summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/Intermediate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/angle/src/compiler/Intermediate.cpp')
-rw-r--r--src/3rdparty/angle/src/compiler/Intermediate.cpp1447
1 files changed, 1447 insertions, 0 deletions
diff --git a/src/3rdparty/angle/src/compiler/Intermediate.cpp b/src/3rdparty/angle/src/compiler/Intermediate.cpp
new file mode 100644
index 0000000000..92c450530e
--- /dev/null
+++ b/src/3rdparty/angle/src/compiler/Intermediate.cpp
@@ -0,0 +1,1447 @@
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+//
+// Build the intermediate representation.
+//
+
+#include <float.h>
+#include <limits.h>
+#include <algorithm>
+
+#include "compiler/localintermediate.h"
+#include "compiler/QualifierAlive.h"
+#include "compiler/RemoveTree.h"
+
+bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
+
+static TPrecision GetHigherPrecision( TPrecision left, TPrecision right ){
+ return left > right ? left : right;
+}
+
+const char* getOperatorString(TOperator op) {
+ switch (op) {
+ case EOpInitialize: return "=";
+ case EOpAssign: return "=";
+ case EOpAddAssign: return "+=";
+ case EOpSubAssign: return "-=";
+ case EOpDivAssign: return "/=";
+
+ // Fall-through.
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign: return "*=";
+
+ // Fall-through.
+ case EOpIndexDirect:
+ case EOpIndexIndirect: return "[]";
+
+ case EOpIndexDirectStruct: return ".";
+ case EOpVectorSwizzle: return ".";
+ case EOpAdd: return "+";
+ case EOpSub: return "-";
+ case EOpMul: return "*";
+ case EOpDiv: return "/";
+ case EOpMod: UNIMPLEMENTED(); break;
+ case EOpEqual: return "==";
+ case EOpNotEqual: return "!=";
+ case EOpLessThan: return "<";
+ case EOpGreaterThan: return ">";
+ case EOpLessThanEqual: return "<=";
+ case EOpGreaterThanEqual: return ">=";
+
+ // Fall-through.
+ case EOpVectorTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+ case EOpMatrixTimesMatrix: return "*";
+
+ case EOpLogicalOr: return "||";
+ case EOpLogicalXor: return "^^";
+ case EOpLogicalAnd: return "&&";
+ case EOpNegative: return "-";
+ case EOpVectorLogicalNot: return "not";
+ case EOpLogicalNot: return "!";
+ case EOpPostIncrement: return "++";
+ case EOpPostDecrement: return "--";
+ case EOpPreIncrement: return "++";
+ case EOpPreDecrement: return "--";
+
+ // Fall-through.
+ case EOpConvIntToBool:
+ case EOpConvFloatToBool: return "bool";
+
+ // Fall-through.
+ case EOpConvBoolToFloat:
+ case EOpConvIntToFloat: return "float";
+
+ // Fall-through.
+ case EOpConvFloatToInt:
+ case EOpConvBoolToInt: return "int";
+
+ case EOpRadians: return "radians";
+ case EOpDegrees: return "degrees";
+ case EOpSin: return "sin";
+ case EOpCos: return "cos";
+ case EOpTan: return "tan";
+ case EOpAsin: return "asin";
+ case EOpAcos: return "acos";
+ case EOpAtan: return "atan";
+ case EOpExp: return "exp";
+ case EOpLog: return "log";
+ case EOpExp2: return "exp2";
+ case EOpLog2: return "log2";
+ case EOpSqrt: return "sqrt";
+ case EOpInverseSqrt: return "inversesqrt";
+ case EOpAbs: return "abs";
+ case EOpSign: return "sign";
+ case EOpFloor: return "floor";
+ case EOpCeil: return "ceil";
+ case EOpFract: return "fract";
+ case EOpLength: return "length";
+ case EOpNormalize: return "normalize";
+ case EOpDFdx: return "dFdx";
+ case EOpDFdy: return "dFdy";
+ case EOpFwidth: return "fwidth";
+ case EOpAny: return "any";
+ case EOpAll: return "all";
+
+ default: break;
+ }
+ return "";
+}
+
+////////////////////////////////////////////////////////////////////////////
+//
+// First set of functions are to help build the intermediate representation.
+// These functions are not member functions of the nodes.
+// They are called from parser productions.
