summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/IntermNode.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/angle/src/compiler/translator/IntermNode.cpp')
-rw-r--r--src/3rdparty/angle/src/compiler/translator/IntermNode.cpp3818
1 files changed, 2242 insertions, 1576 deletions
diff --git a/src/3rdparty/angle/src/compiler/translator/IntermNode.cpp b/src/3rdparty/angle/src/compiler/translator/IntermNode.cpp
index 2a92860088..a57ffcb4bc 100644
--- a/src/3rdparty/angle/src/compiler/translator/IntermNode.cpp
+++ b/src/3rdparty/angle/src/compiler/translator/IntermNode.cpp
@@ -17,14 +17,18 @@
#include "common/mathutil.h"
#include "common/matrix_utils.h"
-#include "compiler/translator/HashNames.h"
+#include "compiler/translator/Diagnostics.h"
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/SymbolTable.h"
+#include "compiler/translator/util.h"
+
+namespace sh
+{
namespace
{
-const float kPi = 3.14159265358979323846f;
+const float kPi = 3.14159265358979323846f;
const float kDegreesToRadiansMultiplier = kPi / 180.0f;
const float kRadiansToDegreesMultiplier = 180.0f / kPi;
@@ -33,72 +37,40 @@ TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
return left > right ? left : right;
}
-bool ValidateMultiplication(TOperator op, const TType &left, const TType &right)
-{
- switch (op)
- {
- case EOpMul:
- case EOpMulAssign:
- return left.getNominalSize() == right.getNominalSize() &&
- left.getSecondarySize() == right.getSecondarySize();
- case EOpVectorTimesScalar:
- case EOpVectorTimesScalarAssign:
- return true;
- case EOpVectorTimesMatrix:
- return left.getNominalSize() == right.getRows();
- case EOpVectorTimesMatrixAssign:
- return left.getNominalSize() == right.getRows() &&
- left.getNominalSize() == right.getCols();
- case EOpMatrixTimesVector:
- return left.getCols() == right.getNominalSize();
- case EOpMatrixTimesScalar:
- case EOpMatrixTimesScalarAssign:
- return true;
- case EOpMatrixTimesMatrix:
- return left.getCols() == right.getRows();
- case EOpMatrixTimesMatrixAssign:
- return left.getCols() == right.getCols() &&
- left.getRows() == right.getRows();
-
- default:
- UNREACHABLE();
- return false;
- }
-}
-
TConstantUnion *Vectorize(const TConstantUnion &constant, size_t size)
{
TConstantUnion *constUnion = new TConstantUnion[size];
for (unsigned int i = 0; i < size; ++i)
- constUnion[i] = constant;
+ constUnion[i] = constant;
return constUnion;
}
-void UndefinedConstantFoldingError(const TSourceLoc &loc, TOperator op, TBasicType basicType,
- TInfoSink &infoSink, TConstantUnion *result)
+void UndefinedConstantFoldingError(const TSourceLoc &loc,
+ TOperator op,
+ TBasicType basicType,
+ TDiagnostics *diagnostics,
+ TConstantUnion *result)
{
- std::stringstream constantFoldingErrorStream;
- constantFoldingErrorStream << "'" << GetOperatorString(op)
- << "' operation result is undefined for the values passed in";
- infoSink.info.message(EPrefixWarning, loc, constantFoldingErrorStream.str().c_str());
+ diagnostics->warning(loc, "operation result is undefined for the values passed in",
+ GetOperatorString(op));
switch (basicType)
{
- case EbtFloat :
- result->setFConst(0.0f);
- break;
- case EbtInt:
- result->setIConst(0);
- break;
- case EbtUInt:
- result->setUConst(0u);
- break;
- case EbtBool:
- result->setBConst(false);
- break;
- default:
- break;
+ case EbtFloat:
+ result->setFConst(0.0f);
+ break;
+ case EbtInt:
+ result->setIConst(0);
+ break;
+ case EbtUInt:
+ result->setUConst(0u);
+ break;
+ case EbtBool:
+ result->setBConst(false);
+ break;
+ default:
+ break;
}
}
@@ -123,7 +95,7 @@ float VectorDotProduct(const TConstantUnion *paramArray1,
return result;
}
-TIntermTyped *CreateFoldedNode(TConstantUnion *constArray,
+TIntermTyped *CreateFoldedNode(const TConstantUnion *constArray,
const TIntermTyped *originalNode,
TQualifier qualifier)
{
@@ -145,8 +117,9 @@ angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray,
for (size_t i = 0; i < rows * cols; i++)
elements.push_back(paramArray[i].getFConst());
// Transpose is used since the Matrix constructor expects arguments in row-major order,
- // whereas the paramArray is in column-major order.
- return angle::Matrix<float>(elements, rows, cols).transpose();
+ // whereas the paramArray is in column-major order. Rows/cols parameters are also flipped below
+ // so that the created matrix will have the expected dimensions after the transpose.
+ return angle::Matrix<float>(elements, cols, rows).transpose();
}
angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray, const unsigned int &size)
@@ -163,7 +136,7 @@ void SetUnionArrayFromMatrix(const angle::Matrix<float> &m, TConstantUnion *resu
{
// Transpose is used since the input Matrix is in row-major order,
// whereas the actual result should be in column-major order.
- angle::Matrix<float> result = m.transpose();
+ angle::Matrix<float> result = m.transpose();
std::vector<float> resultElements = result.elements();
for (size_t i = 0; i < resultElements.size(); i++)
resultArray[i].setFConst(resultElements[i]);
@@ -171,7 +144,6 @@ void SetUnionArrayFromMatrix(const angle::Matrix<float> &m, TConstantUnion *resu
} // namespace anonymous
-
////////////////////////////////////////////////////////////////
//
// Member functions of the nodes used for building the tree.
@@ -181,90 +153,214 @@ void SetUnionArrayFromMatrix(const angle::Matrix<float> &m, TConstantUnion *resu
void TIntermTyped::setTypePreservePrecision(const TType &t)
{
TPrecision precision = getPrecision();
- mType = t;
+ mType = t;
ASSERT(mType.getBasicType() != EbtBool || precision == EbpUndefined);
mType.setPrecision(precision);
}
#define REPLACE_IF_IS(node, type, original, replacement) \
- if (node == original) { \
- node = static_cast<type *>(replacement); \
- return true; \
+ if (node == original) \
+ { \
+ node = static_cast<type *>(replacement); \
+ return true; \
}
-bool TIntermLoop::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermLoop::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
+ ASSERT(original != nullptr); // This risks replacing multiple children.
REPLACE_IF_IS(mInit, TIntermNode, original, replacement);
REPLACE_IF_IS(mCond, TIntermTyped, original, replacement);
REPLACE_IF_IS(mExpr, TIntermTyped, original, replacement);
- REPLACE_IF_IS(mBody, TIntermAggregate, original, replacement);
+ REPLACE_IF_IS(mBody, TIntermBlock, original, replacement);
return false;
}
-bool TIntermBranch::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermBranch::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mExpression, TIntermTyped, original, replacement);
return false;
}
-bool TIntermBinary::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermSwizzle::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType());
+ REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement);
+ return false;
+}
+
+bool TIntermBinary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mLeft, TIntermTyped, original, replacement);
REPLACE_IF_IS(mRight, TIntermTyped, original, replacement);
return false;
}
-bool TIntermUnary::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermUnary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
+ ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType());
REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement);
return false;
}
-bool TIntermAggregate::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermInvariantDeclaration::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(mSymbol, TIntermSymbol, original, replacement);
+ return false;
+}
+
+bool TIntermFunctionDefinition::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(mPrototype, TIntermFunctionPrototype, original, replacement);
+ REPLACE_IF_IS(mBody, TIntermBlock, original, replacement);
+ return false;
+}
+
+bool TIntermAggregate::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ return replaceChildNodeInternal(original, replacement);
+}
+
+bool TIntermBlock::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
- for (size_t ii = 0; ii < mSequence.size(); ++ii)
+ return replaceChildNodeInternal(original, replacement);
+}
+
+bool TIntermFunctionPrototype::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ return replaceChildNodeInternal(original, replacement);
+}
+
+bool TIntermDeclaration::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ return replaceChildNodeInternal(original, replacement);
+}
+
+bool TIntermAggregateBase::replaceChildNodeInternal(TIntermNode *original, TIntermNode *replacement)
+{
+ for (size_t ii = 0; ii < getSequence()->size(); ++ii)
{
- REPLACE_IF_IS(mSequence[ii], TIntermNode, original, replacement);
+ REPLACE_IF_IS((*getSequence())[ii], TIntermNode, original, replacement);
}
return false;
}
-bool TIntermAggregate::replaceChildNodeWithMultiple(TIntermNode *original, TIntermSequence replacements)
+bool TIntermAggregateBase::replaceChildNodeWithMultiple(TIntermNode *original,
+ const TIntermSequence &replacements)
{
- for (auto it = mSequence.begin(); it < mSequence.end(); ++it)
+ for (auto it = getSequence()->begin(); it < getSequence()->end(); ++it)
{
if (*it == original)
{
- it = mSequence.erase(it);
- mSequence.insert(it, replacements.begin(), replacements.end());
+ it = getSequence()->erase(it);
+ getSequence()->insert(it, replacements.begin(), replacements.end());
return true;
}
}
return false;
}
-bool TIntermAggregate::insertChildNodes(TIntermSequence::size_type position, TIntermSequence insertions)
+bool TIntermAggregateBase::insertChildNodes(TIntermSequence::size_type position,
+ const TIntermSequence &insertions)
{
- if (position > mSequence.size())
+ if (position > getSequence()->size())
{
return false;
}
- auto it = mSequence.begin() + position;
- mSequence.insert(it, insertions.begin(), insertions.end());
+ auto it = getSequence()->begin() + position;
+ getSequence()->insert(it, insertions.begin(), insertions.end());
return true;
}
+TIntermAggregate *TIntermAggregate::CreateFunctionCall(const TFunction &func,
+ TIntermSequence *arguments)
+{
+ TIntermAggregate *callNode =
+ new TIntermAggregate(func.getReturnType(), EOpCallFunctionInAST, arguments);
+ callNode->getFunctionSymbolInfo()->setFromFunction(func);
+ return callNode;
+}
+
+TIntermAggregate *TIntermAggregate::CreateFunctionCall(const TType &type,
+ const TSymbolUniqueId &id,
+ const TName &name,
+ TIntermSequence *arguments)
+{
+ TIntermAggregate *callNode = new TIntermAggregate(type, EOpCallFunctionInAST, arguments);
+ callNode->getFunctionSymbolInfo()->setId(id);
+ callNode->getFunctionSymbolInfo()->setNameObj(name);
+ return callNode;
+}
+
+TIntermAggregate *TIntermAggregate::CreateBuiltInFunctionCall(const TFunction &func,
+ TIntermSequence *arguments)
+{
+ TIntermAggregate *callNode =
+ new TIntermAggregate(func.getReturnType(), EOpCallBuiltInFunction, arguments);
+ callNode->getFunctionSymbolInfo()->setFromFunction(func);
+ // Note that name needs to be set before texture function type is determined.
+ callNode->setBuiltInFunctionPrecision();
+ return callNode;
+}
+
+TIntermAggregate *TIntermAggregate::CreateConstructor(const TType &type,
+ TIntermSequence *arguments)
+{
+ return new TIntermAggregate(type, EOpConstruct, arguments);
+}
+
+TIntermAggregate *TIntermAggregate::Create(const TType &type,
+ TOperator op,
+ TIntermSequence *arguments)
+{
+ TIntermAggregate *node = new TIntermAggregate(type, op, arguments);
+ ASSERT(op != EOpCallFunctionInAST); // Should use CreateFunctionCall
+ ASSERT(op != EOpCallBuiltInFunction); // Should use CreateBuiltInFunctionCall
+ ASSERT(!node->isConstructor()); // Should use CreateConstructor
+ return node;
+}
+
+TIntermAggregate::TIntermAggregate(const TType &type, TOperator op, TIntermSequence *arguments)
+ : TIntermOperator(op), mUseEmulatedFunction(false), mGotPrecisionFromChildren(false)
+{
+ if (arguments != nullptr)
+ {
+ mArguments.swap(*arguments);
+ }
+ setTypePrecisionAndQualifier(type);
+}
+
+void TIntermAggregate::setTypePrecisionAndQualifier(const TType &type)
+{
+ setType(type);
+ mType.setQualifier(EvqTemporary);
+ if (!isFunctionCall())
+ {
+ if (isConstructor())
+ {
+ // Structs should not be precision qualified, the individual members may be.
+ // Built-in types on the other hand should be precision qualified.
