:
-#
-# GROW - 2:
-# GROW - 1:
-# GROW: Elaboration of TEST1
-# BODY: TEST2a
-#
-# TEST2b then requires TEST3, so right before the epilogue of TEST3, you
-# have:
-#
-# GROW - 2: TEST3
-# GROW - 1: Elaboration of TEST2b
-# GROW: Elaboration of TEST1
-# BODY: TEST2a
-#
-# The epilogue of TEST3 emits it:
-#
-# GROW - 2:
-# GROW - 1: Elaboration of TEST2b
-# GROW: Elaboration of TEST1
-# BODY: TEST2a; TEST3
-#
-# TEST2b is now completely expanded, and emitted:
-#
-# GROW - 2:
-# GROW - 1:
-# GROW: Elaboration of TEST1
-# BODY: TEST2a; TEST3; TEST2b
-#
-# and finally, TEST1 is finished and emitted:
-#
-# GROW - 2:
-# GROW - 1:
-# GROW:
-# BODY: TEST2a; TEST3; TEST2b: TEST1
-#
-# The idea is simple, but the implementation is a bit involved. If
-# you are like me, you will want to see the actual functioning of this
-# implementation to be convinced. The next section gives the full
-# details.
-#
-#
-# The Axel Thimm implementation at work
-# -------------------------------------
-#
-# We consider the macros above, and this configure.ac:
-#
-# AC_INIT
-# TEST1
-#
-# You should keep the definitions of _m4_defun_pro, _m4_defun_epi, and
-# m4_require at hand to follow the steps.
-#
-# This implementation tries not to assume that the current diversion is
-# BODY, so as soon as a macro (m4_defun'd) is expanded, we first
-# record the current diversion under the name _m4_divert_dump (denoted
-# DUMP below for short). This introduces an important difference with
-# the previous versions of Autoconf: you cannot use m4_require if you
-# are not inside an m4_defun'd macro, and especially, you cannot
-# m4_require directly from the top level.
-#
-# We have not tried to simulate the old behavior (better yet, we
-# diagnose it), because it is too dangerous: a macro m4_require'd from
-# the top level is expanded before the body of `configure', i.e., before
-# any other test was run. I let you imagine the result of requiring
-# AC_STDC_HEADERS for instance, before AC_PROG_CC was actually run....
-#
-# After AC_INIT was run, the current diversion is BODY.
-# * AC_INIT was run
-# DUMP: undefined
-# diversion stack: BODY |-
-#
-# * TEST1 is expanded
-# The prologue of TEST1 sets _m4_divert_dump, which is the diversion
-# where the current elaboration will be dumped, to the current
-# diversion. It also m4_divert_push to GROW, where the full
-# expansion of TEST1 and its dependencies will be elaborated.
-# DUMP: BODY
-# BODY: empty
-# diversions: GROW, BODY |-
-#
-# * TEST1 requires TEST2a
-# _m4_require_call m4_divert_pushes another temporary diversion,
-# GROW - 1, and expands TEST2a in there.
-# DUMP: BODY
-# BODY: empty
-# GROW - 1: TEST2a
-# diversions: GROW - 1, GROW, BODY |-
-# Then the content of the temporary diversion is moved to DUMP and the
-# temporary diversion is popped.
-# DUMP: BODY
-# BODY: TEST2a
-# diversions: GROW, BODY |-
-#
-# * TEST1 requires TEST2b
-# Again, _m4_require_call pushes GROW - 1 and heads to expand TEST2b.
-# DUMP: BODY
-# BODY: TEST2a
-# diversions: GROW - 1, GROW, BODY |-
-#
-# * TEST2b requires TEST3
-# _m4_require_call pushes GROW - 2 and expands TEST3 here.
-# (TEST3 requires TEST2a, but TEST2a has already been m4_provide'd, so
-# nothing happens.)
-# DUMP: BODY
-# BODY: TEST2a
-# GROW - 2: TEST3
-# diversions: GROW - 2, GROW - 1, GROW, BODY |-
-# Then the diversion is appended to DUMP, and popped.
-# DUMP: BODY
-# BODY: TEST2a; TEST3
-# diversions: GROW - 1, GROW, BODY |-
-#
-# * TEST1 requires TEST2b (contd.)
-# The content of TEST2b is expanded...
-# DUMP: BODY
-# BODY: TEST2a; TEST3
-# GROW - 1: TEST2b,
-# diversions: GROW - 1, GROW, BODY |-
-# ... and moved to DUMP.
-# DUMP: BODY
-# BODY: TEST2a; TEST3; TEST2b
-# diversions: GROW, BODY |-
-#
-# * TEST1 is expanded: epilogue
-# TEST1's own content is in GROW...
-# DUMP: BODY
-# BODY: TEST2a; TEST3; TEST2b
-# GROW: TEST1
-# diversions: BODY |-
-# ... and it's epilogue moves it to DUMP and then undefines DUMP.
-# DUMP: undefined
-# BODY: TEST2a; TEST3; TEST2b; TEST1
-# diversions: BODY |-
-#
-#
-# The third idea: track macros provided before they were required
-# ---------------------------------------------------------------
-#
-# Using just the first two ideas, Autoconf 2.50 through 2.63 still had
-# a subtle bug for more than seven years. Let's consider the
-# following example to explain the bug:
-#
-# | m4_defun([TEST1], [1])
-# | m4_defun([TEST2], [2[]m4_require([TEST1])])
-# | m4_defun([TEST3], [3 TEST1 m4_require([TEST2])])
-# | TEST3
-#
-# After the prologue of TEST3, we are collecting text in GROW with the
-# intent of dumping it in BODY during the epilogue. Next, we
-# encounter the direct invocation of TEST1, which provides the macro
-# in place in GROW. From there, we encounter a requirement for TEST2,
-# which must be collected in a new diversion. While expanding TEST2,
-# we encounter a requirement for TEST1, but since it has already been
-# expanded, the Axel Thimm algorithm states that we can treat it as a
-# no-op. But that would lead to an end result of `2 3 1', meaning
-# that we have once again output a macro (TEST2) prior to its
-# requirements (TEST1).
-#
-# The problem can only occur if a single defun'd macro first provides,
-# then later indirectly requires, the same macro. Note that directly
-# expanding then requiring a macro is okay: because the dependency was
-# met, the require phase can be a no-op. For that matter, the outer
-# macro can even require two helpers, where the first helper expands
-# the macro, and the second helper indirectly requires the macro.
-# Out-of-order expansion is only present if the inner macro is
-# required by something that will be hoisted in front of where the
-# direct expansion occurred. In other words, we must be careful not
-# to warn on:
-#
-# | m4_defun([TEST4], [4])
-# | m4_defun([TEST5], [5 TEST4 m4_require([TEST4])])
-# | TEST5 => 5 4
-#
-# or even the more complex:
-#
-# | m4_defun([TEST6], [6])
-# | m4_defun([TEST7], [7 TEST6])
-# | m4_defun([TEST8], [8 m4_require([TEST6])])
-# | m4_defun([TEST9], [9 m4_require([TEST8])])
-# | m4_defun([TEST10], [10 m4_require([TEST7]) m4_require([TEST9])])
-# | TEST10 => 7 6 8 9 10
-#
-# So, to detect whether a require was direct or indirect, m4_defun and
-# m4_require track the name of the macro that caused a diversion to be
-# created (using the stack _m4_diverting, coupled with an O(1) lookup
-# _m4_diverting([NAME])), and m4_provide stores the name associated
-# with the diversion at which a macro was provided. A require call is
-# direct if it occurs within the same diversion where the macro was
-# provided, or if the diversion associated with the providing context
-# has been collected.
-#
-# The implementation of the warning involves tracking the set of
-# macros which have been provided since the start of the outermost
-# defun'd macro (the set is named _m4_provide). When starting an
-# outermost macro, the set is emptied; when a macro is provided, it is
-# added to the set; when require expands the body of a macro, it is
-# removed from the set; and when a macro is indirectly required, the
-# set is checked. If a macro is in the set, then it has been provided
-# before it was required, and we satisfy dependencies by expanding the
-# macro as if it had never been provided; in the example given above,
-# this means we now output `1 2 3 1'. Meanwhile, a warning is issued
-# to inform the user that her macros trigger the bug in older autoconf
-# versions, and that her output file now contains redundant contents
-# (and possibly new problems, if the repeated macro was not
-# idempotent). Meanwhile, macros defined by m4_defun_once instead of
-# m4_defun are idempotent, avoiding any warning or duplicate output.
-#
-#
-# 2. Keeping track of the expansion stack
-# =======================================
-#
-# When M4 expansion goes wrong it is often extremely hard to find the
-# path amongst macros that drove to the failure. What is needed is
-# the stack of macro `calls'. One could imagine that GNU M4 would
-# maintain a stack of macro expansions, unfortunately it doesn't, so
-# we do it by hand. This is of course extremely costly, but the help
-# this stack provides is worth it. Nevertheless to limit the
-# performance penalty this is implemented only for m4_defun'd macros,
-# not for define'd macros.
-#
-# Each time we enter an m4_defun'd macros, we add a definition in
-# _m4_expansion_stack, and when we exit the macro, we remove it (thanks
-# to pushdef/popdef). m4_stack_foreach is used to print the expansion
-# stack in the rare cases when it's needed.
-#
-# In addition, we want to detect circular m4_require dependencies.
-# Each time we expand a macro FOO we define _m4_expanding(FOO); and
-# m4_require(BAR) simply checks whether _m4_expanding(BAR) is defined.
-
-
-# m4_expansion_stack
-# ------------------
-# Expands to the entire contents of the expansion stack. The caller
-# must supply a trailing newline. This macro always prints a
-# location; check whether _m4_expansion_stack is defined to filter out
-# the case when no defun'd macro is in force.