+//
+/////////////////////////////////////////////////////////////////////////////
+
+//
+// Add a terminal node for an identifier in an expression.
+//
+// Returns the added node.
+//
+TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
+{
+ TIntermSymbol* node = new TIntermSymbol(id, name, type);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Connect two nodes with a new parent that does a binary operation on the nodes.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line, TSymbolTable& symbolTable)
+{
+ switch (op) {
+ case EOpEqual:
+ case EOpNotEqual:
+ if (left->isArray())
+ return 0;
+ break;
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
+ return 0;
+ }
+ break;
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ case EOpLogicalAnd:
+ if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
+ return 0;
+ }
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMul:
+ if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
+ return 0;
+ default: break;
+ }
+
+ //
+ // First try converting the children to compatible types.
+ //
+ if (left->getType().getStruct() && right->getType().getStruct()) {
+ if (left->getType() != right->getType())
+ return 0;
+ } else {
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child)
+ right = child;
+ else {
+ child = addConversion(op, right->getType(), left);
+ if (child)
+ left = child;
+ else
+ return 0;
+ }
+ }
+
+ //
+ // Need a new node holding things together then. Make
+ // one and promote it to the right type.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ if (line == 0)
+ line = right->getLine();
+ node->setLine(line);
+
+ node->setLeft(left);
+ node->setRight(right);
+ if (!node->promote(infoSink))
+ return 0;
+
+ //
+ // See if we can fold constants.
+ //
+ TIntermTyped* typedReturnNode = 0;
+ TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
+ TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
+ if (leftTempConstant && rightTempConstant) {
+ typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
+
+ if (typedReturnNode)
+ return typedReturnNode;
+ }
+
+ return node;
+}
+
+//
+// Connect two nodes through an assignment.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
+{
+ //
+ // Like adding binary math, except the conversion can only go
+ // from right to left.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ if (line == 0)
+ line = left->getLine();
+ node->setLine(line);
+
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child == 0)
+ return 0;
+
+ node->setLeft(left);
+ node->setRight(child);
+ if (! node->promote(infoSink))
+ return 0;
+
+ return node;
+}
+
+//
+// Connect two nodes through an index operator, where the left node is the base
+// of an array or struct, and the right node is a direct or indirect offset.
+//
+// Returns the added node.
+// The caller should set the type of the returned node.
+//
+TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc line)
+{
+ TIntermBinary* node = new TIntermBinary(op);
+ if (line == 0)
+ line = index->getLine();
+ node->setLine(line);
+ node->setLeft(base);
+ node->setRight(index);
+
+ // caller should set the type
+
+ return node;
+}
+
+//
+// Add one node as the parent of another that it operates on.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
+{
+ TIntermUnary* node;
+ TIntermTyped* child = childNode->getAsTyped();
+
+ if (child == 0) {
+ infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
+ return 0;
+ }
+
+ switch (op) {
+ case EOpLogicalNot:
+ if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
+ return 0;
+ }
+ break;
+
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ case EOpNegative:
+ if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
+ return 0;
+ default: break;
+ }
+
+ //
+ // Do we need to promote the operand?
+ //
+ // Note: Implicit promotions were removed from the language.
+ //
+ TBasicType newType = EbtVoid;
+ switch (op) {
+ case EOpConstructInt: newType = EbtInt; break;
+ case EOpConstructBool: newType = EbtBool; break;
+ case EOpConstructFloat: newType = EbtFloat; break;
+ default: break;
+ }
+
+ if (newType != EbtVoid) {
+ child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
+ child->getNominalSize(),
+ child->isMatrix(),
+ child->isArray()),
+ child);
+ if (child == 0)
+ return 0;
+ }
+
+ //
+ // For constructors, we are now done, it's all in the conversion.
+ //
+ switch (op) {
+ case EOpConstructInt:
+ case EOpConstructBool:
+ case EOpConstructFloat:
+ return child;
+ default: break;
+ }
+
+ TIntermConstantUnion *childTempConstant = 0;
+ if (child->getAsConstantUnion())
+ childTempConstant = child->getAsConstantUnion();
+
+ //
+ // Make a new node for the operator.