+ if (getBasicType() != EbtStruct)
+ {
+ setPrecisionFromChildren();
+ }
+ }
+ else
+ {
+ setPrecisionForBuiltInOp();
+ }
+ if (areChildrenConstQualified())
+ {
+ mType.setQualifier(EvqConst);
+ }
+ }
+}
+
bool TIntermAggregate::areChildrenConstQualified()
{
- for (TIntermNode *&child : mSequence)
+ for (TIntermNode *&arg : mArguments)
{
- TIntermTyped *typed = child->getAsTyped();
- if (typed && typed->getQualifier() != EvqConst)
+ TIntermTyped *typedArg = arg->getAsTyped();
+ if (typedArg && typedArg->getQualifier() != EvqConst)
{
return false;
}
@@ -281,9 +377,9 @@ void TIntermAggregate::setPrecisionFromChildren()
return;
}
- TPrecision precision = EbpUndefined;
- TIntermSequence::iterator childIter = mSequence.begin();
- while (childIter != mSequence.end())
+ TPrecision precision = EbpUndefined;
+ TIntermSequence::iterator childIter = mArguments.begin();
+ while (childIter != mArguments.end())
{
TIntermTyped *typed = (*childIter)->getAsTyped();
if (typed)
@@ -293,51 +389,149 @@ void TIntermAggregate::setPrecisionFromChildren()
mType.setPrecision(precision);
}
+void TIntermAggregate::setPrecisionForBuiltInOp()
+{
+ ASSERT(!isConstructor());
+ ASSERT(!isFunctionCall());
+ if (!setPrecisionForSpecialBuiltInOp())
+ {
+ setPrecisionFromChildren();
+ }
+}
+
+bool TIntermAggregate::setPrecisionForSpecialBuiltInOp()
+{
+ switch (mOp)
+ {
+ case EOpBitfieldExtract:
+ mType.setPrecision(mArguments[0]->getAsTyped()->getPrecision());
+ mGotPrecisionFromChildren = true;
+ return true;
+ case EOpBitfieldInsert:
+ mType.setPrecision(GetHigherPrecision(mArguments[0]->getAsTyped()->getPrecision(),
+ mArguments[1]->getAsTyped()->getPrecision()));
+ mGotPrecisionFromChildren = true;
+ return true;
+ case EOpUaddCarry:
+ case EOpUsubBorrow:
+ mType.setPrecision(EbpHigh);
+ return true;
+ default:
+ return false;
+ }
+}
+
void TIntermAggregate::setBuiltInFunctionPrecision()
{
// All built-ins returning bool should be handled as ops, not functions.
ASSERT(getBasicType() != EbtBool);
+ ASSERT(mOp == EOpCallBuiltInFunction);
TPrecision precision = EbpUndefined;
- TIntermSequence::iterator childIter = mSequence.begin();
- while (childIter != mSequence.end())
+ for (TIntermNode *arg : mArguments)
{
- TIntermTyped *typed = (*childIter)->getAsTyped();
+ TIntermTyped *typed = arg->getAsTyped();
// ESSL spec section 8: texture functions get their precision from the sampler.
if (typed && IsSampler(typed->getBasicType()))
{
precision = typed->getPrecision();
break;
}
- ++childIter;
}
// ESSL 3.0 spec section 8: textureSize always gets highp precision.
// All other functions that take a sampler are assumed to be texture functions.
- if (mName.getString().find("textureSize") == 0)
+ if (mFunctionInfo.getName().find("textureSize") == 0)
mType.setPrecision(EbpHigh);
else
mType.setPrecision(precision);
}
-bool TIntermSelection::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+TString TIntermAggregate::getSymbolTableMangledName() const
+{
+ ASSERT(!isConstructor());
+ switch (mOp)
+ {
+ case EOpCallInternalRawFunction:
+ case EOpCallBuiltInFunction:
+ case EOpCallFunctionInAST:
+ return TFunction::GetMangledNameFromCall(mFunctionInfo.getName(), mArguments);
+ default:
+ TString opString = GetOperatorString(mOp);
+ return TFunction::GetMangledNameFromCall(opString, mArguments);
+ }
+}
+
+bool TIntermAggregate::hasSideEffects() const
+{
+ if (isFunctionCall() && mFunctionInfo.isKnownToNotHaveSideEffects())
+ {
+ for (TIntermNode *arg : mArguments)
+ {
+ if (arg->getAsTyped()->hasSideEffects())
+ {
+ return true;
+ }
+ }
+ return false;
+ }
+ // Conservatively assume most aggregate operators have side-effects
+ return true;
+}
+
+void TIntermBlock::appendStatement(TIntermNode *statement)
+{
+ // Declaration nodes with no children can appear if it was an empty declaration or if all the
+ // declarators just added constants to the symbol table instead of generating code. We still
+ // need to add the declaration to the AST in that case because it might be relevant to the
+ // validity of switch/case.
+ if (statement != nullptr)
+ {
+ mStatements.push_back(statement);
+ }
+}
+
+void TIntermFunctionPrototype::appendParameter(TIntermSymbol *parameter)
+{
+ ASSERT(parameter != nullptr);
+ mParameters.push_back(parameter);
+}
+
+void TIntermDeclaration::appendDeclarator(TIntermTyped *declarator)
+{
+ ASSERT(declarator != nullptr);
+ ASSERT(declarator->getAsSymbolNode() != nullptr ||
+ (declarator->getAsBinaryNode() != nullptr &&
+ declarator->getAsBinaryNode()->getOp() == EOpInitialize));
+ ASSERT(mDeclarators.empty() ||
+ declarator->getType().sameNonArrayType(mDeclarators.back()->getAsTyped()->getType()));
+ mDeclarators.push_back(declarator);
+}
+
+bool TIntermTernary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
- REPLACE_IF_IS(mTrueBlock, TIntermNode, original, replacement);
- REPLACE_IF_IS(mFalseBlock, TIntermNode, original, replacement);
+ REPLACE_IF_IS(mTrueExpression, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(mFalseExpression, TIntermTyped, original, replacement);
return false;
}
-bool TIntermSwitch::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermIfElse::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(mTrueBlock, TIntermBlock, original, replacement);
+ REPLACE_IF_IS(mFalseBlock, TIntermBlock, original, replacement);
+ return false;
+}
+
+bool TIntermSwitch::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mInit, TIntermTyped, original, replacement);
- REPLACE_IF_IS(mStatementList, TIntermAggregate, original, replacement);
+ REPLACE_IF_IS(mStatementList, TIntermBlock, original, replacement);
+ ASSERT(mStatementList);
return false;
}
-bool TIntermCase::replaceChildNode(
- TIntermNode *original, TIntermNode *replacement)
+bool TIntermCase::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
return false;
@@ -351,28 +545,104 @@ TIntermTyped::TIntermTyped(const TIntermTyped &node) : TIntermNode(), mType(node
mLine = node.mLine;
}
+bool TIntermTyped::isConstructorWithOnlyConstantUnionParameters()
+{
+ TIntermAggregate *constructor = getAsAggregate();
+ if (!constructor || !constructor->isConstructor())
+ {
+ return false;
+ }
+ for (TIntermNode *&node : *constructor->getSequence())
+ {
+ if (!node->getAsConstantUnion())
+ return false;
+ }
+ return true;
+}
+
TIntermConstantUnion::TIntermConstantUnion(const TIntermConstantUnion &node) : TIntermTyped(node)
{
mUnionArrayPointer = node.mUnionArrayPointer;
}
+void TFunctionSymbolInfo::setFromFunction(const TFunction &function)
+{
+ setName(function.getName());
+ setId(TSymbolUniqueId(function));
+}
+
+TFunctionSymbolInfo::TFunctionSymbolInfo(const TSymbolUniqueId &id)
+ : mId(new TSymbolUniqueId(id)), mKnownToNotHaveSideEffects(false)
+{
+}
+
+TFunctionSymbolInfo::TFunctionSymbolInfo(const TFunctionSymbolInfo &info)
+ : mName(info.mName), mId(nullptr), mKnownToNotHaveSideEffects(info.mKnownToNotHaveSideEffects)
+{
+ if (info.mId)
+ {
+ mId = new TSymbolUniqueId(*info.mId);
+ }
+}
+
+TFunctionSymbolInfo &TFunctionSymbolInfo::operator=(const TFunctionSymbolInfo &info)
+{
+ mName = info.mName;
+ if (info.mId)
+ {
+ mId = new TSymbolUniqueId(*info.mId);
+ }
+ else
+ {
+ mId = nullptr;
+ }
+ return *this;
+}
+
+void TFunctionSymbolInfo::setId(const TSymbolUniqueId &id)
+{
+ mId = new TSymbolUniqueId(id);
+}
+
+const TSymbolUniqueId &TFunctionSymbolInfo::getId() const
+{
+ ASSERT(mId);
+ return *mId;
+}
+
TIntermAggregate::TIntermAggregate(const TIntermAggregate &node)
: TIntermOperator(node),
- mName(node.mName),
- mUserDefined(node.mUserDefined),
- mFunctionId(node.mFunctionId),
mUseEmulatedFunction(node.mUseEmulatedFunction),
- mGotPrecisionFromChildren(node.mGotPrecisionFromChildren)
+ mGotPrecisionFromChildren(node.mGotPrecisionFromChildren),
+ mFunctionInfo(node.mFunctionInfo)
{
- for (TIntermNode *child : node.mSequence)
+ for (TIntermNode *arg : node.mArguments)
{
- TIntermTyped *typedChild = child->getAsTyped();
- ASSERT(typedChild != nullptr);
- TIntermTyped *childCopy = typedChild->deepCopy();
- mSequence.push_back(childCopy);
+ TIntermTyped *typedArg = arg->getAsTyped();
+ ASSERT(typedArg != nullptr);
+ TIntermTyped *argCopy = typedArg->deepCopy();
+ mArguments.push_back(argCopy);
}
}
+TIntermAggregate *TIntermAggregate::shallowCopy() const
+{
+ TIntermSequence *copySeq = new TIntermSequence();
+ copySeq->insert(copySeq->begin(), getSequence()->begin(), getSequence()->end());
+ TIntermAggregate *copyNode = new TIntermAggregate(mType, mOp, copySeq);
+ *copyNode->getFunctionSymbolInfo() = mFunctionInfo;
+ copyNode->setLine(mLine);
+ return copyNode;
+}
+
+TIntermSwizzle::TIntermSwizzle(const TIntermSwizzle &node) : TIntermTyped(node)
+{
+ TIntermTyped *operandCopy = node.mOperand->deepCopy();
+ ASSERT(operandCopy != nullptr);
+ mOperand = operandCopy;
+ mSwizzleOffsets = node.mSwizzleOffsets;
+}
+
TIntermBinary::TIntermBinary(const TIntermBinary &node)
: TIntermOperator(node), mAddIndexClamp(node.mAddIndexClamp)
{
@@ -391,106 +661,141 @@ TIntermUnary::TIntermUnary(const TIntermUnary &node)
mOperand = operandCopy;
}
-TIntermSelection::TIntermSelection(const TIntermSelection &node) : TIntermTyped(node)
+TIntermTernary::TIntermTernary(const TIntermTernary &node) : TIntermTyped(node)
{
- // Only supported for ternary nodes, not if statements.
- TIntermTyped *trueTyped = node.mTrueBlock->getAsTyped();
- TIntermTyped *falseTyped = node.mFalseBlock->getAsTyped();
- ASSERT(trueTyped != nullptr);
- ASSERT(falseTyped != nullptr);
TIntermTyped *conditionCopy = node.mCondition->deepCopy();
- TIntermTyped *trueCopy = trueTyped->deepCopy();
- TIntermTyped *falseCopy = falseTyped->deepCopy();
+ TIntermTyped *trueCopy = node.mTrueExpression->deepCopy();
+ TIntermTyped *falseCopy = node.mFalseExpression->deepCopy();
ASSERT(conditionCopy != nullptr && trueCopy != nullptr && falseCopy != nullptr);
- mCondition = conditionCopy;
- mTrueBlock = trueCopy;
- mFalseBlock = falseCopy;
+ mCondition = conditionCopy;
+ mTrueExpression = trueCopy;
+ mFalseExpression = falseCopy;
}
-//
-// Say whether or not an operation node changes the value of a variable.