-m4_define([m4_expansion_stack],
-[m4_stack_foreach_sep_lifo([_$0], [_$0_entry(], [)
-])m4_location[: the top level]])
-
-# _m4_expansion_stack_entry(MACRO)
-# --------------------------------
-# Format an entry for MACRO found on the expansion stack.
-m4_define([_m4_expansion_stack_entry],
-[_m4_defn([m4_location($1)])[: $1 is expanded from...]])
-
-# m4_expansion_stack_push(MACRO)
-# ------------------------------
-# Form an entry of the expansion stack on entry to MACRO and push it.
-m4_define([m4_expansion_stack_push],
-[m4_pushdef([_m4_expansion_stack], [$1])])
-
-
-# _m4_divert(GROW)
-# ----------------
-# This diversion is used by the m4_defun/m4_require machinery. It is
-# important to keep room before GROW because for each nested
-# AC_REQUIRE we use an additional diversion (i.e., two m4_require's
-# will use GROW - 2. More than 3 levels has never seemed to be
-# needed.)
-#
-# ...
-# - GROW - 2
-# m4_require'd code, 2 level deep
-# - GROW - 1
-# m4_require'd code, 1 level deep
-# - GROW
-# m4_defun'd macros are elaborated here.
-
-m4_define([_m4_divert(GROW)], 10000)
-
-
-# _m4_defun_pro(MACRO-NAME)
-# -------------------------
-# The prologue for Autoconf macros.
-#
-# This is called frequently, so minimize the number of macro invocations
-# by avoiding dnl and m4_defn overhead.
-m4_define([_m4_defun_pro],
-[m4_ifdef([_m4_expansion_stack], [], [_m4_defun_pro_outer([$1])])]dnl
-[m4_expansion_stack_push([$1])m4_pushdef([_m4_expanding($1)])])
-
-m4_define([_m4_defun_pro_outer],
-[m4_set_delete([_m4_provide])]dnl
-[m4_pushdef([_m4_diverting([$1])])m4_pushdef([_m4_diverting], [$1])]dnl
-[m4_pushdef([_m4_divert_dump], m4_divnum)m4_divert_push([GROW])])
-
-# _m4_defun_epi(MACRO-NAME)
-# -------------------------
-# The Epilogue for Autoconf macros. MACRO-NAME only helps tracing
-# the PRO/EPI pairs.
-#
-# This is called frequently, so minimize the number of macro invocations
-# by avoiding dnl and m4_popdef overhead.
-m4_define([_m4_defun_epi],
-[_m4_popdef([_m4_expanding($1)], [_m4_expansion_stack])]dnl
-[m4_ifdef([_m4_expansion_stack], [], [_m4_defun_epi_outer([$1])])]dnl
-[m4_provide([$1])])
-
-m4_define([_m4_defun_epi_outer],
-[_m4_popdef([_m4_divert_dump], [_m4_diverting([$1])], [_m4_diverting])]dnl
-[m4_divert_pop([GROW])m4_undivert([GROW])])
-
-
-# _m4_divert_dump
-# ---------------
-# If blank, we are outside of any defun'd macro. Otherwise, expands
-# to the diversion number (not name) where require'd macros should be
-# moved once completed.
-m4_define([_m4_divert_dump])
-
-
-# m4_divert_require(DIVERSION, NAME-TO-CHECK, [BODY-TO-EXPAND])
-# -------------------------------------------------------------
-# Same as m4_require, but BODY-TO-EXPAND goes into the named DIVERSION;
-# requirements still go in the current diversion though.
-#
-m4_define([m4_divert_require],
-[m4_ifdef([_m4_expanding($2)],
- [m4_fatal([$0: circular dependency of $2])])]dnl
-[m4_if(_m4_divert_dump, [],
- [m4_fatal([$0($2): cannot be used outside of an m4_defun'd macro])])]dnl
-[m4_provide_if([$2], [],
- [_m4_require_call([$2], [$3], _m4_divert([$1], [-]))])])
-
-
-# m4_defun(NAME, EXPANSION, [MACRO = m4_define])
-# ----------------------------------------------
-# Define a macro NAME which automatically provides itself. Add
-# machinery so the macro automatically switches expansion to the
-# diversion stack if it is not already using it, prior to EXPANSION.
-# In this case, once finished, it will bring back all the code
-# accumulated in the diversion stack. This, combined with m4_require,
-# achieves the topological ordering of macros. We don't use this
-# macro to define some frequently called macros that are not involved
-# in ordering constraints, to save m4 processing.
-#
-# MACRO is an undocumented argument; when set to m4_pushdef, and NAME
-# is already defined, the new definition is added to the pushdef
-# stack, rather than overwriting the current definition. It can thus
-# be used to write self-modifying macros, which pop themselves to a
-# previously m4_define'd definition so that subsequent use of the
-# macro is faster.
-m4_define([m4_defun],
-[m4_define([m4_location($1)], m4_location)]dnl
-[m4_default([$3], [m4_define])([$1],
- [_m4_defun_pro(]m4_dquote($[0])[)$2[]_m4_defun_epi(]m4_dquote($[0])[)])])
-
-
-# m4_defun_init(NAME, INIT, COMMON)
-# ---------------------------------
-# Like m4_defun, but split EXPANSION into two portions: INIT which is
-# done only the first time NAME is invoked, and COMMON which is
-# expanded every time.
-#
-# For now, the COMMON definition is always m4_define'd, giving an even
-# lighter-weight definition. m4_defun allows self-providing, but once
-# a macro is provided, m4_require no longer cares if it is m4_define'd
-# or m4_defun'd. m4_defun also provides location tracking to identify
-# dependency bugs, but once the INIT has been expanded, we know there
-# are no dependency bugs. However, if a future use needs COMMON to be
-# m4_defun'd, we can add a parameter, similar to the third parameter
-# to m4_defun.
-m4_define([m4_defun_init],
-[m4_define([$1], [$3[]])m4_defun([$1],
- [$2[]_m4_popdef(]m4_dquote($[0])[)m4_indir(]m4_dquote($[0])dnl
-[m4_if(]m4_dquote($[#])[, [0], [], ]m4_dquote([,$]@)[))], [m4_pushdef])])
-
-
-# m4_defun_once(NAME, EXPANSION)
-# ------------------------------
-# Like m4_defun, but guarantee that EXPANSION only happens once
-# (thereafter, using NAME is a no-op).
-#
-# If _m4_divert_dump is empty, we are called at the top level;
-# otherwise, we must ensure that we are required in front of the
-# current defun'd macro. Use a helper macro so that EXPANSION need
-# only occur once in the definition of NAME, since it might be large.
-m4_define([m4_defun_once],
-[m4_define([m4_location($1)], m4_location)]dnl
-[m4_define([$1], [_m4_defun_once([$1], [$2], m4_if(_m4_divert_dump, [],
- [[_m4_defun_pro([$1])m4_unquote(], [)_m4_defun_epi([$1])]],
-m4_ifdef([_m4_diverting([$1])], [-]), [-], [[m4_unquote(], [)]],
- [[_m4_require_call([$1],], [, _m4_divert_dump)]]))])])
-
-m4_define([_m4_defun_once],
-[m4_pushdef([$1])$3[$2[]m4_provide([$1])]$4])
-
-
-# m4_pattern_forbid(ERE, [WHY])
-# -----------------------------
-# Declare that no token matching the forbidden extended regular
-# expression ERE should be seen in the output unless...
-m4_define([m4_pattern_forbid], [])
-
-
-# m4_pattern_allow(ERE)
-# ---------------------
-# ... that token also matches the allowed extended regular expression ERE.
-# Both used via traces.
-m4_define([m4_pattern_allow], [])
-
-
-## --------------------------------- ##
-## 11. Dependencies between macros. ##
-## --------------------------------- ##
-
-
-# m4_before(THIS-MACRO-NAME, CALLED-MACRO-NAME)
-# ---------------------------------------------
-# Issue a warning if CALLED-MACRO-NAME was called before THIS-MACRO-NAME.
-m4_define([m4_before],
-[m4_provide_if([$2],
- [m4_warn([syntax], [$2 was called before $1])])])
-
-
-# m4_require(NAME-TO-CHECK, [BODY-TO-EXPAND = NAME-TO-CHECK])
-# -----------------------------------------------------------
-# If NAME-TO-CHECK has never been expanded (actually, if it is not
-# m4_provide'd), expand BODY-TO-EXPAND *before* the current macro
-# expansion; follow the expansion with a newline. Once expanded, emit
-# it in _m4_divert_dump. Keep track of the m4_require chain in
-# _m4_expansion_stack.
-#
-# The normal cases are:
-#
-# - NAME-TO-CHECK == BODY-TO-EXPAND
-# Which you can use for regular macros with or without arguments, e.g.,
-# m4_require([AC_PROG_CC], [AC_PROG_CC])
-# m4_require([AC_CHECK_HEADERS(threads.h)], [AC_CHECK_HEADERS(threads.h)])
-# which is just the same as
-# m4_require([AC_PROG_CC])
-# m4_require([AC_CHECK_HEADERS(threads.h)])
-#
-# - BODY-TO-EXPAND == m4_indir([NAME-TO-CHECK])
-# In the case of macros with irregular names. For instance:
-# m4_require([AC_LANG_COMPILER(C)], [indir([AC_LANG_COMPILER(C)])])
-# which means `if the macro named `AC_LANG_COMPILER(C)' (the parens are
-# part of the name, it is not an argument) has not been run, then
-# call it.'