+ //
+ node = new TIntermUnary(op);
+ if (line == 0)
+ line = child->getLine();
+ node->setLine(line);
+ node->setOperand(child);
+
+ if (! node->promote(infoSink))
+ return 0;
+
+ if (childTempConstant) {
+ TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
+
+ if (newChild)
+ return newChild;
+ }
+
+ return node;
+}
+
+//
+// This is the safe way to change the operator on an aggregate, as it
+// does lots of error checking and fixing. Especially for establishing
+// a function call's operation on it's set of parameters. Sequences
+// of instructions are also aggregates, but they just direnctly set
+// their operator to EOpSequence.
+//
+// Returns an aggregate node, which could be the one passed in if
+// it was already an aggregate but no operator was set.
+//
+TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
+{
+ TIntermAggregate* aggNode;
+
+ //
+ // Make sure we have an aggregate. If not turn it into one.
+ //
+ if (node) {
+ aggNode = node->getAsAggregate();
+ if (aggNode == 0 || aggNode->getOp() != EOpNull) {
+ //
+ // Make an aggregate containing this node.
+ //
+ aggNode = new TIntermAggregate();
+ aggNode->getSequence().push_back(node);
+ if (line == 0)
+ line = node->getLine();
+ }
+ } else
+ aggNode = new TIntermAggregate();
+
+ //
+ // Set the operator.
+ //
+ aggNode->setOp(op);
+ if (line != 0)
+ aggNode->setLine(line);
+
+ return aggNode;
+}
+
+//
+// Convert one type to another.
+//
+// Returns the node representing the conversion, which could be the same
+// node passed in if no conversion was needed.
+//
+// Return 0 if a conversion can't be done.
+//
+TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
+{
+ //
+ // Does the base type allow operation?
+ //
+ switch (node->getBasicType()) {
+ case EbtVoid:
+ case EbtSampler2D:
+ case EbtSamplerCube:
+ return 0;
+ default: break;
+ }
+
+ //
+ // Otherwise, if types are identical, no problem
+ //
+ if (type == node->getType())
+ return node;
+
+ //
+ // If one's a structure, then no conversions.
+ //
+ if (type.getStruct() || node->getType().getStruct())
+ return 0;
+
+ //
+ // If one's an array, then no conversions.
+ //
+ if (type.isArray() || node->getType().isArray())
+ return 0;
+
+ TBasicType promoteTo;
+
+ switch (op) {
+ //
+ // Explicit conversions
+ //
+ case EOpConstructBool:
+ promoteTo = EbtBool;
+ break;
+ case EOpConstructFloat:
+ promoteTo = EbtFloat;
+ break;
+ case EOpConstructInt:
+ promoteTo = EbtInt;
+ break;
+ default:
+ //
+ // implicit conversions were removed from the language.
+ //
+ if (type.getBasicType() != node->getType().getBasicType())
+ return 0;
+ //
+ // Size and structure could still differ, but that's
+ // handled by operator promotion.
+ //
+ return node;
+ }
+
+ if (node->getAsConstantUnion()) {
+
+ return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
+ } else {
+
+ //
+ // Add a new newNode for the conversion.
+ //
+ TIntermUnary* newNode = 0;
+
+ TOperator newOp = EOpNull;
+ switch (promoteTo) {
+ case EbtFloat:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToFloat; break;
+ case EbtBool: newOp = EOpConvBoolToFloat; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+ return 0;
+ }
+ break;
+ case EbtBool:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToBool; break;
+ case EbtFloat: newOp = EOpConvFloatToBool; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+ return 0;
+ }
+ break;
+ case EbtInt:
+ switch (node->getBasicType()) {
+ case EbtBool: newOp = EOpConvBoolToInt; break;
+ case EbtFloat: newOp = EOpConvFloatToInt; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+ return 0;
+ }
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Bad promotion type", node->getLine());
+ return 0;
+ }
+
+ TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
+ newNode = new TIntermUnary(newOp, type);
+ newNode->setLine(node->getLine());
+ newNode->setOperand(node);
+
+ return newNode;
+ }
+}
+
+//
+// Safe way to combine two nodes into an aggregate. Works with null pointers,
+// a node that's not a aggregate yet, etc.
+//
+// Returns the resulting aggregate, unless 0 was passed in for
+// both existing nodes.