-//
bool TIntermOperator::isAssignment() const
{
- switch (mOp)
- {
- case EOpPostIncrement:
- case EOpPostDecrement:
- case EOpPreIncrement:
- case EOpPreDecrement:
- case EOpAssign:
- case EOpAddAssign:
- case EOpSubAssign:
- case EOpMulAssign:
- case EOpVectorTimesMatrixAssign:
- case EOpVectorTimesScalarAssign:
- case EOpMatrixTimesScalarAssign:
- case EOpMatrixTimesMatrixAssign:
- case EOpDivAssign:
- case EOpIModAssign:
- case EOpBitShiftLeftAssign:
- case EOpBitShiftRightAssign:
- case EOpBitwiseAndAssign:
- case EOpBitwiseXorAssign:
- case EOpBitwiseOrAssign:
- return true;
- default:
- return false;
- }
+ return IsAssignment(mOp);
}
bool TIntermOperator::isMultiplication() const
{
switch (mOp)
{
- case EOpMul:
- case EOpMatrixTimesMatrix:
- case EOpMatrixTimesVector:
- case EOpMatrixTimesScalar:
- case EOpVectorTimesMatrix:
- case EOpVectorTimesScalar:
- return true;
- default:
- return false;
+ case EOpMul:
+ case EOpMatrixTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpVectorTimesScalar:
+ return true;
+ default:
+ return false;
}
}
-//
-// returns true if the operator is for one of the constructors
-//
bool TIntermOperator::isConstructor() const
{
+ return (mOp == EOpConstruct);
+}
+
+bool TIntermOperator::isFunctionCall() const
+{
switch (mOp)
{
- case EOpConstructVec2:
- case EOpConstructVec3:
- case EOpConstructVec4:
- case EOpConstructMat2:
- case EOpConstructMat2x3:
- case EOpConstructMat2x4:
- case EOpConstructMat3x2:
- case EOpConstructMat3:
- case EOpConstructMat3x4:
- case EOpConstructMat4x2:
- case EOpConstructMat4x3:
- case EOpConstructMat4:
- case EOpConstructFloat:
- case EOpConstructIVec2:
- case EOpConstructIVec3:
- case EOpConstructIVec4:
- case EOpConstructInt:
- case EOpConstructUVec2:
- case EOpConstructUVec3:
- case EOpConstructUVec4:
- case EOpConstructUInt:
- case EOpConstructBVec2:
- case EOpConstructBVec3:
- case EOpConstructBVec4:
- case EOpConstructBool:
- case EOpConstructStruct:
- return true;
- default:
- return false;
+ case EOpCallFunctionInAST:
+ case EOpCallBuiltInFunction:
+ case EOpCallInternalRawFunction:
+ return true;
+ default:
+ return false;
+ }
+}
+
+TOperator TIntermBinary::GetMulOpBasedOnOperands(const TType &left, const TType &right)
+{
+ if (left.isMatrix())
+ {
+ if (right.isMatrix())
+ {
+ return EOpMatrixTimesMatrix;
+ }
+ else
+ {
+ if (right.isVector())
+ {
+ return EOpMatrixTimesVector;
+ }
+ else
+ {
+ return EOpMatrixTimesScalar;
+ }
+ }
+ }
+ else
+ {
+ if (right.isMatrix())
+ {
+ if (left.isVector())
+ {
+ return EOpVectorTimesMatrix;
+ }
+ else
+ {
+ return EOpMatrixTimesScalar;
+ }
+ }
+ else
+ {
+ // Neither operand is a matrix.
+ if (left.isVector() == right.isVector())
+ {
+ // Leave as component product.
+ return EOpMul;
+ }
+ else
+ {
+ return EOpVectorTimesScalar;
+ }
+ }
+ }
+}
+
+TOperator TIntermBinary::GetMulAssignOpBasedOnOperands(const TType &left, const TType &right)
+{
+ if (left.isMatrix())
+ {
+ if (right.isMatrix())
+ {
+ return EOpMatrixTimesMatrixAssign;
+ }
+ else
+ {
+ // right should be scalar, but this may not be validated yet.
+ return EOpMatrixTimesScalarAssign;
+ }
+ }
+ else
+ {
+ if (right.isMatrix())
+ {
+ // Left should be a vector, but this may not be validated yet.
+ return EOpVectorTimesMatrixAssign;
+ }
+ else
+ {
+ // Neither operand is a matrix.
+ if (left.isVector() == right.isVector())
+ {
+ // Leave as component product.
+ return EOpMulAssign;
+ }
+ else
+ {
+ // left should be vector and right should be scalar, but this may not be validated
+ // yet.
+ return EOpVectorTimesScalarAssign;
+ }
+ }
}
}
@@ -498,70 +803,281 @@ bool TIntermOperator::isConstructor() const
// Make sure the type of a unary operator is appropriate for its
// combination of operation and operand type.
//
-void TIntermUnary::promote(const TType *funcReturnType)
+void TIntermUnary::promote()
{
+ if (mOp == EOpArrayLength)
+ {
+ // Special case: the qualifier of .length() doesn't depend on the operand qualifier.
+ setType(TType(EbtInt, EbpUndefined, EvqConst));
+ return;
+ }
+
+ TQualifier resultQualifier = EvqTemporary;
+ if (mOperand->getQualifier() == EvqConst)
+ resultQualifier = EvqConst;
+
+ unsigned char operandPrimarySize =
+ static_cast<unsigned char>(mOperand->getType().getNominalSize());
switch (mOp)
{
- case EOpFloatBitsToInt:
- case EOpFloatBitsToUint:
- case EOpIntBitsToFloat:
- case EOpUintBitsToFloat:
- case EOpPackSnorm2x16:
- case EOpPackUnorm2x16:
- case EOpPackHalf2x16:
- case EOpUnpackSnorm2x16:
- case EOpUnpackUnorm2x16:
- mType.setPrecision(EbpHigh);
- break;
- case EOpUnpackHalf2x16:
- mType.setPrecision(EbpMedium);
- break;
- default:
- setType(mOperand->getType());
+ case EOpFloatBitsToInt:
+ setType(TType(EbtInt, EbpHigh, resultQualifier, operandPrimarySize));
+ break;
+ case EOpFloatBitsToUint:
+ setType(TType(EbtUInt, EbpHigh, resultQualifier, operandPrimarySize));
+ break;
+ case EOpIntBitsToFloat:
+ case EOpUintBitsToFloat:
+ setType(TType(EbtFloat, EbpHigh, resultQualifier, operandPrimarySize));
+ break;
+ case EOpPackSnorm2x16:
+ case EOpPackUnorm2x16:
+ case EOpPackHalf2x16:
+ case EOpPackUnorm4x8:
+ case EOpPackSnorm4x8:
+ setType(TType(EbtUInt, EbpHigh, resultQualifier));
+ break;
+ case EOpUnpackSnorm2x16:
+ case EOpUnpackUnorm2x16:
+ setType(TType(EbtFloat, EbpHigh, resultQualifier, 2));
+ break;
+ case EOpUnpackHalf2x16:
+ setType(TType(EbtFloat, EbpMedium, resultQualifier, 2));
+ break;
+ case EOpUnpackUnorm4x8:
+ case EOpUnpackSnorm4x8:
+ setType(TType(EbtFloat, EbpMedium, resultQualifier, 4));
+ break;
+ case EOpAny:
+ case EOpAll:
+ setType(TType(EbtBool, EbpUndefined, resultQualifier));
+ break;
+ case EOpLength:
+ case EOpDeterminant:
+ setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier));
+ break;
+ case EOpTranspose:
+ setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier,
+ static_cast<unsigned char>(mOperand->getType().getRows()),
+ static_cast<unsigned char>(mOperand->getType().getCols())));
+ break;
+ case EOpIsInf:
+ case EOpIsNan:
+ setType(TType(EbtBool, EbpUndefined, resultQualifier, operandPrimarySize));
+ break;
+ case EOpBitfieldReverse:
+ setType(TType(mOperand->getBasicType(), EbpHigh, resultQualifier, operandPrimarySize));
+ break;
+ case EOpBitCount:
+ setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
+ break;
+ case EOpFindLSB:
+ setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
+ break;
+ case EOpFindMSB:
+ setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
+ break;
+ default:
+ setType(mOperand->getType());
+ mType.setQualifier(resultQualifier);
+ break;
+ }
+}
+
+TIntermSwizzle::TIntermSwizzle(TIntermTyped *operand, const TVector<int> &swizzleOffsets)
+ : TIntermTyped(TType(EbtFloat, EbpUndefined)),
+ mOperand(operand),
+ mSwizzleOffsets(swizzleOffsets)
+{
+ ASSERT(mSwizzleOffsets.size() <= 4);
+ promote();
+}
+
+TIntermUnary::TIntermUnary(TOperator op, TIntermTyped *operand)
+ : TIntermOperator(op), mOperand(operand), mUseEmulatedFunction(false)
+{
+ promote();
+}
+
+TIntermBinary::TIntermBinary(TOperator op, TIntermTyped *left, TIntermTyped *right)
+ : TIntermOperator(op), mLeft(left), mRight(right), mAddIndexClamp(false)
+{
+ promote();
+}
+
+TIntermInvariantDeclaration::TIntermInvariantDeclaration(TIntermSymbol *symbol, const TSourceLoc &line)
+ : TIntermNode(), mSymbol(symbol)
+{
+ ASSERT(symbol);
+ setLine(line);
+}
+
+TIntermTernary::TIntermTernary(TIntermTyped *cond,
+ TIntermTyped *trueExpression,
+ TIntermTyped *falseExpression)
+ : TIntermTyped(trueExpression->getType()),
+ mCondition(cond),
+ mTrueExpression(trueExpression),
+ mFalseExpression(falseExpression)
+{
+ getTypePointer()->setQualifier(
+ TIntermTernary::DetermineQualifier(cond, trueExpression, falseExpression));
+}
+
+TIntermLoop::TIntermLoop(TLoopType type,
+ TIntermNode *init,
+ TIntermTyped *cond,
+ TIntermTyped *expr,
+ TIntermBlock *body)
+ : mType(type), mInit(init), mCond(cond), mExpr(expr), mBody(body)
+{
+ // Declaration nodes with no children can appear if all the declarators just added constants to
+ // the symbol table instead of generating code. They're no-ops so don't add them to the tree.
+ if (mInit && mInit->getAsDeclarationNode() &&
+ mInit->getAsDeclarationNode()->getSequence()->empty())
+ {
+ mInit = nullptr;
+ }
+}
+
+TIntermIfElse::TIntermIfElse(TIntermTyped *cond, TIntermBlock *trueB, TIntermBlock *falseB)
+ : TIntermNode(), mCondition(cond), mTrueBlock(trueB), mFalseBlock(falseB)
+{
+ // Prune empty false blocks so that there won't be unnecessary operations done on it.
+ if (mFalseBlock && mFalseBlock->getSequence()->empty())
+ {
+ mFalseBlock = nullptr;
+ }
+}
+
+TIntermSwitch::TIntermSwitch(TIntermTyped *init, TIntermBlock *statementList)
+ : TIntermNode(), mInit(init), mStatementList(statementList)
+{
+ ASSERT(mStatementList);
+}
+
+void TIntermSwitch::setStatementList(TIntermBlock *statementList)
+{
+ ASSERT(statementList);
+ mStatementList = statementList;
+}
+
+// static
+TQualifier TIntermTernary::DetermineQualifier(TIntermTyped *cond,
+ TIntermTyped *trueExpression,
+ TIntermTyped *falseExpression)
+{
+ if (cond->getQualifier() == EvqConst && trueExpression->getQualifier() == EvqConst &&
+ falseExpression->getQualifier() == EvqConst)
+ {
+ return EvqConst;
}
+ return EvqTemporary;
+}
- if (funcReturnType != nullptr)
+TIntermTyped *TIntermTernary::fold()
+{
+ if (mCondition->getAsConstantUnion())
{
- if (funcReturnType->getBasicType() == EbtBool)
+ if (mCondition->getAsConstantUnion()->getBConst(0))
{
- // Bool types should not have precision.
- setType(*funcReturnType);
+ mTrueExpression->getTypePointer()->setQualifier(mType.getQualifier());
+ return mTrueExpression;
}
else
{
- // Precision of the node has been set based on the operand.
- setTypePreservePrecision(*funcReturnType);
+ mFalseExpression->getTypePointer()->setQualifier(mType.getQualifier());
+ return mFalseExpression;
}
}
+ return this;
+}
+void TIntermSwizzle::promote()
+{
+ TQualifier resultQualifier = EvqTemporary;
if (mOperand->getQualifier() == EvqConst)
- mType.setQualifier(EvqConst);
- else
- mType.setQualifier(EvqTemporary);
+ resultQualifier = EvqConst;
+
+ auto numFields = mSwizzleOffsets.size();
+ setType(TType(mOperand->getBasicType(), mOperand->getPrecision(), resultQualifier,
+ static_cast<unsigned char>(numFields)));
}
-//
-// Establishes the type of the resultant operation, as well as
-// makes the operator the correct one for the operands.
-//
-// For lots of operations it should already be established that the operand
-// combination is valid, but returns false if operator can't work on operands.
-//
-bool TIntermBinary::promote(TInfoSink &infoSink)
+bool TIntermSwizzle::hasDuplicateOffsets() const
{
- ASSERT(mLeft->isArray() == mRight->isArray());
+ int offsetCount[4] = {0u, 0u, 0u, 0u};
+ for (const auto offset : mSwizzleOffsets)
+ {
+ offsetCount[offset]++;
+ if (offsetCount[offset] > 1)
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+bool TIntermSwizzle::offsetsMatch(int offset) const
+{
+ return mSwizzleOffsets.size() == 1 && mSwizzleOffsets[0] == offset;
+}
+
+void TIntermSwizzle::writeOffsetsAsXYZW(TInfoSinkBase *out) const
+{
+ for (const int offset : mSwizzleOffsets)
+ {
+ switch (offset)
+ {
+ case 0:
+ *out << "x";
+ break;
+ case 1:
+ *out << "y";
+ break;
+ case 2:
+ *out << "z";
+ break;
+ case 3:
+ *out << "w";
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+}
+
+TQualifier TIntermBinary::GetCommaQualifier(int shaderVersion,
+ const TIntermTyped *left,
+ const TIntermTyped *right)
+{
+ // ESSL3.00 section 12.43: The result of a sequence operator is not a constant-expression.
+ if (shaderVersion >= 300 || left->getQualifier() != EvqConst ||
+ right->getQualifier() != EvqConst)
+ {
+ return EvqTemporary;
+ }
+ return EvqConst;
+}
+
+// Establishes the type of the result of the binary operation.