-# Had you used
-# m4_require([AC_LANG_COMPILER(C)], [AC_LANG_COMPILER(C)])
-# then m4_require would have tried to expand `AC_LANG_COMPILER(C)', i.e.,
-# call the macro `AC_LANG_COMPILER' with `C' as argument.
-#
-# You could argue that `AC_LANG_COMPILER', when it receives an argument
-# such as `C' should dispatch the call to `AC_LANG_COMPILER(C)'. But this
-# `extension' prevents `AC_LANG_COMPILER' from having actual arguments that
-# it passes to `AC_LANG_COMPILER(C)'.
-#
-# This is called frequently, so minimize the number of macro invocations
-# by avoiding dnl and other overhead on the common path.
-m4_define([m4_require],
-[m4_ifdef([_m4_expanding($1)],
- [m4_fatal([$0: circular dependency of $1])])]dnl
-[m4_if(_m4_divert_dump, [],
- [m4_fatal([$0($1): cannot be used outside of an ]dnl
-m4_if([$0], [m4_require], [[m4_defun]], [[AC_DEFUN]])['d macro])])]dnl
-[m4_provide_if([$1], [m4_set_contains([_m4_provide], [$1],
- [_m4_require_check([$1], _m4_defn([m4_provide($1)]), [$0])], [m4_ignore])],
- [_m4_require_call])([$1], [$2], _m4_divert_dump)])
-
-
-# _m4_require_call(NAME-TO-CHECK, [BODY-TO-EXPAND = NAME-TO-CHECK],
-# DIVERSION-NUMBER)
-# -----------------------------------------------------------------
-# If m4_require decides to expand the body, it calls this macro. The
-# expansion is placed in DIVERSION-NUMBER.
-#
-# This is called frequently, so minimize the number of macro invocations
-# by avoiding dnl and other overhead on the common path.
-# The use of a witness macro protecting the warning allows aclocal
-# to silence any warnings when probing for what macros are required
-# and must therefore be located, when using the Autoconf-without-aclocal-m4
-# autom4te language. For more background, see:
-# https://lists.gnu.org/archive/html/automake-patches/2012-11/msg00035.html
-m4_define([_m4_require_call],
-[m4_pushdef([_m4_divert_grow], m4_decr(_m4_divert_grow))]dnl
-[m4_pushdef([_m4_diverting([$1])])m4_pushdef([_m4_diverting], [$1])]dnl
-[m4_divert_push(_m4_divert_grow, [-])]dnl
-[m4_if([$2], [], [$1], [$2])
-m4_provide_if([$1], [m4_set_remove([_m4_provide], [$1])],
- [m4_ifndef([m4_require_silent_probe],
- [m4_warn([syntax], [$1 is m4_require'd but not m4_defun'd])])])]dnl
-[_m4_divert_raw($3)_m4_undivert(_m4_divert_grow)]dnl
-[m4_divert_pop(_m4_divert_grow)_m4_popdef([_m4_divert_grow],
-[_m4_diverting([$1])], [_m4_diverting])])
-
-
-# _m4_require_check(NAME-TO-CHECK, OWNER, CALLER)
-# -----------------------------------------------
-# NAME-TO-CHECK has been identified as previously expanded in the
-# diversion owned by OWNER. If this is a problem, warn on behalf of
-# CALLER and return _m4_require_call; otherwise return m4_ignore.
-m4_define([_m4_require_check],
-[m4_if(_m4_defn([_m4_diverting]), [$2], [m4_ignore],
- m4_ifdef([_m4_diverting([$2])], [-]), [-], [m4_warn([syntax],
- [$3: `$1' was expanded before it was required
-http://www.gnu.org/software/autoconf/manual/autoconf.html#Expanded-Before-Required])_m4_require_call],
- [m4_ignore])])
-
-
-# _m4_divert_grow
-# ---------------
-# The counter for _m4_require_call.
-m4_define([_m4_divert_grow], _m4_divert([GROW]))
-
-
-# m4_expand_once(TEXT, [WITNESS = TEXT])
-# --------------------------------------
-# If TEXT has never been expanded, expand it *here*. Use WITNESS as
-# as a memory that TEXT has already been expanded.
-m4_define([m4_expand_once],
-[m4_provide_if(m4_default_quoted([$2], [$1]),
- [],
- [m4_provide(m4_default_quoted([$2], [$1]))[]$1])])
-
-
-# m4_provide(MACRO-NAME)
-# ----------------------
-m4_define([m4_provide],
-[m4_ifdef([m4_provide($1)], [],
-[m4_set_add([_m4_provide], [$1], [m4_define([m4_provide($1)],
- m4_ifdef([_m4_diverting], [_m4_defn([_m4_diverting])]))])])])
-
-
-# m4_provide_if(MACRO-NAME, IF-PROVIDED, IF-NOT-PROVIDED)
-# -------------------------------------------------------
-# If MACRO-NAME is provided do IF-PROVIDED, else IF-NOT-PROVIDED.
-# The purpose of this macro is to provide the user with a means to
-# check macros which are provided without letting her know how the
-# information is coded.
-m4_define([m4_provide_if],
-[m4_ifdef([m4_provide($1)],
- [$2], [$3])])
-
-
-## --------------------- ##
-## 12. Text processing. ##
-## --------------------- ##
-
-
-# m4_cr_letters
-# m4_cr_LETTERS
-# m4_cr_Letters
-# -------------
-m4_define([m4_cr_letters], [abcdefghijklmnopqrstuvwxyz])
-m4_define([m4_cr_LETTERS], [ABCDEFGHIJKLMNOPQRSTUVWXYZ])
-m4_define([m4_cr_Letters],
-m4_defn([m4_cr_letters])dnl
-m4_defn([m4_cr_LETTERS])dnl
-)
-
-
-# m4_cr_digits
-# ------------
-m4_define([m4_cr_digits], [0123456789])
-
-
-# m4_cr_alnum
-# -----------
-m4_define([m4_cr_alnum],
-m4_defn([m4_cr_Letters])dnl
-m4_defn([m4_cr_digits])dnl
-)
-
-
-# m4_cr_symbols1
-# m4_cr_symbols2
-# --------------
-m4_define([m4_cr_symbols1],
-m4_defn([m4_cr_Letters])dnl
-_)
-
-m4_define([m4_cr_symbols2],
-m4_defn([m4_cr_symbols1])dnl
-m4_defn([m4_cr_digits])dnl
-)
-
-# m4_cr_all
-# ---------
-# The character range representing everything, with `-' as the last
-# character, since it is special to m4_translit. Use with care, because
-# it contains characters special to M4 (fortunately, both ASCII and EBCDIC
-# have [] in order, so m4_defn([m4_cr_all]) remains a valid string). It
-# also contains characters special to terminals, so it should never be
-# displayed in an error message. Also, attempts to map [ and ] to other
-# characters via m4_translit must deal with the fact that m4_translit does
-# not add quotes to the output.
-#
-# In EBCDIC, $ is immediately followed by *, which leads to problems
-# if m4_cr_all is inlined into a macro definition; so swap them.
-#
-# It is mainly useful in generating inverted character range maps, for use
-# in places where m4_translit is faster than an equivalent m4_bpatsubst;
-# the regex `[^a-z]' is equivalent to:
-# m4_translit(m4_dquote(m4_defn([m4_cr_all])), [a-z])
-m4_define([m4_cr_all],
-m4_translit(m4_dquote(m4_format(m4_dquote(m4_for(
- ,1,255,,[[%c]]))m4_for([i],1,255,,[,i]))), [$*-], [*$])-)
-
-
-# _m4_define_cr_not(CATEGORY)
-# ---------------------------
-# Define m4_cr_not_CATEGORY as the inverse of m4_cr_CATEGORY.
-m4_define([_m4_define_cr_not],
-[m4_define([m4_cr_not_$1],
- m4_translit(m4_dquote(m4_defn([m4_cr_all])),
- m4_defn([m4_cr_$1])))])
-
-
-# m4_cr_not_letters
-# m4_cr_not_LETTERS
-# m4_cr_not_Letters
-# m4_cr_not_digits
-# m4_cr_not_alnum
-# m4_cr_not_symbols1
-# m4_cr_not_symbols2
-# ------------------
-# Inverse character sets
-_m4_define_cr_not([letters])
-_m4_define_cr_not([LETTERS])
-_m4_define_cr_not([Letters])
-_m4_define_cr_not([digits])
-_m4_define_cr_not([alnum])
-_m4_define_cr_not([symbols1])
-_m4_define_cr_not([symbols2])
-
-
-# m4_newline([STRING])
-# --------------------
-# Expands to a newline, possibly followed by STRING. Exists mostly for
-# formatting reasons.
-m4_define([m4_newline], [
-$1])
-
-
-# m4_re_escape(STRING)
-# --------------------
-# Escape RE active characters in STRING.
-m4_define([m4_re_escape],
-[m4_bpatsubst([$1],
- [[][*+.?\^$]], [\\\&])])
-
-
-# m4_re_string
-# ------------
-# Regexp for `[a-zA-Z_0-9]*'
-# m4_dquote provides literal [] for the character class.
-m4_define([m4_re_string],
-m4_dquote(m4_defn([m4_cr_symbols2]))dnl
-[*]dnl
-)
-
-
-# m4_re_word
-# ----------
-# Regexp for `[a-zA-Z_][a-zA-Z_0-9]*'
-m4_define([m4_re_word],
-m4_dquote(m4_defn([m4_cr_symbols1]))dnl
-m4_defn([m4_re_string])dnl
-)
-
-
-# m4_tolower(STRING)
-# m4_toupper(STRING)
-# ------------------
-# These macros convert STRING to lowercase or uppercase.
-#
-# Rather than expand the m4_defn each time, we inline them up front.