+//
+TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line)
+{
+ if (left == 0 && right == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = 0;
+ if (left)
+ aggNode = left->getAsAggregate();
+ if (!aggNode || aggNode->getOp() != EOpNull) {
+ aggNode = new TIntermAggregate;
+ if (left)
+ aggNode->getSequence().push_back(left);
+ }
+
+ if (right)
+ aggNode->getSequence().push_back(right);
+
+ if (line != 0)
+ aggNode->setLine(line);
+
+ return aggNode;
+}
+
+//
+// Turn an existing node into an aggregate.
+//
+// Returns an aggregate, unless 0 was passed in for the existing node.
+//
+TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, TSourceLoc line)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = new TIntermAggregate;
+ aggNode->getSequence().push_back(node);
+
+ if (line != 0)
+ aggNode->setLine(line);
+ else
+ aggNode->setLine(node->getLine());
+
+ return aggNode;
+}
+
+//
+// For "if" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are in the
+// nodePair.
+//
+// Returns the selection node created.
+//
+TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, TSourceLoc line)
+{
+ //
+ // For compile time constant selections, prune the code and
+ // test now.
+ //
+
+ if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
+ if (cond->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getBConst() == true)
+ return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
+ else
+ return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
+ }
+
+ TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
+ node->setLine(line);
+
+ return node;
+}
+
+
+TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
+{
+ if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
+ return right;
+ } else {
+ TIntermTyped *commaAggregate = growAggregate(left, right, line);
+ commaAggregate->getAsAggregate()->setOp(EOpComma);
+ commaAggregate->setType(right->getType());
+ commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
+ return commaAggregate;
+ }
+}
+
+//
+// For "?:" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are specified
+// as separate parameters.
+//
+// Returns the selection node created, or 0 if one could not be.
+//
+TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc line)
+{
+ //
+ // Get compatible types.
+ //
+ TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
+ if (child)
+ falseBlock = child;
+ else {
+ child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
+ if (child)
+ trueBlock = child;
+ else
+ return 0;
+ }
+
+ //
+ // See if all the operands are constant, then fold it otherwise not.
+ //
+
+ if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
+ if (cond->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
+ return trueBlock;
+ else
+ return falseBlock;
+ }
+
+ //
+ // Make a selection node.
+ //
+ TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
+ node->getTypePointer()->setQualifier(EvqTemporary);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Constant terminal nodes. Has a union that contains bool, float or int constants
+//
+// Returns the constant union node created.
+//
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, TSourceLoc line)
+{
+ TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
+ node->setLine(line);
+
+ return node;
+}
+
+TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
+{
+
+ TIntermAggregate* node = new TIntermAggregate(EOpSequence);
+
+ node->setLine(line);
+ TIntermConstantUnion* constIntNode;
+ TIntermSequence &sequenceVector = node->getSequence();
+ ConstantUnion* unionArray;
+
+ for (int i = 0; i < fields.num; i++) {
+ unionArray = new ConstantUnion[1];
+ unionArray->setIConst(fields.offsets[i]);
+ constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
+ sequenceVector.push_back(constIntNode);
+ }
+
+ return node;
+}
+
+//
+// Create loop nodes.
+//
+TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, TSourceLoc line)
+{
+ TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Add branches.
+//
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TSourceLoc line)
+{
+ return addBranch(branchOp, 0, line);
+}
+
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, TSourceLoc line)
+{
+ TIntermBranch* node = new TIntermBranch(branchOp, expression);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// This is to be executed once the final root is put on top by the parsing
+// process.
+//
+bool TIntermediate::postProcess(TIntermNode* root)
+{
+ if (root == 0)
+ return true;
+
+ //
+ // First, finish off the top level sequence, if any
+ //
+ TIntermAggregate* aggRoot = root->getAsAggregate();
+ if (aggRoot && aggRoot->getOp() == EOpNull)
+ aggRoot->setOp(EOpSequence);
+
+ return true;
+}
+
+//
+// This deletes the tree.
+//
+void TIntermediate::remove(TIntermNode* root)
+{
+ if (root)
+ RemoveAllTreeNodes(root);
+}
+
+////////////////////////////////////////////////////////////////
+//
+// Member functions of the nodes used for building the tree.
+//
+////////////////////////////////////////////////////////////////
+
+//
+// Say whether or not an operation node changes the value of a variable.
+//
+// Returns true if state is modified.