+void TIntermBinary::promote()
+{
+ ASSERT(!isMultiplication() ||
+ mOp == GetMulOpBasedOnOperands(mLeft->getType(), mRight->getType()));
+
+ // Comma is handled as a special case. Note that the comma node qualifier depends on the shader
+ // version and so is not being set here.
+ if (mOp == EOpComma)
+ {
+ setType(mRight->getType());
+ return;
+ }
- //
// Base assumption: just make the type the same as the left
// operand. Then only deviations from this need be coded.
- //
setType(mLeft->getType());
- // The result gets promoted to the highest precision.
- TPrecision higherPrecision = GetHigherPrecision(
- mLeft->getPrecision(), mRight->getPrecision());
- getTypePointer()->setPrecision(higherPrecision);
-
TQualifier resultQualifier = EvqConst;
// Binary operations results in temporary variables unless both
// operands are const.
@@ -571,8 +1087,56 @@ bool TIntermBinary::promote(TInfoSink &infoSink)
getTypePointer()->setQualifier(EvqTemporary);
}
- const int nominalSize =
- std::max(mLeft->getNominalSize(), mRight->getNominalSize());
+ // Handle indexing ops.
+ switch (mOp)
+ {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ if (mLeft->isArray())
+ {
+ mType.toArrayElementType();
+ }
+ else if (mLeft->isMatrix())
+ {
+ setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier,
+ static_cast<unsigned char>(mLeft->getRows())));
+ }
+ else if (mLeft->isVector())
+ {
+ setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier));
+ }
+ else
+ {
+ UNREACHABLE();
+ }
+ return;
+ case EOpIndexDirectStruct:
+ {
+ const TFieldList &fields = mLeft->getType().getStruct()->fields();
+ const int i = mRight->getAsConstantUnion()->getIConst(0);
+ setType(*fields[i]->type());
+ getTypePointer()->setQualifier(resultQualifier);
+ return;
+ }
+ case EOpIndexDirectInterfaceBlock:
+ {
+ const TFieldList &fields = mLeft->getType().getInterfaceBlock()->fields();
+ const int i = mRight->getAsConstantUnion()->getIConst(0);
+ setType(*fields[i]->type());
+ getTypePointer()->setQualifier(resultQualifier);
+ return;
+ }
+ default:
+ break;
+ }
+
+ ASSERT(mLeft->isArray() == mRight->isArray());
+
+ // The result gets promoted to the highest precision.
+ TPrecision higherPrecision = GetHigherPrecision(mLeft->getPrecision(), mRight->getPrecision());
+ getTypePointer()->setPrecision(higherPrecision);
+
+ const int nominalSize = std::max(mLeft->getNominalSize(), mRight->getNominalSize());
//
// All scalars or structs. Code after this test assumes this case is removed!
@@ -581,316 +1145,319 @@ bool TIntermBinary::promote(TInfoSink &infoSink)
{
switch (mOp)
{
- //
- // Promote to conditional
- //
- case EOpEqual:
- case EOpNotEqual:
- case EOpLessThan:
- case EOpGreaterThan:
- case EOpLessThanEqual:
- case EOpGreaterThanEqual:
- setType(TType(EbtBool, EbpUndefined));
- break;
+ //
+ // Promote to conditional
+ //
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ setType(TType(EbtBool, EbpUndefined, resultQualifier));
+ break;
- //
- // And and Or operate on conditionals
- //
- case EOpLogicalAnd:
- case EOpLogicalXor:
- case EOpLogicalOr:
- ASSERT(mLeft->getBasicType() == EbtBool && mRight->getBasicType() == EbtBool);
- setType(TType(EbtBool, EbpUndefined));
- break;
+ //
+ // And and Or operate on conditionals
+ //
+ case EOpLogicalAnd:
+ case EOpLogicalXor:
+ case EOpLogicalOr:
+ ASSERT(mLeft->getBasicType() == EbtBool && mRight->getBasicType() == EbtBool);
+ setType(TType(EbtBool, EbpUndefined, resultQualifier));
+ break;
- default:
- break;
+ default:
+ break;
}
- return true;
+ return;
}
// If we reach here, at least one of the operands is vector or matrix.
// The other operand could be a scalar, vector, or matrix.
- // Can these two operands be combined?
- //
TBasicType basicType = mLeft->getBasicType();
+
switch (mOp)
{
- case EOpMul:
- if (!mLeft->isMatrix() && mRight->isMatrix())
- {
- if (mLeft->isVector())
- {
- mOp = EOpVectorTimesMatrix;
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(mRight->getCols()), 1));
- }
- else
+ case EOpMul:
+ break;
+ case EOpMatrixTimesScalar:
+ if (mRight->isMatrix())
{
- mOp = EOpMatrixTimesScalar;
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mRight->getCols()),
static_cast<unsigned char>(mRight->getRows())));
}
- }
- else if (mLeft->isMatrix() && !mRight->isMatrix())
- {
- if (mRight->isVector())
- {
- mOp = EOpMatrixTimesVector;
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(mLeft->getRows()), 1));
- }
- else
- {
- mOp = EOpMatrixTimesScalar;
- }
- }
- else if (mLeft->isMatrix() && mRight->isMatrix())
- {
- mOp = EOpMatrixTimesMatrix;
+ break;
+ case EOpMatrixTimesVector:
+ setType(TType(basicType, higherPrecision, resultQualifier,
+ static_cast<unsigned char>(mLeft->getRows()), 1));
+ break;
+ case EOpMatrixTimesMatrix:
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mRight->getCols()),
static_cast<unsigned char>(mLeft->getRows())));
+ break;
+ case EOpVectorTimesScalar:
+ setType(TType(basicType, higherPrecision, resultQualifier,
+ static_cast<unsigned char>(nominalSize), 1));
+ break;
+ case EOpVectorTimesMatrix:
+ setType(TType(basicType, higherPrecision, resultQualifier,
+ static_cast<unsigned char>(mRight->getCols()), 1));
+ break;
+ case EOpMulAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ ASSERT(mOp == GetMulAssignOpBasedOnOperands(mLeft->getType(), mRight->getType()));
+ break;
+ case EOpAssign:
+ case EOpInitialize:
+ ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
+ (mLeft->getSecondarySize() == mRight->getSecondarySize()));
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpIMod:
+ case EOpBitShiftLeft:
+ case EOpBitShiftRight:
+ case EOpBitwiseAnd:
+ case EOpBitwiseXor:
+ case EOpBitwiseOr:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ case EOpIModAssign:
+ case EOpBitShiftLeftAssign:
+ case EOpBitShiftRightAssign:
+ case EOpBitwiseAndAssign:
+ case EOpBitwiseXorAssign:
+ case EOpBitwiseOrAssign:
+ {
+ const int secondarySize =
+ std::max(mLeft->getSecondarySize(), mRight->getSecondarySize());
+ setType(TType(basicType, higherPrecision, resultQualifier,
+ static_cast<unsigned char>(nominalSize),
+ static_cast<unsigned char>(secondarySize)));
+ ASSERT(!mLeft->isArray() && !mRight->isArray());
+ break;
}
- else if (!mLeft->isMatrix() && !mRight->isMatrix())
- {
- if (mLeft->isVector() && mRight->isVector())
- {
- // leave as component product
- }
- else if (mLeft->isVector() || mRight->isVector())
- {
- mOp = EOpVectorTimesScalar;
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(nominalSize), 1));
- }
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(),
- "Missing elses");
- return false;
- }
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
+ (mLeft->getSecondarySize() == mRight->getSecondarySize()));
+ setType(TType(EbtBool, EbpUndefined, resultQualifier));
+ break;
- if (!ValidateMultiplication(mOp, mLeft->getType(), mRight->getType()))
- {
- return false;
- }
- break;
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectInterfaceBlock:
+ case EOpIndexDirectStruct:
+ // These ops should be already fully handled.
+ UNREACHABLE();
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+const TConstantUnion *TIntermConstantUnion::foldIndexing(int index)
+{
+ if (isArray())
+ {
+ ASSERT(index < static_cast<int>(getType().getOutermostArraySize()));
+ TType arrayElementType = getType();
+ arrayElementType.toArrayElementType();
+ size_t arrayElementSize = arrayElementType.getObjectSize();
+ return &mUnionArrayPointer[arrayElementSize * index];
+ }
+ else if (isMatrix())
+ {
+ ASSERT(index < getType().getCols());
+ int size = getType().getRows();
+ return &mUnionArrayPointer[size * index];
+ }
+ else if (isVector())
+ {
+ ASSERT(index < getType().getNominalSize());
+ return &mUnionArrayPointer[index];
+ }
+ else
+ {
+ UNREACHABLE();
+ return nullptr;
+ }
+}
- case EOpMulAssign:
- if (!mLeft->isMatrix() && mRight->isMatrix())
+TIntermTyped *TIntermSwizzle::fold()
+{
+ TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion();
+ if (operandConstant == nullptr)
+ {
+ return this;
+ }
+
+ TConstantUnion *constArray = new TConstantUnion[mSwizzleOffsets.size()];
+ for (size_t i = 0; i < mSwizzleOffsets.size(); ++i)
+ {
+ constArray[i] = *operandConstant->foldIndexing(mSwizzleOffsets.at(i));
+ }
+ return CreateFoldedNode(constArray, this, mType.getQualifier());
+}
+
+TIntermTyped *TIntermBinary::fold(TDiagnostics *diagnostics)
+{
+ TIntermConstantUnion *leftConstant = mLeft->getAsConstantUnion();
+ TIntermConstantUnion *rightConstant = mRight->getAsConstantUnion();
+ switch (mOp)
+ {
+ case EOpComma:
{
- if (mLeft->isVector())
+ if (mLeft->hasSideEffects())
{
- mOp = EOpVectorTimesMatrixAssign;
- }
- else
- {
- return false;
+ return this;
}
+ mRight->getTypePointer()->setQualifier(mType.getQualifier());
+ return mRight;
}
- else if (mLeft->isMatrix() && !mRight->isMatrix())
+ case EOpIndexDirect:
{
- if (mRight->isVector())
+ if (leftConstant == nullptr || rightConstant == nullptr)
{
- return false;
+ return this;
}
- else
+ int index = rightConstant->getIConst(0);
+
+ const TConstantUnion *constArray = leftConstant->foldIndexing(index);
+ if (!constArray)
{
- mOp = EOpMatrixTimesScalarAssign;
+ return this;
}
+ return CreateFoldedNode(constArray, this, mType.getQualifier());
}
- else if (mLeft->isMatrix() && mRight->isMatrix())
+ case EOpIndexDirectStruct:
{
- mOp = EOpMatrixTimesMatrixAssign;
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(mRight->getCols()),
- static_cast<unsigned char>(mLeft->getRows())));
- }
- else if (!mLeft->isMatrix() && !mRight->isMatrix())
- {
- if (mLeft->isVector() && mRight->isVector())
+ if (leftConstant == nullptr || rightConstant == nullptr)
{
- // leave as component product
+ return this;
}
- else if (mLeft->isVector() || mRight->isVector())
+ const TFieldList &fields = mLeft->getType().getStruct()->fields();
+ size_t index = static_cast<size_t>(rightConstant->getIConst(0));
+
+ size_t previousFieldsSize = 0;
+ for (size_t i = 0; i < index; ++i)
{
- if (!mLeft->isVector())
- return false;
- mOp = EOpVectorTimesScalarAssign;
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(mLeft->getNominalSize()), 1));
+ previousFieldsSize += fields[i]->type()->getObjectSize();
}
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(),
- "Missing elses");
- return false;
- }
-
- if (!ValidateMultiplication(mOp, mLeft->getType(), mRight->getType()))
- {
- return false;
- }
- break;
-
- case EOpAssign:
- case EOpInitialize:
- // No more additional checks are needed.
- ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
- (mLeft->getSecondarySize() == mRight->getSecondarySize()));
- break;
- case EOpAdd:
- case EOpSub:
- case EOpDiv:
- case EOpIMod:
- case EOpBitShiftLeft:
- case EOpBitShiftRight:
- case EOpBitwiseAnd:
- case EOpBitwiseXor:
- case EOpBitwiseOr:
- case EOpAddAssign:
- case EOpSubAssign:
- case EOpDivAssign:
- case EOpIModAssign:
- case EOpBitShiftLeftAssign:
- case EOpBitShiftRightAssign:
- case EOpBitwiseAndAssign:
- case EOpBitwiseXorAssign:
- case EOpBitwiseOrAssign:
- if ((mLeft->isMatrix() && mRight->isVector()) ||
- (mLeft->isVector() && mRight->isMatrix()))
- {
- return false;
- }
-
- // Are the sizes compatible?
- if (mLeft->getNominalSize() != mRight->getNominalSize() ||
- mLeft->getSecondarySize() != mRight->getSecondarySize())
- {
- // If the nominal sizes of operands do not match:
- // One of them must be a scalar.
- if (!mLeft->isScalar() && !mRight->isScalar())
- return false;
- // In the case of compound assignment other than multiply-assign,
- // the right side needs to be a scalar. Otherwise a vector/matrix
- // would be assigned to a scalar. A scalar can't be shifted by a
- // vector either.