-m4_define([m4_tolower],
-[m4_translit([[$1]], ]m4_dquote(m4_defn([m4_cr_LETTERS]))[,
- ]m4_dquote(m4_defn([m4_cr_letters]))[)])
-m4_define([m4_toupper],
-[m4_translit([[$1]], ]m4_dquote(m4_defn([m4_cr_letters]))[,
- ]m4_dquote(m4_defn([m4_cr_LETTERS]))[)])
-
-
-# m4_split(STRING, [REGEXP])
-# --------------------------
-# Split STRING into an m4 list of quoted elements. The elements are
-# quoted with [ and ]. Beginning spaces and end spaces *are kept*.
-# Use m4_strip to remove them.
-#
-# REGEXP specifies where to split. Default is [\t ]+.
-#
-# If STRING is empty, the result is an empty list.
-#
-# Pay attention to the m4_changequotes. When m4 reads the definition of
-# m4_split, it still has quotes set to [ and ]. Luckily, these are matched
-# in the macro body, so the definition is stored correctly. Use the same
-# alternate quotes as m4_noquote; it must be unlikely to appear in $1.
-#
-# Also, notice that $1 is quoted twice, since we want the result to
-# be quoted. Then you should understand that the argument of
-# patsubst is -=<{(STRING)}>=- (i.e., with additional -=<{( and )}>=-).
-#
-# This macro is safe on active symbols, i.e.:
-# m4_define(active, ACTIVE)
-# m4_split([active active ])end
-# => [active], [active], []end
-#
-# Optimize on regex of ` ' (space), since m4_foreach_w already guarantees
-# that the list contains single space separators, and a common case is
-# splitting a single-element list. This macro is called frequently,
-# so avoid unnecessary dnl inside the definition.
-m4_define([m4_split],
-[m4_if([$1], [], [],
- [$2], [ ], [m4_if(m4_index([$1], [ ]), [-1], [[[$1]]],
- [_$0([$1], [$2], [, ])])],
- [$2], [], [_$0([$1], [[ ]+], [, ])],
- [_$0([$1], [$2], [, ])])])
-
-m4_define([_m4_split],
-[m4_changequote([-=<{(],[)}>=-])]dnl
-[[m4_bpatsubst(-=<{(-=<{($1)}>=-)}>=-, -=<{($2)}>=-,
- -=<{(]$3[)}>=-)]m4_changequote([, ])])
-
-
-# m4_chomp(STRING)
-# m4_chomp_all(STRING)
-# --------------------
-# Return STRING quoted, but without a trailing newline. m4_chomp
-# removes at most one newline, while m4_chomp_all removes all
-# consecutive trailing newlines. Embedded newlines are not touched,
-# and a trailing backslash-newline leaves just a trailing backslash.
-#
-# m4_bregexp is slower than m4_index, and we don't always want to
-# remove all newlines; hence the two variants. We massage characters
-# to give a nicer pattern to match, particularly since m4_bregexp is
-# line-oriented. Both versions must guarantee a match, to avoid bugs
-# with precision -1 in m4_format in older m4.
-m4_define([m4_chomp],
-[m4_format([[%.*s]], m4_index(m4_translit([[$1]], [
-/.], [/ ])[./.], [/.]), [$1])])
-
-m4_define([m4_chomp_all],
-[m4_format([[%.*s]], m4_bregexp(m4_translit([[$1]], [
-/], [/ ]), [/*$]), [$1])])
-
-
-# m4_flatten(STRING)
-# ------------------
-# If STRING contains end of lines, replace them with spaces. If there
-# are backslashed end of lines, remove them. This macro is safe with
-# active symbols.
-# m4_define(active, ACTIVE)
-# m4_flatten([active
-# act\
-# ive])end
-# => active activeend
-#
-# In m4, m4_bpatsubst is expensive, so first check for a newline.
-m4_define([m4_flatten],
-[m4_if(m4_index([$1], [
-]), [-1], [[$1]],
- [m4_translit(m4_bpatsubst([[[$1]]], [\\
-]), [
-], [ ])])])
-
-
-# m4_strip(STRING)
-# ----------------
-# Expands into STRING with tabs and spaces singled out into a single
-# space, and removing leading and trailing spaces.
-#
-# This macro is robust to active symbols.
-# m4_define(active, ACTIVE)
-# m4_strip([ active <tab> <tab>active ])end
-# => active activeend
-#
-# First, notice that we guarantee trailing space. Why? Because regular
-# expressions are greedy, and `.* ?' would always group the space into the
-# .* portion. The algorithm is simpler by avoiding `?' at the end. The
-# algorithm correctly strips everything if STRING is just ` '.
-#
-# Then notice the second pattern: it is in charge of removing the
-# leading/trailing spaces. Why not just `[^ ]'? Because they are
-# applied to over-quoted strings, i.e. more or less [STRING], due
-# to the limitations of m4_bpatsubsts. So the leading space in STRING
-# is the *second* character; equally for the trailing space.
-m4_define([m4_strip],
-[m4_bpatsubsts([$1 ],
- [[ ]+], [ ],
- [^. ?\(.*\) .$], [[[\1]]])])
-
-
-# m4_normalize(STRING)
-# --------------------
-# Apply m4_flatten and m4_strip to STRING.
-#
-# The argument is quoted, so that the macro is robust to active symbols:
-#
-# m4_define(active, ACTIVE)
-# m4_normalize([ act\
-# ive
-# active ])end
-# => active activeend
-
-m4_define([m4_normalize],
-[m4_strip(m4_flatten([$1]))])
-
-
-
-# m4_join(SEP, ARG1, ARG2...)
-# ---------------------------
-# Produce ARG1SEPARG2...SEPARGn. Avoid back-to-back SEP when a given ARG
-# is the empty string. No expansion is performed on SEP or ARGs.
-#
-# Since the number of arguments to join can be arbitrarily long, we
-# want to avoid having more than one $@ in the macro definition;
-# otherwise, the expansion would require twice the memory of the already
-# long list. Hence, m4_join merely looks for the first non-empty element,
-# and outputs just that element; while _m4_join looks for all non-empty
-# elements, and outputs them following a separator. The final trick to
-# note is that we decide between recursing with $0 or _$0 based on the
-# nested m4_if ending with `_'.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_join],
-[m4_if([$#], [1], [],
- [$#], [2], [[$2]],
- [m4_if([$2], [], [], [[$2]_])$0([$1], m4_shift2($@))])])
-m4_define([_m4_join],
-[m4_if([$#$2], [2], [],
- [m4_if([$2], [], [], [[$1$2]])$0([$1], m4_shift2($@))])])
-
-# m4_joinall(SEP, ARG1, ARG2...)
-# ------------------------------
-# Produce ARG1SEPARG2...SEPARGn. An empty ARG results in back-to-back SEP.
-# No expansion is performed on SEP or ARGs.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_joinall], [[$2]_$0([$1], m4_shift($@))])
-m4_define([_m4_joinall],
-[m4_if([$#], [2], [], [[$1$3]$0([$1], m4_shift2($@))])])
-
-# m4_combine([SEPARATOR], PREFIX-LIST, [INFIX], SUFFIX...)
-# --------------------------------------------------------
-# Produce the pairwise combination of every element in the quoted,
-# comma-separated PREFIX-LIST with every element from the SUFFIX arguments.
-# Each pair is joined with INFIX, and pairs are separated by SEPARATOR.
-# No expansion occurs on SEPARATOR, INFIX, or elements of either list.
-#
-# For example:
-# m4_combine([, ], [[a], [b], [c]], [-], [1], [2], [3])
-# => a-1, a-2, a-3, b-1, b-2, b-3, c-1, c-2, c-3
-#
-# This definition is a bit hairy; the thing to realize is that we want
-# to construct m4_map_args_sep([[prefix$3]], [], [[$1]], m4_shift3($@))
-# as the inner loop, using each prefix generated by the outer loop,
-# and without recalculating m4_shift3 every outer iteration.
-m4_define([m4_combine],
-[m4_if([$2], [], [], m4_eval([$# > 3]), [1],
-[m4_map_args_sep([m4_map_args_sep(m4_dquote(], [)[[$3]], [], [[$1]],]]]dnl
-[m4_dquote(m4_dquote(m4_shift3($@)))[[)], [[$1]], $2)])])
-
-
-# m4_append(MACRO-NAME, STRING, [SEPARATOR])
-# ------------------------------------------
-# Redefine MACRO-NAME to hold its former content plus `SEPARATOR`'STRING'
-# at the end. It is valid to use this macro with MACRO-NAME undefined,
-# in which case no SEPARATOR is added. Be aware that the criterion is
-# `not being defined', and not `not being empty'.
-#
-# Note that neither STRING nor SEPARATOR are expanded here; rather, when
-# you expand MACRO-NAME, they will be expanded at that point in time.
-#
-# This macro is robust to active symbols. It can be used to grow
-# strings.
-#
-# | m4_define(active, ACTIVE)dnl
-# | m4_append([sentence], [This is an])dnl
-# | m4_append([sentence], [ active ])dnl
-# | m4_append([sentence], [symbol.])dnl
-# | sentence
-# | m4_undefine([active])dnl
-# | sentence
-# => This is an ACTIVE symbol.
-# => This is an active symbol.
-#
-# It can be used to define hooks.
-#
-# | m4_define(active, ACTIVE)dnl
-# | m4_append([hooks], [m4_define([act1], [act2])])dnl
-# | m4_append([hooks], [m4_define([act2], [active])])dnl
-# | m4_undefine([active])dnl
-# | act1
-# | hooks
-# | act1
-# => act1
-# =>
-# => active
-#
-# It can also be used to create lists, although this particular usage was
-# broken prior to autoconf 2.62.