+//
+bool TIntermOperator::modifiesState() const
+{
+ switch (op) {
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ case EOpAssign:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ case EOpDivAssign:
+ return true;
+ default:
+ return false;
+ }
+}
+
+//
+// returns true if the operator is for one of the constructors
+//
+bool TIntermOperator::isConstructor() const
+{
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ case EOpConstructFloat:
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ case EOpConstructStruct:
+ return true;
+ default:
+ return false;
+ }
+}
+//
+// Make sure the type of a unary operator is appropriate for its
+// combination of operation and operand type.
+//
+// Returns false in nothing makes sense.
+//
+bool TIntermUnary::promote(TInfoSink&)
+{
+ switch (op) {
+ case EOpLogicalNot:
+ if (operand->getBasicType() != EbtBool)
+ return false;
+ break;
+ case EOpNegative:
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ if (operand->getBasicType() == EbtBool)
+ return false;
+ break;
+
+ // operators for built-ins are already type checked against their prototype
+ case EOpAny:
+ case EOpAll:
+ case EOpVectorLogicalNot:
+ return true;
+
+ default:
+ if (operand->getBasicType() != EbtFloat)
+ return false;
+ }
+
+ setType(operand->getType());
+
+ return true;
+}
+
+//
+// Establishes the type of the resultant operation, as well as
+// makes the operator the correct one for the operands.
+//
+// Returns false if operator can't work on operands.
+//
+bool TIntermBinary::promote(TInfoSink& infoSink)
+{
+ // This function only handles scalars, vectors, and matrices.
+ if (left->isArray() || right->isArray()) {
+ infoSink.info.message(EPrefixInternalError, "Invalid operation for arrays", getLine());
+ return false;
+ }
+
+ // GLSL ES 2.0 does not support implicit type casting.
+ // So the basic type should always match.
+ if (left->getBasicType() != right->getBasicType())
+ return false;
+
+ //
+ // Base assumption: just make the type the same as the left
+ // operand. Then only deviations from this need be coded.
+ //
+ setType(left->getType());
+
+ // The result gets promoted to the highest precision.
+ TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
+ getTypePointer()->setPrecision(higherPrecision);
+
+ // Binary operations results in temporary variables unless both
+ // operands are const.
+ if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst) {
+ getTypePointer()->setQualifier(EvqTemporary);
+ }
+
+ int size = std::max(left->getNominalSize(), right->getNominalSize());
+
+ //
+ // All scalars. Code after this test assumes this case is removed!
+ //
+ if (size == 1) {
+ switch (op) {
+ //
+ // Promote to conditional
+ //
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ //
+ // And and Or operate on conditionals
+ //
+ case EOpLogicalAnd:
+ case EOpLogicalOr:
+ // Both operands must be of type bool.
+ if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
+ return false;
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ default:
+ break;
+ }
+ return true;
+ }
+
+ // If we reach here, at least one of the operands is vector or matrix.
+ // The other operand could be a scalar, vector, or matrix.
+ // Are the sizes compatible?
+ //
+ if (left->getNominalSize() != right->getNominalSize()) {
+ // If the nominal size of operands do not match:
+ // One of them must be scalar.
+ if (left->getNominalSize() != 1 && right->getNominalSize() != 1)
+ return false;
+ // Operator cannot be of type pure assignment.
+ if (op == EOpAssign || op == EOpInitialize)
+ return false;
+ }
+
+ //
+ // Can these two operands be combined?