- if (!mRight->isScalar() &&
- (isAssignment() ||
- mOp == EOpBitShiftLeft ||
- mOp == EOpBitShiftRight))
- return false;
+ const TConstantUnion *constArray = leftConstant->getUnionArrayPointer();
+ return CreateFoldedNode(constArray + previousFieldsSize, this, mType.getQualifier());
}
-
+ case EOpIndexIndirect:
+ case EOpIndexDirectInterfaceBlock:
+ // Can never be constant folded.
+ return this;
+ default:
{
- const int secondarySize = std::max(
- mLeft->getSecondarySize(), mRight->getSecondarySize());
- setType(TType(basicType, higherPrecision, resultQualifier,
- static_cast<unsigned char>(nominalSize),
- static_cast<unsigned char>(secondarySize)));
- if (mLeft->isArray())
+ if (leftConstant == nullptr || rightConstant == nullptr)
{
- ASSERT(mLeft->getArraySize() == mRight->getArraySize());
- mType.setArraySize(mLeft->getArraySize());
+ return this;
+ }
+ TConstantUnion *constArray =
+ leftConstant->foldBinary(mOp, rightConstant, diagnostics, mLeft->getLine());
+ if (!constArray)
+ {
+ return this;
}
- }
- break;
-
- case EOpEqual:
- case EOpNotEqual:
- case EOpLessThan:
- case EOpGreaterThan:
- case EOpLessThanEqual:
- case EOpGreaterThanEqual:
- ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
- (mLeft->getSecondarySize() == mRight->getSecondarySize()));
- setType(TType(EbtBool, EbpUndefined));
- break;
- default:
- return false;
+ // Nodes may be constant folded without being qualified as constant.
+ return CreateFoldedNode(constArray, this, mType.getQualifier());
+ }
}
- return true;
}
-TIntermTyped *TIntermBinary::fold(TInfoSink &infoSink)
+TIntermTyped *TIntermUnary::fold(TDiagnostics *diagnostics)
{
- TIntermConstantUnion *leftConstant = mLeft->getAsConstantUnion();
- TIntermConstantUnion *rightConstant = mRight->getAsConstantUnion();
- if (leftConstant == nullptr || rightConstant == nullptr)
- {
- return nullptr;
- }
- TConstantUnion *constArray = leftConstant->foldBinary(mOp, rightConstant, infoSink);
+ TConstantUnion *constArray = nullptr;
- // Nodes may be constant folded without being qualified as constant.
- TQualifier resultQualifier = EvqConst;
- if (mLeft->getQualifier() != EvqConst || mRight->getQualifier() != EvqConst)
+ if (mOp == EOpArrayLength)
{
- resultQualifier = EvqTemporary;
+ // The size of runtime-sized arrays may only be determined at runtime.
+ if (mOperand->hasSideEffects() || mOperand->getType().isUnsizedArray())
+ {
+ return this;
+ }
+ constArray = new TConstantUnion[1];
+ constArray->setIConst(mOperand->getOutermostArraySize());
}
- return CreateFoldedNode(constArray, this, resultQualifier);
-}
-
-TIntermTyped *TIntermUnary::fold(TInfoSink &infoSink)
-{
- TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion();
- if (operandConstant == nullptr)
+ else
{
- return nullptr;
- }
+ TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion();
+ if (operandConstant == nullptr)
+ {
+ return this;
+ }
- TConstantUnion *constArray = nullptr;
- switch (mOp)
+ switch (mOp)
+ {
+ case EOpAny:
+ case EOpAll:
+ case EOpLength:
+ case EOpTranspose:
+ case EOpDeterminant:
+ case EOpInverse:
+ case EOpPackSnorm2x16:
+ case EOpUnpackSnorm2x16:
+ case EOpPackUnorm2x16:
+ case EOpUnpackUnorm2x16:
+ case EOpPackHalf2x16:
+ case EOpUnpackHalf2x16:
+ case EOpPackUnorm4x8:
+ case EOpPackSnorm4x8:
+ case EOpUnpackUnorm4x8:
+ case EOpUnpackSnorm4x8:
+ constArray = operandConstant->foldUnaryNonComponentWise(mOp);
+ break;
+ default:
+ constArray = operandConstant->foldUnaryComponentWise(mOp, diagnostics);
+ break;
+ }
+ }
+ if (constArray == nullptr)
{
- case EOpAny:
- case EOpAll:
- case EOpLength:
- case EOpTranspose:
- case EOpDeterminant:
- case EOpInverse:
- case EOpPackSnorm2x16:
- case EOpUnpackSnorm2x16:
- case EOpPackUnorm2x16:
- case EOpUnpackUnorm2x16:
- case EOpPackHalf2x16:
- case EOpUnpackHalf2x16:
- constArray = operandConstant->foldUnaryWithDifferentReturnType(mOp, infoSink);
- break;
- default:
- constArray = operandConstant->foldUnaryWithSameReturnType(mOp, infoSink);
- break;
+ return this;
}
// Nodes may be constant folded without being qualified as constant.
- TQualifier resultQualifier = mOperand->getQualifier() == EvqConst ? EvqConst : EvqTemporary;
- return CreateFoldedNode(constArray, this, resultQualifier);
+ return CreateFoldedNode(constArray, this, mType.getQualifier());
}
-TIntermTyped *TIntermAggregate::fold(TInfoSink &infoSink)
+TIntermTyped *TIntermAggregate::fold(TDiagnostics *diagnostics)
{
// Make sure that all params are constant before actual constant folding.
for (auto *param : *getSequence())
{
if (param->getAsConstantUnion() == nullptr)
{
- return nullptr;
+ return this;
}
}
TConstantUnion *constArray = nullptr;
if (isConstructor())
- constArray = TIntermConstantUnion::FoldAggregateConstructor(this, infoSink);
+ constArray = TIntermConstantUnion::FoldAggregateConstructor(this);
else
- constArray = TIntermConstantUnion::FoldAggregateBuiltIn(this, infoSink);
+ constArray = TIntermConstantUnion::FoldAggregateBuiltIn(this, diagnostics);
// Nodes may be constant folded without being qualified as constant.
- TQualifier resultQualifier = areChildrenConstQualified() ? EvqConst : EvqTemporary;
- return CreateFoldedNode(constArray, this, resultQualifier);
+ return CreateFoldedNode(constArray, this, getQualifier());
}
//
@@ -899,15 +1466,15 @@ TIntermTyped *TIntermAggregate::fold(TInfoSink &infoSink)
//
// Returns the constant value to keep using or nullptr.
//
-TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUnion *rightNode, TInfoSink &infoSink)
+TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op,
+ TIntermConstantUnion *rightNode,
+ TDiagnostics *diagnostics,
+ const TSourceLoc &line)
{
const TConstantUnion *leftArray = getUnionArrayPointer();
const TConstantUnion *rightArray = rightNode->getUnionArrayPointer();
- if (!leftArray)
- return nullptr;
- if (!rightArray)
- return nullptr;
+ ASSERT(leftArray && rightArray);
size_t objectSize = getType().getObjectSize();
@@ -919,48 +1486,45 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
else if (rightNode->getType().getObjectSize() > 1 && objectSize == 1)
{
// for a case like float f = 1.2 + vec4(2, 3, 4, 5);
- leftArray = Vectorize(*getUnionArrayPointer(), rightNode->getType().getObjectSize());
+ leftArray = Vectorize(*getUnionArrayPointer(), rightNode->getType().getObjectSize());
objectSize = rightNode->getType().getObjectSize();
}
TConstantUnion *resultArray = nullptr;
- switch(op)
+ switch (op)
{
- case EOpAdd:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] + rightArray[i];
- break;
- case EOpSub:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] - rightArray[i];
- break;
+ case EOpAdd:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] =
+ TConstantUnion::add(leftArray[i], rightArray[i], diagnostics, line);
+ break;
+ case EOpSub:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] =
+ TConstantUnion::sub(leftArray[i], rightArray[i], diagnostics, line);
+ break;
- case EOpMul:
- case EOpVectorTimesScalar:
- case EOpMatrixTimesScalar:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] * rightArray[i];
- break;
+ case EOpMul:
+ case EOpVectorTimesScalar:
+ case EOpMatrixTimesScalar:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] =
+ TConstantUnion::mul(leftArray[i], rightArray[i], diagnostics, line);
+ break;
- case EOpMatrixTimesMatrix:
+ case EOpMatrixTimesMatrix:
{
- if (getType().getBasicType() != EbtFloat ||
- rightNode->getBasicType() != EbtFloat)
- {
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Constant Folding cannot be done for matrix multiply");
- return nullptr;
- }
+ // TODO(jmadll): This code should check for overflows.
+ ASSERT(getType().getBasicType() == EbtFloat && rightNode->getBasicType() == EbtFloat);
- const int leftCols = getCols();
- const int leftRows = getRows();
- const int rightCols = rightNode->getType().getCols();
- const int rightRows = rightNode->getType().getRows();
+ const int leftCols = getCols();
+ const int leftRows = getRows();
+ const int rightCols = rightNode->getType().getCols();
+ const int rightRows = rightNode->getType().getRows();
const int resultCols = rightCols;
const int resultRows = leftRows;
@@ -975,94 +1539,155 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
resultArray[resultRows * column + row].setFConst(
resultArray[resultRows * column + row].getFConst() +
leftArray[i * leftRows + row].getFConst() *
- rightArray[column * rightRows + i].getFConst());
+ rightArray[column * rightRows + i].getFConst());
}
}
}
}
break;
- case EOpDiv:
- case EOpIMod:
+ case EOpDiv:
+ case EOpIMod:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
switch (getType().getBasicType())
{
- case EbtFloat:
- if (rightArray[i] == 0.0f)
- {
- infoSink.info.message(EPrefixWarning, getLine(),
- "Divide by zero error during constant folding");
- resultArray[i].setFConst(leftArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
- }
- else
+ case EbtFloat:
{
ASSERT(op == EOpDiv);
- resultArray[i].setFConst(leftArray[i].getFConst() / rightArray[i].getFConst());
- }
- break;
-
- case EbtInt:
- if (rightArray[i] == 0)
- {
- infoSink.info.message(EPrefixWarning, getLine(),
- "Divide by zero error during constant folding");
- resultArray[i].setIConst(INT_MAX);
- }
- else
- {
- if (op == EOpDiv)
+ float dividend = leftArray[i].getFConst();
+ float divisor = rightArray[i].getFConst();
+ if (divisor == 0.0f)
+ {
+ if (dividend == 0.0f)
+ {
+ diagnostics->warning(
+ getLine(),
+ "Zero divided by zero during constant folding generated NaN",
+ "/");
+ resultArray[i].setFConst(std::numeric_limits<float>::quiet_NaN());
+ }
+ else
+ {
+ diagnostics->warning(getLine(),
+ "Divide by zero during constant folding", "/");
+ bool negativeResult =
+ std::signbit(dividend) != std::signbit(divisor);
+ resultArray[i].setFConst(
+ negativeResult ? -std::numeric_limits<float>::infinity()
+ : std::numeric_limits<float>::infinity());
+ }
+ }
+ else if (gl::isInf(dividend) && gl::isInf(divisor))
{
- resultArray[i].setIConst(leftArray[i].getIConst() / rightArray[i].getIConst());
+ diagnostics->warning(getLine(),
+ "Infinity divided by infinity during constant "
+ "folding generated NaN",
+ "/");
+ resultArray[i].setFConst(std::numeric_limits<float>::quiet_NaN());
}
else
{
- ASSERT(op == EOpIMod);
- resultArray[i].setIConst(leftArray[i].getIConst() % rightArray[i].getIConst());
+ float result = dividend / divisor;
+ if (!gl::isInf(dividend) && gl::isInf(result))
+ {
+ diagnostics->warning(
+ getLine(), "Constant folded division overflowed to infinity",
+ "/");
+ }
+ resultArray[i].setFConst(result);
}
+ break;
}
- break;
+ case EbtInt:
+ if (rightArray[i] == 0)
+ {
+ diagnostics->warning(
+ getLine(), "Divide by zero error during constant folding", "/");
+ resultArray[i].setIConst(INT_MAX);
+ }
+ else
+ {
+ int lhs = leftArray[i].getIConst();
+ int divisor = rightArray[i].getIConst();
+ if (op == EOpDiv)
+ {
+ // Check for the special case where the minimum representable number
+ // is
+ // divided by -1. If left alone this leads to integer overflow in
+ // C++.
+ // ESSL 3.00.6 section 4.1.3 Integers:
+ // "However, for the case where the minimum representable value is
+ // divided by -1, it is allowed to return either the minimum
+ // representable value or the maximum representable value."
+ if (lhs == -0x7fffffff - 1 && divisor == -1)
+ {
+ resultArray[i].setIConst(0x7fffffff);
+ }
+ else
+ {
+ resultArray[i].setIConst(lhs / divisor);
+ }
+ }
+ else
+ {
+ ASSERT(op == EOpIMod);
+ if (lhs < 0 || divisor < 0)
+ {
+ // ESSL 3.00.6 section 5.9: Results of modulus are undefined
+ // when
+ // either one of the operands is negative.