-# | m4_append([list], [one], [, ])dnl
-# | m4_append([list], [two], [, ])dnl
-# | m4_append([list], [three], [, ])dnl
-# | list
-# | m4_dquote(list)
-# => one, two, three
-# => [one],[two],[three]
-#
-# Note that m4_append can benefit from amortized O(n) m4 behavior, if
-# the underlying m4 implementation is smart enough to avoid copying existing
-# contents when enlarging a macro's definition into any pre-allocated storage
-# (m4 1.4.x unfortunately does not implement this optimization). We do
-# not implement m4_prepend, since it is inherently O(n^2) (pre-allocated
-# storage only occurs at the end of a macro, so the existing contents must
-# always be moved).
-#
-# Use _m4_defn for speed.
-m4_define([m4_append],
-[m4_define([$1], m4_ifdef([$1], [_m4_defn([$1])[$3]])[$2])])
-
-
-# m4_append_uniq(MACRO-NAME, STRING, [SEPARATOR], [IF-UNIQ], [IF-DUP])
-# --------------------------------------------------------------------
-# Like `m4_append', but append only if not yet present. Additionally,
-# expand IF-UNIQ if STRING was appended, or IF-DUP if STRING was already
-# present. Also, warn if SEPARATOR is not empty and occurs within STRING,
-# as the algorithm no longer guarantees uniqueness.
-#
-# Note that while m4_append can be O(n) (depending on the quality of the
-# underlying M4 implementation), m4_append_uniq is inherently O(n^2)
-# because each append operation searches the entire string.
-m4_define([m4_append_uniq],
-[m4_ifval([$3], [m4_if(m4_index([$2], [$3]), [-1], [],
- [m4_warn([syntax],
- [$0: `$2' contains `$3'])])])_$0($@)])
-m4_define([_m4_append_uniq],
-[m4_ifdef([$1],
- [m4_if(m4_index([$3]_m4_defn([$1])[$3], [$3$2$3]), [-1],
- [m4_append([$1], [$2], [$3])$4], [$5])],
- [m4_define([$1], [$2])$4])])
-
-# m4_append_uniq_w(MACRO-NAME, STRINGS)
-# -------------------------------------
-# For each of the words in the whitespace separated list STRINGS, append
-# only the unique strings to the definition of MACRO-NAME.
-#
-# Use _m4_defn for speed.
-m4_define([m4_append_uniq_w],
-[m4_map_args_w([$2], [_m4_append_uniq([$1],], [, [ ])])])
-
-
-# m4_escape(STRING)
-# -----------------
-# Output quoted STRING, but with embedded #, $, [ and ] turned into
-# quadrigraphs.
-#
-# It is faster to check if STRING is already good using m4_translit
-# than to blindly perform four m4_bpatsubst.
-#
-# Because the translit is stripping quotes, it must also neutralize
-# anything that might be in a macro name, as well as comments, commas,
-# and parentheses. All the problem characters are unified so that a
-# single m4_index can scan the result.
-#
-# Rather than expand m4_defn every time m4_escape is expanded, we
-# inline its expansion up front.
-m4_define([m4_escape],
-[m4_if(m4_index(m4_translit([$1],
- [[]#,()]]m4_dquote(m4_defn([m4_cr_symbols2]))[, [$$$]), [$]),
- [-1], [m4_echo], [_$0])([$1])])
-
-m4_define([_m4_escape],
-[m4_changequote([-=<{(],[)}>=-])]dnl
-[m4_bpatsubst(m4_bpatsubst(m4_bpatsubst(m4_bpatsubst(
- -=<{(-=<{(-=<{(-=<{(-=<{($1)}>=-)}>=-)}>=-)}>=-)}>=-,
- -=<{(#)}>=-, -=<{(@%:@)}>=-),
- -=<{(\[)}>=-, -=<{(@<:@)}>=-),
- -=<{(\])}>=-, -=<{(@:>@)}>=-),
- -=<{(\$)}>=-, -=<{(@S|@)}>=-)m4_changequote([,])])
-
-
-# m4_text_wrap(STRING, [PREFIX], [FIRST-PREFIX], [WIDTH])
-# -------------------------------------------------------
-# Expands into STRING wrapped to hold in WIDTH columns (default = 79).
-# If PREFIX is given, each line is prefixed with it. If FIRST-PREFIX is
-# specified, then the first line is prefixed with it. As a special case,
-# if the length of FIRST-PREFIX is greater than that of PREFIX, then
-# FIRST-PREFIX will be left alone on the first line.
-#
-# No expansion occurs on the contents STRING, PREFIX, or FIRST-PREFIX,
-# although quadrigraphs are correctly recognized. More precisely,
-# you may redefine m4_qlen to recognize whatever escape sequences that
-# you will post-process.
-#
-# Typical outputs are:
-#
-# m4_text_wrap([Short string */], [ ], [/* ], 20)
-# => /* Short string */
-#
-# m4_text_wrap([Much longer string */], [ ], [/* ], 20)
-# => /* Much longer
-# => string */
-#
-# m4_text_wrap([Short doc.], [ ], [ --short ], 30)
-# => --short Short doc.
-#
-# m4_text_wrap([Short doc.], [ ], [ --too-wide ], 30)
-# => --too-wide
-# => Short doc.
-#
-# m4_text_wrap([Super long documentation.], [ ], [ --too-wide ], 30)
-# => --too-wide
-# => Super long
-# => documentation.
-#
-# FIXME: there is no checking of a longer PREFIX than WIDTH, but do
-# we really want to bother with people trying each single corner
-# of a software?
-#
-# This macro does not leave a trailing space behind the last word of a line,
-# which complicates it a bit. The algorithm is otherwise stupid and simple:
-# all the words are preceded by m4_Separator which is defined to empty for
-# the first word, and then ` ' (single space) for all the others.
-#
-# The algorithm uses a helper that uses $2 through $4 directly, rather than
-# using local variables, to avoid m4_defn overhead, or expansion swallowing
-# any $. It also bypasses m4_popdef overhead with _m4_popdef since no user
-# macro expansion occurs in the meantime. Also, the definition is written
-# with m4_do, to avoid time wasted on dnl during expansion (since this is
-# already a time-consuming macro).
-m4_define([m4_text_wrap],
-[_$0(m4_escape([$1]), [$2], m4_default_quoted([$3], [$2]),
- m4_default_quoted([$4], [79]))])
-
-m4_define([_m4_text_wrap],
-m4_do(dnl set up local variables, to avoid repeated calculations
-[[m4_pushdef([m4_Indent], m4_qlen([$2]))]],
-[[m4_pushdef([m4_Cursor], m4_qlen([$3]))]],
-[[m4_pushdef([m4_Separator], [m4_define([m4_Separator], [ ])])]],
-dnl expand the first prefix, then check its length vs. regular prefix
-dnl same length: nothing special
-dnl prefix1 longer: output on line by itself, and reset cursor
-dnl prefix1 shorter: pad to length of prefix, and reset cursor
-[[[$3]m4_cond([m4_Cursor], m4_Indent, [],
- [m4_eval(m4_Cursor > m4_Indent)], [1], [
-[$2]m4_define([m4_Cursor], m4_Indent)],
- [m4_format([%*s], m4_max([0],
- m4_eval(m4_Indent - m4_Cursor)), [])m4_define([m4_Cursor], m4_Indent)])]],
-dnl now, for each word, compute the cursor after the word is output, then
-dnl check if the cursor would exceed the wrap column
-dnl if so, reset cursor, and insert newline and prefix
-dnl if not, insert the separator (usually a space)
-dnl either way, insert the word
-[[m4_map_args_w([$1], [$0_word(], [, [$2], [$4])])]],
-dnl finally, clean up the local variables
-[[_m4_popdef([m4_Separator], [m4_Cursor], [m4_Indent])]]))
-
-m4_define([_m4_text_wrap_word],
-[m4_define([m4_Cursor], m4_eval(m4_Cursor + m4_qlen([$1]) + 1))]dnl
-[m4_if(m4_eval(m4_Cursor > ([$3])),
- [1], [m4_define([m4_Cursor], m4_eval(m4_Indent + m4_qlen([$1]) + 1))
-[$2]],
- [m4_Separator[]])[$1]])
-
-# m4_text_box(MESSAGE, [FRAME-CHARACTER = `-'])
-# ---------------------------------------------
-# Turn MESSAGE into:
-# ## ------- ##
-# ## MESSAGE ##
-# ## ------- ##
-# using FRAME-CHARACTER in the border.
-#
-# Quadrigraphs are correctly recognized. More precisely, you may
-# redefine m4_qlen to recognize whatever escape sequences that you
-# will post-process.
-m4_define([m4_text_box],
-[m4_pushdef([m4_Border],
- m4_translit(m4_format([[[%*s]]], m4_decr(m4_qlen(_m4_expand([$1
-]))), []), [ ], m4_default_quoted([$2], [-])))]dnl
-[[##] _m4_defn([m4_Border]) [##]
-[##] $1 [##]
-[##] _m4_defn([m4_Border]) [##]_m4_popdef([m4_Border])])
-
-
-# m4_qlen(STRING)
-# ---------------
-# Expands to the length of STRING after autom4te converts all quadrigraphs.
-#
-# If you use some other means of post-processing m4 output rather than
-# autom4te, then you may redefine this macro to recognize whatever
-# escape sequences your post-processor will handle. For that matter,
-# m4_define([m4_qlen], m4_defn([m4_len])) is sufficient if you don't
-# do any post-processing.
-#
-# Avoid bpatsubsts for the common case of no quadrigraphs. Cache
-# results, as configure scripts tend to ask about lengths of common
-# strings like `/*' and `*/' rather frequently. Minimize the number
-# of times that $1 occurs in m4_qlen, so there is less text to parse
-# on a cache hit.