+ //
+ TBasicType basicType = left->getBasicType();
+ switch (op) {
+ case EOpMul:
+ if (!left->isMatrix() && right->isMatrix()) {
+ if (left->isVector())
+ op = EOpVectorTimesMatrix;
+ else {
+ op = EOpMatrixTimesScalar;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, true));
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ op = EOpMatrixTimesVector;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ } else {
+ op = EOpMatrixTimesScalar;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ op = EOpMatrixTimesMatrix;
+ } else if (!left->isMatrix() && !right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ op = EOpVectorTimesScalar;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ }
+ } else {
+ infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
+ return false;
+ }
+ break;
+ case EOpMulAssign:
+ if (!left->isMatrix() && right->isMatrix()) {
+ if (left->isVector())
+ op = EOpVectorTimesMatrixAssign;
+ else {
+ return false;
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ return false;
+ } else {
+ op = EOpMatrixTimesScalarAssign;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ op = EOpMatrixTimesMatrixAssign;
+ } else if (!left->isMatrix() && !right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ if (! left->isVector())
+ return false;
+ op = EOpVectorTimesScalarAssign;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ }
+ } else {
+ infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
+ return false;
+ }
+ break;
+
+ case EOpAssign:
+ case EOpInitialize:
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ if ((left->isMatrix() && right->isVector()) ||
+ (left->isVector() && right->isMatrix()))
+ return false;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
+ break;
+
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if ((left->isMatrix() && right->isVector()) ||
+ (left->isVector() && right->isMatrix()))
+ return false;
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
+{
+ const TTypeList* fields = leftNodeType.getStruct();
+
+ size_t structSize = fields->size();
+ int index = 0;
+
+ for (size_t j = 0; j < structSize; j++) {
+ int size = (*fields)[j].type->getObjectSize();
+ for (int i = 0; i < size; i++) {
+ if ((*fields)[j].type->getBasicType() == EbtStruct) {
+ if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
+ return false;
+ } else {
+ if (leftUnionArray[index] != rightUnionArray[index])
+ return false;
+ index++;
+ }
+
+ }
+ }
+ return true;
+}
+
+bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
+{
+ if (leftNodeType.isArray()) {
+ TType typeWithoutArrayness = leftNodeType;
+ typeWithoutArrayness.clearArrayness();
+
+ int arraySize = leftNodeType.getArraySize();
+
+ for (int i = 0; i < arraySize; ++i) {
+ int offset = typeWithoutArrayness.getObjectSize() * i;
+ if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
+ return false;
+ }
+ } else
+ return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
+
+ return true;
+}
+
+//
+// The fold functions see if an operation on a constant can be done in place,
+// without generating run-time code.
+//
+// Returns the node to keep using, which may or may not be the node passed in.
+//
+
+TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
+{
+ ConstantUnion *unionArray = getUnionArrayPointer();
+ int objectSize = getType().getObjectSize();
+
+ if (constantNode) { // binary operations
+ TIntermConstantUnion *node = constantNode->getAsConstantUnion();
+ ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
+ TType returnType = getType();
+
+ // for a case like float f = 1.2 + vec4(2,3,4,5);
+ if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
+ rightUnionArray = new ConstantUnion[objectSize];
+ for (int i = 0; i < objectSize; ++i)
+ rightUnionArray[i] = *node->getUnionArrayPointer();
+ returnType = getType();
+ } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
+ // for a case like float f = vec4(2,3,4,5) + 1.2;
+ unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
+ for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
+ unionArray[i] = *getUnionArrayPointer();
+ returnType = node->getType();
+ objectSize = constantNode->getType().getObjectSize();
+ }
+
+ ConstantUnion* tempConstArray = 0;
+ TIntermConstantUnion *tempNode;
+
+ bool boolNodeFlag = false;
+ switch(op) {
+ case EOpAdd:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] + rightUnionArray[i];
+ }
+ break;
+ case EOpSub:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] - rightUnionArray[i];
+ }
+ break;
+
+ case EOpMul:
+ case EOpVectorTimesScalar:
+ case EOpMatrixTimesScalar:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] * rightUnionArray[i];
+ }
+ break;
+ case EOpMatrixTimesMatrix:
+ if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
+ return 0;
+ }
+ {// support MSVC++6.0
+ int size = getNominalSize();
+ tempConstArray = new ConstantUnion[size*size];
+ for (int row = 0; row < size; row++) {
+ for (int column = 0; column < size; column++) {
+ tempConstArray[size * column + row].setFConst(0.0f);
+ for (int i = 0; i < size; i++) {
+ tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
+ }
+ }
+ }
+ }
+ break;
+ case EOpDiv:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++) {
+ switch (getType().getBasicType()) {
+ case EbtFloat:
+ if (rightUnionArray[i] == 0.0f) {
+ infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
+ tempConstArray[i].setFConst(FLT_MAX);
+ } else
+ tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
+ break;
+
+ case EbtInt:
+ if (rightUnionArray[i] == 0) {
+ infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
+ tempConstArray[i].setIConst(INT_MAX);
+ } else
+ tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
+ return 0;
+ }
+ }
+ }
+ break;
+
+ case EOpMatrixTimesVector:
+ if (node->getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
+ return 0;
+ }
+ tempConstArray = new ConstantUnion[getNominalSize()];
+
+ {// support MSVC++6.0
+ for (int size = getNominalSize(), i = 0; i < size; i++) {
+ tempConstArray[i].setFConst(0.0f);
+ for (int j = 0; j < size; j++) {
+ tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
+ }
+ }
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ case EOpVectorTimesMatrix:
+ if (getType().getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
+ return 0;
+ }
+
+ tempConstArray = new ConstantUnion[getNominalSize()];
+ {// support MSVC++6.0
+ for (int size = getNominalSize(), i = 0; i < size; i++) {
+ tempConstArray[i].setFConst(0.0f);
+ for (int j = 0; j < size; j++) {
+ tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
+ }
+ }
+ }
+ break;
+
+ case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] && rightUnionArray[i];
+ }
+ break;
+
+ case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] || rightUnionArray[i];
+ }
+ break;
+
+ case EOpLogicalXor:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (int i = 0; i < objectSize; i++)
+ switch (getType().getBasicType()) {
+ case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
+ default: assert(false && "Default missing");
+ }
+ }
+ break;
+
+ case EOpLessThan:
+ assert(objectSize == 1);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(*unionArray < *rightUnionArray);
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ case EOpGreaterThan:
+ assert(objectSize == 1);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(*unionArray > *rightUnionArray);
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ case EOpLessThanEqual:
+ {
+ assert(objectSize == 1);
+ ConstantUnion constant;
+ constant.setBConst(*unionArray > *rightUnionArray);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(!constant.getBConst());
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ }
+ case EOpGreaterThanEqual:
+ {
+ assert(objectSize == 1);
+ ConstantUnion constant;
+ constant.setBConst(*unionArray < *rightUnionArray);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(!constant.getBConst());
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ }
+
+ case EOpEqual:
+ if (getType().getBasicType() == EbtStruct) {
+ if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+ boolNodeFlag = true;
+ } else {
+ for (int i = 0; i < objectSize; i++) {
+ if (unionArray[i] != rightUnionArray[i]) {
+ boolNodeFlag = true;
+ break; // break out of for loop
+ }
+ }
+ }
+
+ tempConstArray = new ConstantUnion[1];
+ if (!boolNodeFlag) {
+ tempConstArray->setBConst(true);
+ }
+ else {
+ tempConstArray->setBConst(false);
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ case EOpNotEqual:
+ if (getType().getBasicType() == EbtStruct) {
+ if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+ boolNodeFlag = true;
+ } else {
+ for (int i = 0; i < objectSize; i++) {
+ if (unionArray[i] == rightUnionArray[i]) {
+ boolNodeFlag = true;
+ break; // break out of for loop
+ }
+ }
+ }
+
+ tempConstArray = new ConstantUnion[1];
+ if (!boolNodeFlag) {
+ tempConstArray->setBConst(true);
+ }
+ else {
+ tempConstArray->setBConst(false);
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ default:
+ infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
+ return 0;
+ }
+ tempNode = new TIntermConstantUnion(tempConstArray, returnType);
+ tempNode->setLine(getLine());
+
+ return tempNode;
+ } else {
+ //
+ // Do unary operations
+ //
+ TIntermConstantUnion *newNode = 0;
+ ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
+ for (int i = 0; i < objectSize; i++) {
+ switch(op) {
+ case EOpNegative:
+ switch (getType().getBasicType()) {
+ case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
+ case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
+ return 0;
+ }
+ break;
+ case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
+ switch (getType().getBasicType()) {
+ case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
+ return 0;
+ }
+ break;
+ default:
+ return 0;
+ }
+ }
+ newNode = new TIntermConstantUnion(tempConstArray, getType());
+ newNode->setLine(getLine());
+ return newNode;
+ }
+}
+
+TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
+{
+ ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
+ int size = node->getType().getObjectSize();
+
+ ConstantUnion *leftUnionArray = new ConstantUnion[size];
+
+ for (int i=0; i < size; i++) {
+
+ switch (promoteTo) {
+ case EbtFloat:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+ return 0;
+ }
+ break;
+ case EbtInt:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtBool:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getFConst()));
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+ return 0;
+ }
+ break;
+ case EbtBool:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
+ break;
+ case EbtBool:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtFloat:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getFConst() != 0.0f);
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+ return 0;
+ }
+
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
+ return 0;
+ }
+
+ }
+
+ const TType& t = node->getType();
+
+ return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
+}
+