+ diagnostics->warning(getLine(),
+ "Negative modulus operator operand "
+ "encountered during constant folding",
+ "%");
+ resultArray[i].setIConst(0);
+ }
+ else
+ {
+ resultArray[i].setIConst(lhs % divisor);
+ }
+ }
+ }
+ break;
- case EbtUInt:
- if (rightArray[i] == 0)
- {
- infoSink.info.message(EPrefixWarning, getLine(),
- "Divide by zero error during constant folding");
- resultArray[i].setUConst(UINT_MAX);
- }
- else
- {
- if (op == EOpDiv)
+ case EbtUInt:
+ if (rightArray[i] == 0)
{
- resultArray[i].setUConst(leftArray[i].getUConst() / rightArray[i].getUConst());
+ diagnostics->warning(
+ getLine(), "Divide by zero error during constant folding", "/");
+ resultArray[i].setUConst(UINT_MAX);
}
else
{
- ASSERT(op == EOpIMod);
- resultArray[i].setUConst(leftArray[i].getUConst() % rightArray[i].getUConst());
+ if (op == EOpDiv)
+ {
+ resultArray[i].setUConst(leftArray[i].getUConst() /
+ rightArray[i].getUConst());
+ }
+ else
+ {
+ ASSERT(op == EOpIMod);
+ resultArray[i].setUConst(leftArray[i].getUConst() %
+ rightArray[i].getUConst());
+ }
}
- }
- break;
+ break;
- default:
- infoSink.info.message(EPrefixInternalError, getLine(),
- "Constant folding cannot be done for \"/\"");
- return nullptr;
+ default:
+ UNREACHABLE();
+ return nullptr;
}
}
}
break;
- case EOpMatrixTimesVector:
+ case EOpMatrixTimesVector:
{
- if (rightNode->getBasicType() != EbtFloat)
- {
- infoSink.info.message(EPrefixInternalError, getLine(),
- "Constant Folding cannot be done for matrix times vector");
- return nullptr;
- }
+ // TODO(jmadll): This code should check for overflows.
+ ASSERT(rightNode->getBasicType() == EbtFloat);
const int matrixCols = getCols();
const int matrixRows = getRows();
@@ -1074,22 +1699,19 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
resultArray[matrixRow].setFConst(0.0f);
for (int col = 0; col < matrixCols; col++)
{
- resultArray[matrixRow].setFConst(resultArray[matrixRow].getFConst() +
- leftArray[col * matrixRows + matrixRow].getFConst() *
- rightArray[col].getFConst());
+ resultArray[matrixRow].setFConst(
+ resultArray[matrixRow].getFConst() +
+ leftArray[col * matrixRows + matrixRow].getFConst() *
+ rightArray[col].getFConst());
}
}
}
break;
- case EOpVectorTimesMatrix:
+ case EOpVectorTimesMatrix:
{
- if (getType().getBasicType() != EbtFloat)
- {
- infoSink.info.message(EPrefixInternalError, getLine(),
- "Constant Folding cannot be done for vector times matrix");
- return nullptr;
- }
+ // TODO(jmadll): This code should check for overflows.
+ ASSERT(getType().getBasicType() == EbtFloat);
const int matrixCols = rightNode->getType().getCols();
const int matrixRows = rightNode->getType().getRows();
@@ -1101,15 +1723,16 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
resultArray[matrixCol].setFConst(0.0f);
for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
{
- resultArray[matrixCol].setFConst(resultArray[matrixCol].getFConst() +
- leftArray[matrixRow].getFConst() *
- rightArray[matrixCol * matrixRows + matrixRow].getFConst());
+ resultArray[matrixCol].setFConst(
+ resultArray[matrixCol].getFConst() +
+ leftArray[matrixRow].getFConst() *
+ rightArray[matrixCol * matrixRows + matrixRow].getFConst());
}
}
}
break;
- case EOpLogicalAnd:
+ case EOpLogicalAnd:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
@@ -1119,7 +1742,7 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
}
break;
- case EOpLogicalOr:
+ case EOpLogicalOr:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
@@ -1129,79 +1752,74 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
}
break;
- case EOpLogicalXor:
+ case EOpLogicalXor:
{
+ ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
- switch (getType().getBasicType())
- {
- case EbtBool:
- resultArray[i].setBConst(leftArray[i] != rightArray[i]);
- break;
- default:
- UNREACHABLE();
- break;
- }
+ resultArray[i].setBConst(leftArray[i] != rightArray[i]);
}
}
break;
- case EOpBitwiseAnd:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] & rightArray[i];
- break;
- case EOpBitwiseXor:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] ^ rightArray[i];
- break;
- case EOpBitwiseOr:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] | rightArray[i];
- break;
- case EOpBitShiftLeft:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] << rightArray[i];
- break;
- case EOpBitShiftRight:
- resultArray = new TConstantUnion[objectSize];
- for (size_t i = 0; i < objectSize; i++)
- resultArray[i] = leftArray[i] >> rightArray[i];
- break;
+ case EOpBitwiseAnd:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] = leftArray[i] & rightArray[i];
+ break;
+ case EOpBitwiseXor:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] = leftArray[i] ^ rightArray[i];
+ break;
+ case EOpBitwiseOr:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] = leftArray[i] | rightArray[i];
+ break;
+ case EOpBitShiftLeft:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] =
+ TConstantUnion::lshift(leftArray[i], rightArray[i], diagnostics, line);
+ break;
+ case EOpBitShiftRight:
+ resultArray = new TConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++)
+ resultArray[i] =
+ TConstantUnion::rshift(leftArray[i], rightArray[i], diagnostics, line);
+ break;
- case EOpLessThan:
- ASSERT(objectSize == 1);
- resultArray = new TConstantUnion[1];
- resultArray->setBConst(*leftArray < *rightArray);
- break;
+ case EOpLessThan:
+ ASSERT(objectSize == 1);
+ resultArray = new TConstantUnion[1];
+ resultArray->setBConst(*leftArray < *rightArray);
+ break;
- case EOpGreaterThan:
- ASSERT(objectSize == 1);
- resultArray = new TConstantUnion[1];
- resultArray->setBConst(*leftArray > *rightArray);
- break;
+ case EOpGreaterThan:
+ ASSERT(objectSize == 1);
+ resultArray = new TConstantUnion[1];
+ resultArray->setBConst(*leftArray > *rightArray);
+ break;
- case EOpLessThanEqual:
- ASSERT(objectSize == 1);
- resultArray = new TConstantUnion[1];
- resultArray->setBConst(!(*leftArray > *rightArray));
- break;
+ case EOpLessThanEqual:
+ ASSERT(objectSize == 1);
+ resultArray = new TConstantUnion[1];
+ resultArray->setBConst(!(*leftArray > *rightArray));
+ break;
- case EOpGreaterThanEqual:
- ASSERT(objectSize == 1);
- resultArray = new TConstantUnion[1];
- resultArray->setBConst(!(*leftArray < *rightArray));
- break;
+ case EOpGreaterThanEqual:
+ ASSERT(objectSize == 1);
+ resultArray = new TConstantUnion[1];
+ resultArray->setBConst(!(*leftArray < *rightArray));
+ break;
- case EOpEqual:
- case EOpNotEqual:
+ case EOpEqual:
+ case EOpNotEqual:
{
resultArray = new TConstantUnion[1];
- bool equal = true;
+ bool equal = true;
for (size_t i = 0; i < objectSize; i++)
{
if (leftArray[i] != rightArray[i])
@@ -1221,38 +1839,29 @@ TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, TIntermConstantUn
}
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Invalid operator for constant folding");
- return nullptr;
+ default:
+ UNREACHABLE();
+ return nullptr;
}
return resultArray;
}
-//
-// The fold functions see if an operation on a constant can be done in place,
-// without generating run-time code.
-//
-// Returns the constant value to keep using or nullptr.
-//
-TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator op, TInfoSink &infoSink)
+// The fold functions do operations on a constant at GLSL compile time, without generating run-time
+// code. Returns the constant value to keep using. Nullptr should not be returned.
+TConstantUnion *TIntermConstantUnion::foldUnaryNonComponentWise(TOperator op)
{
- //
- // Do operations where the return type has a different number of components compared to the operand type.
- //
+ // Do operations where the return type may have a different number of components compared to the
+ // operand type.
const TConstantUnion *operandArray = getUnionArrayPointer();
- if (!operandArray)
- return nullptr;
+ ASSERT(operandArray);
- size_t objectSize = getType().getObjectSize();
+ size_t objectSize = getType().getObjectSize();
TConstantUnion *resultArray = nullptr;
switch (op)
{
- case EOpAny:
- if (getType().getBasicType() == EbtBool)
- {
+ case EOpAny:
+ ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion();
resultArray->setBConst(false);
for (size_t i = 0; i < objectSize; i++)
@@ -1264,16 +1873,9 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator
}
}
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpAll:
- if (getType().getBasicType() == EbtBool)
- {
+ case EOpAll:
+ ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion();
resultArray->setBConst(true);
for (size_t i = 0; i < objectSize; i++)
@@ -1285,89 +1887,55 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator
}
}
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpLength:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpLength:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion();
resultArray->setFConst(VectorLength(operandArray, objectSize));
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpTranspose:
- if (getType().getBasicType() == EbtFloat)
+ case EOpTranspose:
{
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion[objectSize];
angle::Matrix<float> result =
- GetMatrix(operandArray, getType().getNominalSize(), getType().getSecondarySize()).transpose();
+ GetMatrix(operandArray, getType().getRows(), getType().getCols()).transpose();
SetUnionArrayFromMatrix(result, resultArray);
break;
}
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpDeterminant:
- if (getType().getBasicType() == EbtFloat)
+ case EOpDeterminant:
{
+ ASSERT(getType().getBasicType() == EbtFloat);
unsigned int size = getType().getNominalSize();
ASSERT(size >= 2 && size <= 4);
resultArray = new TConstantUnion();
resultArray->setFConst(GetMatrix(operandArray, size).determinant());
break;
}
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpInverse:
- if (getType().getBasicType() == EbtFloat)
+ case EOpInverse:
{
+ ASSERT(getType().getBasicType() == EbtFloat);
unsigned int size = getType().getNominalSize();
ASSERT(size >= 2 && size <= 4);
- resultArray = new TConstantUnion[objectSize];
+ resultArray = new TConstantUnion[objectSize];
angle::Matrix<float> result = GetMatrix(operandArray, size).inverse();
SetUnionArrayFromMatrix(result, resultArray);
break;
}
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpPackSnorm2x16:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpPackSnorm2x16:
+ ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
- resultArray->setUConst(gl::packSnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
+ resultArray->setUConst(
+ gl::packSnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpUnpackSnorm2x16:
- if (getType().getBasicType() == EbtUInt)
+ case EOpUnpackSnorm2x16:
{
+ ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackSnorm2x16(operandArray[0].getUConst(), &f1, &f2);
@@ -1375,29 +1943,18 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator
resultArray[1].setFConst(f2);
break;
}
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpPackUnorm2x16:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpPackUnorm2x16:
+ ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
- resultArray->setUConst(gl::packUnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
+ resultArray->setUConst(
+ gl::packUnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpUnpackUnorm2x16:
- if (getType().getBasicType() == EbtUInt)
+ case EOpUnpackUnorm2x16:
{
+ ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackUnorm2x16(operandArray[0].getUConst(), &f1, &f2);
@@ -1405,29 +1962,18 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator
resultArray[1].setFConst(f2);
break;
}
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpPackHalf2x16:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpPackHalf2x16:
+ ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
- resultArray->setUConst(gl::packHalf2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
+ resultArray->setUConst(
+ gl::packHalf2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
- }
- else
- {
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- }
- case EOpUnpackHalf2x16:
- if (getType().getBasicType() == EbtUInt)
+ case EOpUnpackHalf2x16:
{
+ ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackHalf2x16(operandArray[0].getUConst(), &f1, &f2);
@@ -1435,274 +1981,301 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithDifferentReturnType(TOperator
resultArray[1].setFConst(f2);
break;
}
- else
+
+ case EOpPackUnorm4x8:
{
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
+ ASSERT(getType().getBasicType() == EbtFloat);
+ resultArray = new TConstantUnion();
+ resultArray->setUConst(
+ gl::PackUnorm4x8(operandArray[0].getFConst(), operandArray[1].getFConst(),
+ operandArray[2].getFConst(), operandArray[3].getFConst()));
+ break;
+ }
+ case EOpPackSnorm4x8:
+ {
+ ASSERT(getType().getBasicType() == EbtFloat);
+ resultArray = new TConstantUnion();
+ resultArray->setUConst(
+ gl::PackSnorm4x8(operandArray[0].getFConst(), operandArray[1].getFConst(),
+ operandArray[2].getFConst(), operandArray[3].getFConst()));
+ break;
+ }
+ case EOpUnpackUnorm4x8:
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ resultArray = new TConstantUnion[4];
+ float f[4];
+ gl::UnpackUnorm4x8(operandArray[0].getUConst(), f);
+ for (size_t i = 0; i < 4; ++i)
+ {
+ resultArray[i].setFConst(f[i]);
+ }
+ break;
+ }
+ case EOpUnpackSnorm4x8:
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ resultArray = new TConstantUnion[4];
+ float f[4];
+ gl::UnpackSnorm4x8(operandArray[0].getUConst(), f);
+ for (size_t i = 0; i < 4; ++i)
+ {
+ resultArray[i].setFConst(f[i]);
+ }
+ break;
}
- break;
- default:
- break;
+ default:
+ UNREACHABLE();
+ break;
}
return resultArray;
}
-TConstantUnion *TIntermConstantUnion::foldUnaryWithSameReturnType(TOperator op, TInfoSink &infoSink)
+TConstantUnion *TIntermConstantUnion::foldUnaryComponentWise(TOperator op,
+ TDiagnostics *diagnostics)
{
- //
- // Do unary operations where the return type is the same as operand type.