-m4_define([m4_qlen],
-[m4_ifdef([$0-$1], [_m4_defn([$0-]], [_$0(])[$1])])
-m4_define([_m4_qlen],
-[m4_define([m4_qlen-$1],
-m4_if(m4_index([$1], [@]), [-1], [m4_len([$1])],
- [m4_len(m4_bpatsubst([[$1]],
- [@\(\(<:\|:>\|S|\|%:\|\{:\|:\}\)\(@\)\|&t@\)],
- [\3]))]))_m4_defn([m4_qlen-$1])])
-
-# m4_copyright_condense(TEXT)
-# ---------------------------
-# Condense the copyright notice in TEXT to only display the final
-# year, wrapping the results to fit in 80 columns.
-m4_define([m4_copyright_condense],
-[m4_text_wrap(m4_bpatsubst(m4_flatten([[$1]]),
-[(C)[- ,0-9]*\([1-9][0-9][0-9][0-9]\)], [(C) \1]))])
-
-## ----------------------- ##
-## 13. Number processing. ##
-## ----------------------- ##
-
-# m4_cmp(A, B)
-# ------------
-# Compare two integer expressions.
-# A < B -> -1
-# A = B -> 0
-# A > B -> 1
-m4_define([m4_cmp],
-[m4_eval((([$1]) > ([$2])) - (([$1]) < ([$2])))])
-
-
-# m4_list_cmp(A, B)
-# -----------------
-#
-# Compare the two lists of integer expressions A and B. For instance:
-# m4_list_cmp([1, 0], [1]) -> 0
-# m4_list_cmp([1, 0], [1, 0]) -> 0
-# m4_list_cmp([1, 2], [1, 0]) -> 1
-# m4_list_cmp([1, 2, 3], [1, 2]) -> 1
-# m4_list_cmp([1, 2, -3], [1, 2]) -> -1
-# m4_list_cmp([1, 0], [1, 2]) -> -1
-# m4_list_cmp([1], [1, 2]) -> -1
-# m4_define([xa], [oops])dnl
-# m4_list_cmp([[0xa]], [5+5]) -> 0
-#
-# Rather than face the overhead of m4_case, we use a helper function whose
-# expansion includes the name of the macro to invoke on the tail, either
-# m4_ignore or m4_unquote. This is particularly useful when comparing
-# long lists, since less text is being expanded for deciding when to end
-# recursion. The recursion is between a pair of macros that alternate
-# which list is trimmed by one element; this is more efficient than
-# calling m4_cdr on both lists from a single macro. Guarantee exactly
-# one expansion of both lists' side effects.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_list_cmp],
-[_$0_raw(m4_dquote($1), m4_dquote($2))])
-
-m4_define([_m4_list_cmp_raw],
-[m4_if([$1], [$2], [0], [_m4_list_cmp_1([$1], $2)])])
-
-m4_define([_m4_list_cmp],
-[m4_if([$1], [], [0m4_ignore], [$2], [0], [m4_unquote], [$2m4_ignore])])
-
-m4_define([_m4_list_cmp_1],
-[_m4_list_cmp_2([$2], [m4_shift2($@)], $1)])
-
-m4_define([_m4_list_cmp_2],
-[_m4_list_cmp([$1$3], m4_cmp([$3+0], [$1+0]))(
- [_m4_list_cmp_1(m4_dquote(m4_shift3($@)), $2)])])
-
-# m4_max(EXPR, ...)
-# m4_min(EXPR, ...)
-# -----------------
-# Return the decimal value of the maximum (or minimum) in a series of
-# integer expressions.
-#
-# M4 1.4.x doesn't provide ?:. Hence this huge m4_eval. Avoid m4_eval
-# if both arguments are identical, but be aware of m4_max(0xa, 10) (hence
-# the use of <=, not just <, in the second multiply).
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_max],
-[m4_if([$#], [0], [m4_fatal([too few arguments to $0])],
- [$#], [1], [m4_eval([$1])],
- [$#$1], [2$2], [m4_eval([$1])],
- [$#], [2], [_$0($@)],
- [_m4_minmax([_$0], $@)])])
-
-m4_define([_m4_max],
-[m4_eval((([$1]) > ([$2])) * ([$1]) + (([$1]) <= ([$2])) * ([$2]))])
-
-m4_define([m4_min],
-[m4_if([$#], [0], [m4_fatal([too few arguments to $0])],
- [$#], [1], [m4_eval([$1])],
- [$#$1], [2$2], [m4_eval([$1])],
- [$#], [2], [_$0($@)],
- [_m4_minmax([_$0], $@)])])
-
-m4_define([_m4_min],
-[m4_eval((([$1]) < ([$2])) * ([$1]) + (([$1]) >= ([$2])) * ([$2]))])
-
-# _m4_minmax(METHOD, ARG1, ARG2...)
-# ---------------------------------
-# Common recursion code for m4_max and m4_min. METHOD must be _m4_max
-# or _m4_min, and there must be at least two arguments to combine.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([_m4_minmax],
-[m4_if([$#], [3], [$1([$2], [$3])],
- [$0([$1], $1([$2], [$3]), m4_shift3($@))])])
-
-
-# m4_sign(A)
-# ----------
-# The sign of the integer expression A.
-m4_define([m4_sign],
-[m4_eval((([$1]) > 0) - (([$1]) < 0))])
-
-
-
-## ------------------------ ##
-## 14. Version processing. ##
-## ------------------------ ##
-
-
-# m4_version_unletter(VERSION)
-# ----------------------------
-# Normalize beta version numbers with letters to numeric expressions, which
-# can then be handed to m4_eval for the purpose of comparison.
-#
-# Nl -> (N+1).-1.(l#)
-#
-# for example:
-# [2.14a] -> [0,2,14+1,-1,[0r36:a]] -> 2.15.-1.10
-# [2.14b] -> [0,2,15+1,-1,[0r36:b]] -> 2.15.-1.11
-# [2.61aa.b] -> [0,2.61,1,-1,[0r36:aa],+1,-1,[0r36:b]] -> 2.62.-1.370.1.-1.11
-# [08] -> [0,[0r10:0]8] -> 8
-#
-# This macro expects reasonable version numbers, but can handle double
-# letters and does not expand any macros. Original version strings can
-# use both `.' and `-' separators.
-#
-# Inline constant expansions, to avoid m4_defn overhead.
-# _m4_version_unletter is the real workhorse used by m4_version_compare,
-# but since [0r36:a] and commas are less readable than 10 and dots, we
-# provide a wrapper for human use.
-m4_define([m4_version_unletter],
-[m4_substr(m4_map_args([.m4_eval], m4_unquote(_$0([$1]))), [3])])
-m4_define([_m4_version_unletter],
-[m4_bpatsubst(m4_bpatsubst(m4_translit([[[[0,$1]]]], [.-], [,,]),]dnl
-m4_dquote(m4_dquote(m4_defn([m4_cr_Letters])))[[+],
- [+1,-1,[0r36:\&]]), [,0], [,[0r10:0]])])
-
-
-# m4_version_compare(VERSION-1, VERSION-2)
-# ----------------------------------------
-# Compare the two version numbers and expand into
-# -1 if VERSION-1 < VERSION-2
-# 0 if =
-# 1 if >
-#
-# Since _m4_version_unletter does not output side effects, we can
-# safely bypass the overhead of m4_version_cmp.
-m4_define([m4_version_compare],
-[_m4_list_cmp_raw(_m4_version_unletter([$1]), _m4_version_unletter([$2]))])
-
-
-# m4_PACKAGE_NAME
-# m4_PACKAGE_TARNAME
-# m4_PACKAGE_VERSION
-# m4_PACKAGE_STRING
-# m4_PACKAGE_BUGREPORT
-# --------------------
-# If m4sugar/version.m4 is present, then define version strings. This
-# file is optional, provided by Autoconf but absent in Bison.
-m4_sinclude([m4sugar/version.m4])
-
-
-# m4_version_prereq(VERSION, [IF-OK], [IF-NOT = FAIL])
-# ----------------------------------------------------
-# Check this Autoconf version against VERSION.
-m4_define([m4_version_prereq],
-m4_ifdef([m4_PACKAGE_VERSION],
-[[m4_if(m4_version_compare(]m4_dquote(m4_defn([m4_PACKAGE_VERSION]))[, [$1]),
- [-1],
- [m4_default([$3],
- [m4_fatal([Autoconf version $1 or higher is required],
- [63])])],
- [$2])]],
-[[m4_fatal([m4sugar/version.m4 not found])]]))
-
-
-## ------------------ ##
-## 15. Set handling. ##
-## ------------------ ##
-
-# Autoconf likes to create arbitrarily large sets; for example, as of
-# this writing, the configure.ac for coreutils tracks a set of more
-# than 400 AC_SUBST. How do we track all of these set members,
-# without introducing duplicates? We could use m4_append_uniq, with
-# the set NAME residing in the contents of the macro NAME.
-# Unfortunately, m4_append_uniq is quadratic for set creation, because
-# it costs O(n) to search the string for each of O(n) insertions; not
-# to mention that with m4 1.4.x, even using m4_append is slow, costing
-# O(n) rather than O(1) per insertion. Other set operations, not used
-# by Autoconf but still possible by manipulation of the definition
-# tracked in macro NAME, include O(n) deletion of one element and O(n)
-# computation of set size. Because the set is exposed to the user via
-# the definition of a single macro, we cannot cache any data about the
-# set without risking the cache being invalidated by the user
-# redefining NAME.