- //
+ // Do unary operations where each component of the result is computed based on the corresponding
+ // component of the operand. Also folds normalize, though the divisor in that case takes all
+ // components into account.
const TConstantUnion *operandArray = getUnionArrayPointer();
- if (!operandArray)
- return nullptr;
+ ASSERT(operandArray);
size_t objectSize = getType().getObjectSize();
TConstantUnion *resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
- switch(op)
+ switch (op)
{
- case EOpNegative:
- switch (getType().getBasicType())
- {
- case EbtFloat:
- resultArray[i].setFConst(-operandArray[i].getFConst());
- break;
- case EbtInt:
- resultArray[i].setIConst(-operandArray[i].getIConst());
- break;
- case EbtUInt:
- resultArray[i].setUConst(static_cast<unsigned int>(
- -static_cast<int>(operandArray[i].getUConst())));
+ case EOpNegative:
+ switch (getType().getBasicType())
+ {
+ case EbtFloat:
+ resultArray[i].setFConst(-operandArray[i].getFConst());
+ break;
+ case EbtInt:
+ if (operandArray[i] == std::numeric_limits<int>::min())
+ {
+ // The minimum representable integer doesn't have a positive
+ // counterpart, rather the negation overflows and in ESSL is supposed to
+ // wrap back to the minimum representable integer. Make sure that we
+ // don't actually let the negation overflow, which has undefined
+ // behavior in C++.
+ resultArray[i].setIConst(std::numeric_limits<int>::min());
+ }
+ else
+ {
+ resultArray[i].setIConst(-operandArray[i].getIConst());
+ }
+ break;
+ case EbtUInt:
+ if (operandArray[i] == 0x80000000u)
+ {
+ resultArray[i].setUConst(0x80000000u);
+ }
+ else
+ {
+ resultArray[i].setUConst(static_cast<unsigned int>(
+ -static_cast<int>(operandArray[i].getUConst())));
+ }
+ break;
+ default:
+ UNREACHABLE();
+ return nullptr;
+ }
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpPositive:
- switch (getType().getBasicType())
- {
- case EbtFloat:
- resultArray[i].setFConst(operandArray[i].getFConst());
- break;
- case EbtInt:
- resultArray[i].setIConst(operandArray[i].getIConst());
- break;
- case EbtUInt:
- resultArray[i].setUConst(static_cast<unsigned int>(
- static_cast<int>(operandArray[i].getUConst())));
+ case EOpPositive:
+ switch (getType().getBasicType())
+ {
+ case EbtFloat:
+ resultArray[i].setFConst(operandArray[i].getFConst());
+ break;
+ case EbtInt:
+ resultArray[i].setIConst(operandArray[i].getIConst());
+ break;
+ case EbtUInt:
+ resultArray[i].setUConst(static_cast<unsigned int>(
+ static_cast<int>(operandArray[i].getUConst())));
+ break;
+ default:
+ UNREACHABLE();
+ return nullptr;
+ }
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpLogicalNot:
- // this code is written for possible future use,
- // will not get executed currently
- switch (getType().getBasicType())
- {
- case EbtBool:
- resultArray[i].setBConst(!operandArray[i].getBConst());
+ case EOpLogicalNot:
+ switch (getType().getBasicType())
+ {
+ case EbtBool:
+ resultArray[i].setBConst(!operandArray[i].getBConst());
+ break;
+ default:
+ UNREACHABLE();
+ return nullptr;
+ }
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpBitwiseNot:
- switch (getType().getBasicType())
- {
- case EbtInt:
- resultArray[i].setIConst(~operandArray[i].getIConst());
- break;
- case EbtUInt:
- resultArray[i].setUConst(~operandArray[i].getUConst());
+ case EOpBitwiseNot:
+ switch (getType().getBasicType())
+ {
+ case EbtInt:
+ resultArray[i].setIConst(~operandArray[i].getIConst());
+ break;
+ case EbtUInt:
+ resultArray[i].setUConst(~operandArray[i].getUConst());
+ break;
+ default:
+ UNREACHABLE();
+ return nullptr;
+ }
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpRadians:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpRadians:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setFConst(kDegreesToRadiansMultiplier * operandArray[i].getFConst());
break;
- }
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- case EOpDegrees:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpDegrees:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setFConst(kRadiansToDegreesMultiplier * operandArray[i].getFConst());
break;
- }
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
-
- case EOpSin:
- if (!foldFloatTypeUnary(operandArray[i], &sinf, infoSink, &resultArray[i]))
- return nullptr;
- break;
-
- case EOpCos:
- if (!foldFloatTypeUnary(operandArray[i], &cosf, infoSink, &resultArray[i]))
- return nullptr;
- break;
- case EOpTan:
- if (!foldFloatTypeUnary(operandArray[i], &tanf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpSin:
+ foldFloatTypeUnary(operandArray[i], &sinf, &resultArray[i]);
+ break;
- case EOpAsin:
- // For asin(x), results are undefined if |x| > 1, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && fabsf(operandArray[i].getFConst()) > 1.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &asinf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpCos:
+ foldFloatTypeUnary(operandArray[i], &cosf, &resultArray[i]);
+ break;
- case EOpAcos:
- // For acos(x), results are undefined if |x| > 1, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && fabsf(operandArray[i].getFConst()) > 1.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &acosf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpTan:
+ foldFloatTypeUnary(operandArray[i], &tanf, &resultArray[i]);
+ break;
- case EOpAtan:
- if (!foldFloatTypeUnary(operandArray[i], &atanf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpAsin:
+ // For asin(x), results are undefined if |x| > 1, we are choosing to set result to
+ // 0.
+ if (fabsf(operandArray[i].getFConst()) > 1.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &asinf, &resultArray[i]);
+ break;
- case EOpSinh:
- if (!foldFloatTypeUnary(operandArray[i], &sinhf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpAcos:
+ // For acos(x), results are undefined if |x| > 1, we are choosing to set result to
+ // 0.
+ if (fabsf(operandArray[i].getFConst()) > 1.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &acosf, &resultArray[i]);
+ break;
- case EOpCosh:
- if (!foldFloatTypeUnary(operandArray[i], &coshf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpAtan:
+ foldFloatTypeUnary(operandArray[i], &atanf, &resultArray[i]);
+ break;
- case EOpTanh:
- if (!foldFloatTypeUnary(operandArray[i], &tanhf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpSinh:
+ foldFloatTypeUnary(operandArray[i], &sinhf, &resultArray[i]);
+ break;
- case EOpAsinh:
- if (!foldFloatTypeUnary(operandArray[i], &asinhf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpCosh:
+ foldFloatTypeUnary(operandArray[i], &coshf, &resultArray[i]);
+ break;
- case EOpAcosh:
- // For acosh(x), results are undefined if x < 1, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && operandArray[i].getFConst() < 1.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &acoshf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpTanh:
+ foldFloatTypeUnary(operandArray[i], &tanhf, &resultArray[i]);
+ break;
- case EOpAtanh:
- // For atanh(x), results are undefined if |x| >= 1, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && fabsf(operandArray[i].getFConst()) >= 1.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &atanhf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpAsinh:
+ foldFloatTypeUnary(operandArray[i], &asinhf, &resultArray[i]);
+ break;
- case EOpAbs:
- switch (getType().getBasicType())
- {
- case EbtFloat:
- resultArray[i].setFConst(fabsf(operandArray[i].getFConst()));
+ case EOpAcosh:
+ // For acosh(x), results are undefined if x < 1, we are choosing to set result to 0.
+ if (operandArray[i].getFConst() < 1.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &acoshf, &resultArray[i]);
break;
- case EbtInt:
- resultArray[i].setIConst(abs(operandArray[i].getIConst()));
+
+ case EOpAtanh:
+ // For atanh(x), results are undefined if |x| >= 1, we are choosing to set result to
+ // 0.
+ if (fabsf(operandArray[i].getFConst()) >= 1.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &atanhf, &resultArray[i]);
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpSign:
- switch (getType().getBasicType())
- {
- case EbtFloat:
+ case EOpAbs:
+ switch (getType().getBasicType())
{
- float fConst = operandArray[i].getFConst();
- float fResult = 0.0f;
- if (fConst > 0.0f)
- fResult = 1.0f;
- else if (fConst < 0.0f)
- fResult = -1.0f;
- resultArray[i].setFConst(fResult);
+ case EbtFloat:
+ resultArray[i].setFConst(fabsf(operandArray[i].getFConst()));
+ break;
+ case EbtInt:
+ resultArray[i].setIConst(abs(operandArray[i].getIConst()));
+ break;
+ default:
+ UNREACHABLE();
+ return nullptr;
}
break;
- case EbtInt:
+
+ case EOpSign:
+ switch (getType().getBasicType())
{
- int iConst = operandArray[i].getIConst();
- int iResult = 0;
- if (iConst > 0)
- iResult = 1;
- else if (iConst < 0)
- iResult = -1;
- resultArray[i].setIConst(iResult);
+ case EbtFloat:
+ {
+ float fConst = operandArray[i].getFConst();
+ float fResult = 0.0f;
+ if (fConst > 0.0f)
+ fResult = 1.0f;
+ else if (fConst < 0.0f)
+ fResult = -1.0f;
+ resultArray[i].setFConst(fResult);
+ break;
+ }
+ case EbtInt:
+ {
+ int iConst = operandArray[i].getIConst();
+ int iResult = 0;
+ if (iConst > 0)
+ iResult = 1;
+ else if (iConst < 0)
+ iResult = -1;
+ resultArray[i].setIConst(iResult);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ return nullptr;
}
break;
- default:
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- }
- break;
- case EOpFloor:
- if (!foldFloatTypeUnary(operandArray[i], &floorf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpFloor:
+ foldFloatTypeUnary(operandArray[i], &floorf, &resultArray[i]);
+ break;
- case EOpTrunc:
- if (!foldFloatTypeUnary(operandArray[i], &truncf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpTrunc:
+ foldFloatTypeUnary(operandArray[i], &truncf, &resultArray[i]);
+ break;
- case EOpRound:
- if (!foldFloatTypeUnary(operandArray[i], &roundf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpRound:
+ foldFloatTypeUnary(operandArray[i], &roundf, &resultArray[i]);
+ break;
- case EOpRoundEven:
- if (getType().getBasicType() == EbtFloat)
+ case EOpRoundEven:
{
+ ASSERT(getType().getBasicType() == EbtFloat);
float x = operandArray[i].getFConst();
float result;
float fractPart = modff(x, &result);
@@ -1713,197 +2286,226 @@ TConstantUnion *TIntermConstantUnion::foldUnaryWithSameReturnType(TOperator op,
resultArray[i].setFConst(result);
break;
}
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- case EOpCeil:
- if (!foldFloatTypeUnary(operandArray[i], &ceilf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpCeil:
+ foldFloatTypeUnary(operandArray[i], &ceilf, &resultArray[i]);
+ break;
- case EOpFract:
- if (getType().getBasicType() == EbtFloat)
+ case EOpFract:
{
+ ASSERT(getType().getBasicType() == EbtFloat);
float x = operandArray[i].getFConst();
resultArray[i].setFConst(x - floorf(x));
break;
}
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- case EOpIsNan:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpIsNan:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setBConst(gl::isNaN(operandArray[0].getFConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpIsInf:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpIsInf:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setBConst(gl::isInf(operandArray[0].getFConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpFloatBitsToInt:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpFloatBitsToInt:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setIConst(gl::bitCast<int32_t>(operandArray[0].getFConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpFloatBitsToUint:
- if (getType().getBasicType() == EbtFloat)
- {
+ case EOpFloatBitsToUint:
+ ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setUConst(gl::bitCast<uint32_t>(operandArray[0].getFConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpIntBitsToFloat:
- if (getType().getBasicType() == EbtInt)
- {
+ case EOpIntBitsToFloat:
+ ASSERT(getType().getBasicType() == EbtInt);
resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getIConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpUintBitsToFloat:
- if (getType().getBasicType() == EbtUInt)
- {
+ case EOpUintBitsToFloat:
+ ASSERT(getType().getBasicType() == EbtUInt);
resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getUConst()));
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- case EOpExp:
- if (!foldFloatTypeUnary(operandArray[i], &expf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpExp:
+ foldFloatTypeUnary(operandArray[i], &expf, &resultArray[i]);
+ break;
- case EOpLog:
- // For log(x), results are undefined if x <= 0, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && operandArray[i].getFConst() <= 0.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &logf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpLog:
+ // For log(x), results are undefined if x <= 0, we are choosing to set result to 0.
+ if (operandArray[i].getFConst() <= 0.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]);
+ break;
- case EOpExp2:
- if (!foldFloatTypeUnary(operandArray[i], &exp2f, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpExp2:
+ foldFloatTypeUnary(operandArray[i], &exp2f, &resultArray[i]);
+ break;
- case EOpLog2:
- // For log2(x), results are undefined if x <= 0, we are choosing to set result to 0.