-#
-# Can we do better? Yes, because m4 gives us an O(1) search function
-# for free: ifdef. Additionally, even m4 1.4.x gives us an O(1)
-# insert operation for free: pushdef. But to use these, we must
-# represent the set via a group of macros; to keep the set consistent,
-# we must hide the set so that the user can only manipulate it through
-# accessor macros. The contents of the set are maintained through two
-# access points; _m4_set([name]) is a pushdef stack of values in the
-# set, useful for O(n) traversal of the set contents; while the
-# existence of _m4_set([name],value) with no particular value is
-# useful for O(1) querying of set membership. And since the user
-# cannot externally manipulate the set, we are free to add additional
-# caching macros for other performance improvements. Deletion can be
-# O(1) per element rather than O(n), by reworking the definition of
-# _m4_set([name],value) to be 0 or 1 based on current membership, and
-# adding _m4_set_cleanup(name) to defer the O(n) cleanup of
-# _m4_set([name]) until we have another reason to do an O(n)
-# traversal. The existence of _m4_set_cleanup(name) can then be used
-# elsewhere to determine if we must dereference _m4_set([name],value),
-# or assume that definition implies set membership. Finally, size can
-# be tracked in an O(1) fashion with _m4_set_size(name).
-#
-# The quoting in _m4_set([name],value) is chosen so that there is no
-# ambiguity with a set whose name contains a comma, and so that we can
-# supply the value via _m4_defn([_m4_set([name])]) without needing any
-# quote manipulation.
-
-# m4_set_add(SET, VALUE, [IF-UNIQ], [IF-DUP])
-# -------------------------------------------
-# Add VALUE as an element of SET. Expand IF-UNIQ on the first
-# addition, and IF-DUP if it is already in the set. Addition of one
-# element is O(1), such that overall set creation is O(n).
-#
-# We do not want to add a duplicate for a previously deleted but
-# unpruned element, but it is just as easy to check existence directly
-# as it is to query _m4_set_cleanup($1).
-m4_define([m4_set_add],
-[m4_ifdef([_m4_set([$1],$2)],
- [m4_if(m4_indir([_m4_set([$1],$2)]), [0],
- [m4_define([_m4_set([$1],$2)],
- [1])_m4_set_size([$1], [m4_incr])$3], [$4])],
- [m4_define([_m4_set([$1],$2)],
- [1])m4_pushdef([_m4_set([$1])],
- [$2])_m4_set_size([$1], [m4_incr])$3])])
-
-# m4_set_add_all(SET, VALUE...)
-# -----------------------------
-# Add each VALUE into SET. This is O(n) in the number of VALUEs, and
-# can be faster than calling m4_set_add for each VALUE.
-#
-# Implement two recursion helpers; the check variant is slower but
-# handles the case where an element has previously been removed but
-# not pruned. The recursion helpers ignore their second argument, so
-# that we can use the faster m4_shift2 and 2 arguments, rather than
-# _m4_shift2 and one argument, as the signal to end recursion.
-#
-# Please keep foreach.m4 in sync with any adjustments made here.
-m4_define([m4_set_add_all],
-[m4_define([_m4_set_size($1)], m4_eval(m4_set_size([$1])
- + m4_len(m4_ifdef([_m4_set_cleanup($1)], [_$0_check], [_$0])([$1], $@))))])
-
-m4_define([_m4_set_add_all],
-[m4_if([$#], [2], [],
- [m4_ifdef([_m4_set([$1],$3)], [],
- [m4_define([_m4_set([$1],$3)], [1])m4_pushdef([_m4_set([$1])],
- [$3])-])$0([$1], m4_shift2($@))])])
-
-m4_define([_m4_set_add_all_check],
-[m4_if([$#], [2], [],
- [m4_set_add([$1], [$3])$0([$1], m4_shift2($@))])])
-
-# m4_set_contains(SET, VALUE, [IF-PRESENT], [IF-ABSENT])
-# ------------------------------------------------------
-# Expand IF-PRESENT if SET contains VALUE, otherwise expand IF-ABSENT.
-# This is always O(1).
-m4_define([m4_set_contains],
-[m4_ifdef([_m4_set_cleanup($1)],
- [m4_if(m4_ifdef([_m4_set([$1],$2)],
- [m4_indir([_m4_set([$1],$2)])], [0]), [1], [$3], [$4])],
- [m4_ifdef([_m4_set([$1],$2)], [$3], [$4])])])
-
-# m4_set_contents(SET, [SEP])
-# ---------------------------
-# Expand to a single string containing all the elements in SET,
-# separated by SEP, without modifying SET. No provision is made for
-# disambiguating set elements that contain non-empty SEP as a
-# sub-string, or for recognizing a set that contains only the empty
-# string. Order of the output is not guaranteed. If any elements
-# have been previously removed from the set, this action will prune
-# the unused memory. This is O(n) in the size of the set before
-# pruning.
-#
-# Use _m4_popdef for speed. The existence of _m4_set_cleanup($1)
-# determines which version of _1 helper we use.
-m4_define([m4_set_contents],
-[m4_set_map_sep([$1], [], [], [[$2]])])
-
-# _m4_set_contents_1(SET)
-# _m4_set_contents_1c(SET)
-# _m4_set_contents_2(SET, [PRE], [POST], [SEP])
-# ---------------------------------------------
-# Expand to a list of quoted elements currently in the set, each
-# surrounded by PRE and POST, and moving SEP in front of PRE on
-# recursion. To avoid nesting limit restrictions, the algorithm must
-# be broken into two parts; _1 destructively copies the stack in
-# reverse into _m4_set_($1), producing no output; then _2
-# destructively copies _m4_set_($1) back into the stack in reverse.
-# If no elements were deleted, then this visits the set in the order
-# that elements were inserted. Behavior is undefined if PRE/POST/SEP
-# tries to recursively list or modify SET in any way other than
-# calling m4_set_remove on the current element. Use _1 if all entries
-# in the stack are guaranteed to be in the set, and _1c to prune
-# removed entries. Uses _m4_defn and _m4_popdef for speed.
-m4_define([_m4_set_contents_1],
-[_m4_stack_reverse([_m4_set([$1])], [_m4_set_($1)])])
-
-m4_define([_m4_set_contents_1c],
-[m4_ifdef([_m4_set([$1])],
- [m4_set_contains([$1], _m4_defn([_m4_set([$1])]),
- [m4_pushdef([_m4_set_($1)], _m4_defn([_m4_set([$1])]))],
- [_m4_popdef([_m4_set([$1],]_m4_defn(
- [_m4_set([$1])])[)])])_m4_popdef([_m4_set([$1])])$0([$1])],
- [_m4_popdef([_m4_set_cleanup($1)])])])
-
-m4_define([_m4_set_contents_2],
-[_m4_stack_reverse([_m4_set_($1)], [_m4_set([$1])],
- [$2[]_m4_defn([_m4_set_($1)])$3], [$4[]])])
-
-# m4_set_delete(SET)
-# ------------------
-# Delete all elements in SET, and reclaim any memory occupied by the
-# set. This is O(n) in the set size.
-#
-# Use _m4_defn and _m4_popdef for speed.
-m4_define([m4_set_delete],
-[m4_ifdef([_m4_set([$1])],
- [_m4_popdef([_m4_set([$1],]_m4_defn([_m4_set([$1])])[)],
- [_m4_set([$1])])$0([$1])],
- [m4_ifdef([_m4_set_cleanup($1)],
- [_m4_popdef([_m4_set_cleanup($1)])])m4_ifdef(
- [_m4_set_size($1)],
- [_m4_popdef([_m4_set_size($1)])])])])
-
-# m4_set_difference(SET1, SET2)
-# -----------------------------
-# Produce a LIST of quoted elements that occur in SET1 but not SET2.
-# Output a comma prior to any elements, to distinguish the empty
-# string from no elements. This can be directly used as a series of
-# arguments, such as for m4_join, or wrapped inside quotes for use in
-# m4_foreach. Order of the output is not guaranteed.
-#
-# Short-circuit the idempotence relation.
-m4_define([m4_set_difference],
-[m4_if([$1], [$2], [], [m4_set_map_sep([$1], [_$0([$2],], [)])])])
-
-m4_define([_m4_set_difference],
-[m4_set_contains([$1], [$2], [], [,[$2]])])
-
-# m4_set_dump(SET, [SEP])
-# -----------------------
-# Expand to a single string containing all the elements in SET,
-# separated by SEP, then delete SET. In general, if you only need to
-# list the contents once, this is faster than m4_set_contents. No
-# provision is made for disambiguating set elements that contain
-# non-empty SEP as a sub-string. Order of the output is not
-# guaranteed. This is O(n) in the size of the set before pruning.
-#
-# Use _m4_popdef for speed. Use existence of _m4_set_cleanup($1) to
-# decide if more expensive recursion is needed.
-m4_define([m4_set_dump],
-[m4_ifdef([_m4_set_size($1)],
- [_m4_popdef([_m4_set_size($1)])])m4_ifdef([_m4_set_cleanup($1)],
- [_$0_check], [_$0])([$1], [], [$2])])
-
-# _m4_set_dump(SET, [SEP], [PREP])
-# _m4_set_dump_check(SET, [SEP], [PREP])
-# --------------------------------------
-# Print SEP and the current element, then delete the element and
-# recurse with empty SEP changed to PREP. The check variant checks
-# whether the element has been previously removed. Use _m4_defn and
-# _m4_popdef for speed.
-m4_define([_m4_set_dump],
-[m4_ifdef([_m4_set([$1])],
- [[$2]_m4_defn([_m4_set([$1])])_m4_popdef([_m4_set([$1],]_m4_defn(
- [_m4_set([$1])])[)], [_m4_set([$1])])$0([$1], [$2$3])])])
-
-m4_define([_m4_set_dump_check],
-[m4_ifdef([_m4_set([$1])],
- [m4_set_contains([$1], _m4_defn([_m4_set([$1])]),
- [[$2]_m4_defn([_m4_set([$1])])])_m4_popdef(
- [_m4_set([$1],]_m4_defn([_m4_set([$1])])[)],
- [_m4_set([$1])])$0([$1], [$2$3])],
- [_m4_popdef([_m4_set_cleanup($1)])])])
-
-# m4_set_empty(SET, [IF-EMPTY], [IF-ELEMENTS])
-# --------------------------------------------
-# Expand IF-EMPTY if SET has no elements, otherwise IF-ELEMENTS.
-m4_define([m4_set_empty],
-[m4_ifdef([_m4_set_size($1)],
- [m4_if(m4_indir([_m4_set_size($1)]), [0], [$2], [$3])], [$2])])
-
-# m4_set_foreach(SET, VAR, ACTION)
-# --------------------------------
-# For each element of SET, define VAR to the element and expand
-# ACTION. ACTION should not recursively list SET's contents, add
-# elements to SET, nor delete any element from SET except the one
-# currently in VAR. The order that the elements are visited in is not
-# guaranteed. This is faster than the corresponding m4_foreach([VAR],
-# m4_indir([m4_dquote]m4_set_listc([SET])), [ACTION])
-m4_define([m4_set_foreach],
-[m4_pushdef([$2])m4_set_map_sep([$1], [m4_define([$2],], [)$3])])
-
-# m4_set_intersection(SET1, SET2)
-# -------------------------------
-# Produce a LIST of quoted elements that occur in both SET1 or SET2.
-# Output a comma prior to any elements, to distinguish the empty
-# string from no elements. This can be directly used as a series of
-# arguments, such as for m4_join, or wrapped inside quotes for use in
-# m4_foreach. Order of the output is not guaranteed.
-#
-# Iterate over the smaller set, and short-circuit the idempotence
-# relation.
-m4_define([m4_set_intersection],
-[m4_if([$1], [$2], [m4_set_listc([$1])],
- m4_eval(m4_set_size([$2]) < m4_set_size([$1])), [1], [$0([$2], [$1])],
- [m4_set_map_sep([$1], [_$0([$2],], [)])])])
-
-m4_define([_m4_set_intersection],
-[m4_set_contains([$1], [$2], [,[$2]])])
-
-# m4_set_list(SET)
-# m4_set_listc(SET)
-# -----------------
-# Produce a LIST of quoted elements of SET. This can be directly used
-# as a series of arguments, such as for m4_join or m4_set_add_all, or
-# wrapped inside quotes for use in m4_foreach or m4_map. With
-# m4_set_list, there is no way to distinguish an empty set from a set
-# containing only the empty string; with m4_set_listc, a leading comma
-# is output if there are any elements.
-m4_define([m4_set_list],
-[m4_set_map_sep([$1], [], [], [,])])
-
-m4_define([m4_set_listc],
-[m4_set_map_sep([$1], [,])])
-
-# m4_set_map(SET, ACTION)
-# -----------------------
-# For each element of SET, expand ACTION with a single argument of the
-# current element. ACTION should not recursively list SET's contents,
-# add elements to SET, nor delete any element from SET except the one
-# passed as an argument. The order that the elements are visited in
-# is not guaranteed. This is faster than either of the corresponding
-# m4_map_args([ACTION]m4_set_listc([SET]))
-# m4_set_foreach([SET], [VAR], [ACTION(m4_defn([VAR]))])
-m4_define([m4_set_map],
-[m4_set_map_sep([$1], [$2(], [)])])
-
-# m4_set_map_sep(SET, [PRE], [POST], [SEP])
-# -----------------------------------------
-# For each element of SET, expand PRE[value]POST[], and expand SEP
-# between elements.
-m4_define([m4_set_map_sep],
-[m4_ifdef([_m4_set_cleanup($1)], [_m4_set_contents_1c],
- [_m4_set_contents_1])([$1])_m4_set_contents_2($@)])
-
-# m4_set_remove(SET, VALUE, [IF-PRESENT], [IF-ABSENT])
-# ----------------------------------------------------
-# If VALUE is an element of SET, delete it and expand IF-PRESENT.
-# Otherwise expand IF-ABSENT. Deleting a single value is O(1),
-# although it leaves memory occupied until the next O(n) traversal of
-# the set which will compact the set.
-#
-# Optimize if the element being removed is the most recently added,
-# since defining _m4_set_cleanup($1) slows down so many other macros.
-# In particular, this plays well with m4_set_foreach and m4_set_map.
-m4_define([m4_set_remove],
-[m4_set_contains([$1], [$2], [_m4_set_size([$1],
- [m4_decr])m4_if(_m4_defn([_m4_set([$1])]), [$2],
- [_m4_popdef([_m4_set([$1],$2)], [_m4_set([$1])])],
- [m4_define([_m4_set_cleanup($1)])m4_define(
- [_m4_set([$1],$2)], [0])])$3], [$4])])
-
-# m4_set_size(SET)
-# ----------------
-# Expand to the number of elements currently in SET. This operation
-# is O(1), and thus more efficient than m4_count(m4_set_list([SET])).
-m4_define([m4_set_size],
-[m4_ifdef([_m4_set_size($1)], [m4_indir([_m4_set_size($1)])], [0])])
-
-# _m4_set_size(SET, ACTION)
-# -------------------------
-# ACTION must be either m4_incr or m4_decr, and the size of SET is
-# changed accordingly. If the set is empty, ACTION must not be
-# m4_decr.
-m4_define([_m4_set_size],
-[m4_define([_m4_set_size($1)],
- m4_ifdef([_m4_set_size($1)], [$2(m4_indir([_m4_set_size($1)]))],
- [1]))])
-
-# m4_set_union(SET1, SET2)
-# ------------------------
-# Produce a LIST of double quoted elements that occur in either SET1
-# or SET2, without duplicates. Output a comma prior to any elements,
-# to distinguish the empty string from no elements. This can be
-# directly used as a series of arguments, such as for m4_join, or
-# wrapped inside quotes for use in m4_foreach. Order of the output is
-# not guaranteed.
-#
-# We can rely on the fact that m4_set_listc prunes SET1, so we don't
-# need to check _m4_set([$1],element) for 0. Short-circuit the
-# idempotence relation.
-m4_define([m4_set_union],
-[m4_set_listc([$1])m4_if([$1], [$2], [],
- [m4_set_map_sep([$2], [_$0([$1],], [)])])])
-
-m4_define([_m4_set_union],
-[m4_ifdef([_m4_set([$1],$2)], [], [,[$2]])])
-
-
-## ------------------- ##
-## 16. File handling. ##
-## ------------------- ##
-
-
-# It is a real pity that M4 comes with no macros to bind a diversion
-# to a file. So we have to deal without, which makes us a lot more
-# fragile than we should.
-
-
-# m4_file_append(FILE-NAME, CONTENT)
-# ----------------------------------
-m4_define([m4_file_append],
-[m4_syscmd([cat >>$1 <<_m4eof
-$2
-_m4eof
-])
-m4_if(m4_sysval, [0], [],
- [m4_fatal([$0: cannot write: $1])])])
-
-
-
-## ------------------------ ##
-## 17. Setting M4sugar up. ##
-## ------------------------ ##
-
-# _m4_divert_diversion should be defined.
-m4_divert_push([KILL])
-
-# m4_init
-# -------
-# Initialize the m4sugar language.
-m4_define([m4_init],
-[# All the M4sugar macros start with `m4_', except `dnl' kept as is
-# for sake of simplicity.
-m4_pattern_forbid([^_?m4_])
-m4_pattern_forbid([^dnl$])
-
-# If __m4_version__ is defined, we assume that we are being run by M4
-# 1.6 or newer, thus $@ recursion is linear, and debugmode(+do)
-# is available for faster checks of dereferencing undefined macros
-# and forcing dumpdef to print to stderr regardless of debugfile.
-# But if it is missing, we assume we are being run by M4 1.4.x, that
-# $@ recursion is quadratic, and that we need foreach-based
-# replacement macros. Also, m4 prior to 1.4.8 loses track of location
-# during m4wrap text; __line__ should never be 0.
-#
-# Use the raw builtin to avoid tripping up include tracing.
-# Meanwhile, avoid m4_copy, since it temporarily undefines m4_defn.
-m4_ifdef([__m4_version__],
-[m4_debugmode([+do])
-m4_define([m4_defn], _m4_defn([_m4_defn]))
-m4_define([m4_dumpdef], _m4_defn([_m4_dumpdef]))
-m4_define([m4_popdef], _m4_defn([_m4_popdef]))
-m4_define([m4_undefine], _m4_defn([_m4_undefine]))],
-[m4_builtin([include], [m4sugar/foreach.m4])
-m4_wrap_lifo([m4_if(__line__, [0], [m4_pushdef([m4_location],
-]]m4_dquote(m4_dquote(m4_dquote(__file__:__line__)))[[)])])])
-
-# Rewrite the first entry of the diversion stack.
-m4_divert([KILL])
-
-# Check the divert push/pop perfect balance.
-# Some users are prone to also use m4_wrap to register last-minute
-# m4_divert_text; so after our diversion cleanups, we restore
-# KILL as the bottom of the diversion stack.
-m4_wrap([m4_popdef([_m4_divert_diversion])m4_ifdef(
- [_m4_divert_diversion], [m4_fatal([$0: unbalanced m4_divert_push:
-]m4_divert_stack)])_m4_popdef([_m4_divert_stack])m4_divert_push([KILL])])
-])