- // And log2f is not available on some plarforms like old android, so just using log(x)/log(2) here.
- if (getType().getBasicType() == EbtFloat && operandArray[i].getFConst() <= 0.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &logf, infoSink, &resultArray[i]))
- return nullptr;
- else
- resultArray[i].setFConst(resultArray[i].getFConst() / logf(2.0f));
- break;
+ case EOpLog2:
+ // For log2(x), results are undefined if x <= 0, we are choosing to set result to 0.
+ // And log2f is not available on some plarforms like old android, so just using
+ // log(x)/log(2) here.
+ if (operandArray[i].getFConst() <= 0.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ {
+ foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]);
+ resultArray[i].setFConst(resultArray[i].getFConst() / logf(2.0f));
+ }
+ break;
- case EOpSqrt:
- // For sqrt(x), results are undefined if x < 0, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && operandArray[i].getFConst() < 0.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &sqrtf, infoSink, &resultArray[i]))
- return nullptr;
- break;
+ case EOpSqrt:
+ // For sqrt(x), results are undefined if x < 0, we are choosing to set result to 0.
+ if (operandArray[i].getFConst() < 0.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]);
+ break;
- case EOpInverseSqrt:
- // There is no stdlib built-in function equavalent for GLES built-in inversesqrt(),
- // so getting the square root first using builtin function sqrt() and then taking its inverse.
- // Also, for inversesqrt(x), results are undefined if x <= 0, we are choosing to set result to 0.
- if (getType().getBasicType() == EbtFloat && operandArray[i].getFConst() <= 0.0f)
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink, &resultArray[i]);
- else if (!foldFloatTypeUnary(operandArray[i], &sqrtf, infoSink, &resultArray[i]))
- return nullptr;
- else
- resultArray[i].setFConst(1.0f / resultArray[i].getFConst());
- break;
+ case EOpInverseSqrt:
+ // There is no stdlib built-in function equavalent for GLES built-in inversesqrt(),
+ // so getting the square root first using builtin function sqrt() and then taking
+ // its inverse.
+ // Also, for inversesqrt(x), results are undefined if x <= 0, we are choosing to set
+ // result to 0.
+ if (operandArray[i].getFConst() <= 0.0f)
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
+ else
+ {
+ foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]);
+ resultArray[i].setFConst(1.0f / resultArray[i].getFConst());
+ }
+ break;
- case EOpVectorLogicalNot:
- if (getType().getBasicType() == EbtBool)
- {
+ case EOpLogicalNotComponentWise:
+ ASSERT(getType().getBasicType() == EbtBool);
resultArray[i].setBConst(!operandArray[i].getBConst());
break;
- }
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return nullptr;
- case EOpNormalize:
- if (getType().getBasicType() == EbtFloat)
+ case EOpNormalize:
{
- float x = operandArray[i].getFConst();
+ ASSERT(getType().getBasicType() == EbtFloat);
+ float x = operandArray[i].getFConst();
float length = VectorLength(operandArray, objectSize);
if (length)
resultArray[i].setFConst(x / length);
else
- UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), infoSink,
- &resultArray[i]);
+ UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
+ diagnostics, &resultArray[i]);
break;
}
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
-
- case EOpDFdx:
- case EOpDFdy:
- case EOpFwidth:
- if (getType().getBasicType() == EbtFloat)
+ case EOpBitfieldReverse:
+ {
+ uint32_t value;
+ if (getType().getBasicType() == EbtInt)
+ {
+ value = static_cast<uint32_t>(operandArray[i].getIConst());
+ }
+ else
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ value = operandArray[i].getUConst();
+ }
+ uint32_t result = gl::BitfieldReverse(value);
+ if (getType().getBasicType() == EbtInt)
+ {
+ resultArray[i].setIConst(static_cast<int32_t>(result));
+ }
+ else
+ {
+ resultArray[i].setUConst(result);
+ }
+ break;
+ }
+ case EOpBitCount:
+ {
+ uint32_t value;
+ if (getType().getBasicType() == EbtInt)
+ {
+ value = static_cast<uint32_t>(operandArray[i].getIConst());
+ }
+ else
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ value = operandArray[i].getUConst();
+ }
+ int result = gl::BitCount(value);
+ resultArray[i].setIConst(result);
+ break;
+ }
+ case EOpFindLSB:
+ {
+ uint32_t value;
+ if (getType().getBasicType() == EbtInt)
+ {
+ value = static_cast<uint32_t>(operandArray[i].getIConst());
+ }
+ else
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ value = operandArray[i].getUConst();
+ }
+ resultArray[i].setIConst(gl::FindLSB(value));
+ break;
+ }
+ case EOpFindMSB:
{
+ uint32_t value;
+ if (getType().getBasicType() == EbtInt)
+ {
+ int intValue = operandArray[i].getIConst();
+ value = static_cast<uint32_t>(intValue);
+ if (intValue < 0)
+ {
+ // Look for zero instead of one in value. This also handles the intValue ==
+ // -1 special case, where the return value needs to be -1.
+ value = ~value;
+ }
+ }
+ else
+ {
+ ASSERT(getType().getBasicType() == EbtUInt);
+ value = operandArray[i].getUConst();
+ }
+ resultArray[i].setIConst(gl::FindMSB(value));
+ break;
+ }
+ case EOpDFdx:
+ case EOpDFdy:
+ case EOpFwidth:
+ ASSERT(getType().getBasicType() == EbtFloat);
// Derivatives of constant arguments should be 0.
resultArray[i].setFConst(0.0f);
break;
- }
- infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
- return nullptr;
- default:
- return nullptr;
+ default:
+ return nullptr;
}
}
return resultArray;
}
-bool TIntermConstantUnion::foldFloatTypeUnary(const TConstantUnion &parameter, FloatTypeUnaryFunc builtinFunc,
- TInfoSink &infoSink, TConstantUnion *result) const
+void TIntermConstantUnion::foldFloatTypeUnary(const TConstantUnion &parameter,
+ FloatTypeUnaryFunc builtinFunc,
+ TConstantUnion *result) const
{
ASSERT(builtinFunc);
- if (getType().getBasicType() == EbtFloat)
- {
- result->setFConst(builtinFunc(parameter.getFConst()));
- return true;
- }
-
- infoSink.info.message(
- EPrefixInternalError, getLine(),
- "Unary operation not folded into constant");
- return false;
+ ASSERT(getType().getBasicType() == EbtFloat);
+ result->setFConst(builtinFunc(parameter.getFConst()));
}
// static
-TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate *aggregate,
- TInfoSink &infoSink)
+TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate *aggregate)
{
ASSERT(aggregate->getSequence()->size() > 0u);
size_t resultSize = aggregate->getType().getObjectSize();
@@ -1958,7 +2560,7 @@ TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate
int argumentCols = argumentConstant->getType().getCols();
int argumentRows = argumentConstant->getType().getRows();
int resultCols = aggregate->getType().getCols();
- int resultRows = aggregate->getType().getRows();
+ int resultRows = aggregate->getType().getRows();
for (int col = 0; col < resultCols; ++col)
{
for (int row = 0; row < resultRows; ++row)
@@ -2001,664 +2603,728 @@ TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate
return resultArray;
}
+bool TIntermAggregate::CanFoldAggregateBuiltInOp(TOperator op)
+{
+ switch (op)
+ {
+ case EOpAtan:
+ case EOpPow:
+ case EOpMod:
+ case EOpMin:
+ case EOpMax:
+ case EOpClamp:
+ case EOpMix:
+ case EOpStep:
+ case EOpSmoothStep:
+ case EOpLdexp:
+ case EOpMulMatrixComponentWise:
+ case EOpOuterProduct:
+ case EOpEqualComponentWise:
+ case EOpNotEqualComponentWise:
+ case EOpLessThanComponentWise:
+ case EOpLessThanEqualComponentWise:
+ case EOpGreaterThanComponentWise:
+ case EOpGreaterThanEqualComponentWise:
+ case EOpDistance:
+ case EOpDot:
+ case EOpCross:
+ case EOpFaceforward:
+ case EOpReflect:
+ case EOpRefract:
+ case EOpBitfieldExtract:
+ case EOpBitfieldInsert:
+ return true;
+ default:
+ return false;
+ }
+}
+
// static
-TConstantUnion *TIntermConstantUnion::FoldAggregateBuiltIn(TIntermAggregate *aggregate, TInfoSink &infoSink)
+TConstantUnion *TIntermConstantUnion::FoldAggregateBuiltIn(TIntermAggregate *aggregate,
+ TDiagnostics *diagnostics)
{
- TOperator op = aggregate->getOp();
- TIntermSequence *sequence = aggregate->getSequence();
- unsigned int paramsCount = static_cast<unsigned int>(sequence->size());
- std::vector<const TConstantUnion *> unionArrays(paramsCount);
- std::vector<size_t> objectSizes(paramsCount);
+ TOperator op = aggregate->getOp();
+ TIntermSequence *arguments = aggregate->getSequence();
+ unsigned int argsCount = static_cast<unsigned int>(arguments->size());
+ std::vector<const TConstantUnion *> unionArrays(argsCount);
+ std::vector<size_t> objectSizes(argsCount);
size_t maxObjectSize = 0;
TBasicType basicType = EbtVoid;
TSourceLoc loc;
- for (unsigned int i = 0; i < paramsCount; i++)
+ for (unsigned int i = 0; i < argsCount; i++)
{
- TIntermConstantUnion *paramConstant = (*sequence)[i]->getAsConstantUnion();
- ASSERT(paramConstant != nullptr); // Should be checked already.
+ TIntermConstantUnion *argConstant = (*arguments)[i]->getAsConstantUnion();
+ ASSERT(argConstant != nullptr); // Should be checked already.
if (i == 0)
{
- basicType = paramConstant->getType().getBasicType();
- loc = paramConstant->getLine();
+ basicType = argConstant->getType().getBasicType();
+ loc = argConstant->getLine();
}
- unionArrays[i] = paramConstant->getUnionArrayPointer();
- objectSizes[i] = paramConstant->getType().getObjectSize();
+ unionArrays[i] = argConstant->getUnionArrayPointer();
+ objectSizes[i] = argConstant->getType().getObjectSize();
if (objectSizes[i] > maxObjectSize)
maxObjectSize = objectSizes[i];
}
- if (!(*sequence)[0]->getAsTyped()->isMatrix())
+ if (!(*arguments)[0]->getAsTyped()->isMatrix() && aggregate->getOp() != EOpOuterProduct)
{
- for (unsigned int i = 0; i < paramsCount; i++)
+ for (unsigned int i = 0; i < argsCount; i++)
if (objectSizes[i] != maxObjectSize)
unionArrays[i] = Vectorize(*unionArrays[i], maxObjectSize);
}
TConstantUnion *resultArray = nullptr;
- if (paramsCount == 2)
+
+ switch (op)
{
- //
- // Binary built-in
- //
- switch (op)
+ case EOpAtan:
{
- case EOpAtan:
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- if (basicType == EbtFloat)
- {
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float y = unionArrays[0][i].getFConst();
- float x = unionArrays[1][i].getFConst();
- // Results are undefined if x and y are both 0.
- if (x == 0.0f && y == 0.0f)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else
- resultArray[i].setFConst(atan2f(y, x));
- }
- }
+ float y = unionArrays[0][i].getFConst();
+ float x = unionArrays[1][i].getFConst();
+ // Results are undefined if x and y are both 0.
+ if (x == 0.0f && y == 0.0f)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
else
- UNREACHABLE();
+ resultArray[i].setFConst(atan2f(y, x));
}
break;
+ }
- case EOpPow:
+ case EOpPow:
+ {
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- if (basicType == EbtFloat)
- {
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float x = unionArrays[0][i].getFConst();
- float y = unionArrays[1][i].getFConst();
- // Results are undefined if x < 0.
- // Results are undefined if x = 0 and y <= 0.
- if (x < 0.0f)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else if (x == 0.0f && y <= 0.0f)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else
- resultArray[i].setFConst(powf(x, y));
- }
- }
+ float x = unionArrays[0][i].getFConst();
+ float y = unionArrays[1][i].getFConst();
+ // Results are undefined if x < 0.
+ // Results are undefined if x = 0 and y <= 0.
+ if (x < 0.0f)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
+ else if (x == 0.0f && y <= 0.0f)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
else
- UNREACHABLE();
+ resultArray[i].setFConst(powf(x, y));
}
break;
+ }
- case EOpMod:
+ case EOpMod:
+ {
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- if (basicType == EbtFloat)
- {
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float x = unionArrays[0][i].getFConst();
- float y = unionArrays[1][i].getFConst();
- resultArray[i].setFConst(x - y * floorf(x / y));
- }
- }
- else
- UNREACHABLE();
+ float x = unionArrays[0][i].getFConst();
+ float y = unionArrays[1][i].getFConst();
+ resultArray[i].setFConst(x - y * floorf(x / y));
}
break;
+ }
- case EOpMin:
+ case EOpMin:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setFConst(std::min(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
+ case EbtFloat:
+ resultArray[i].setFConst(
+ std::min(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
break;
- case EbtInt:
- resultArray[i].setIConst(std::min(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
+ case EbtInt:
+ resultArray[i].setIConst(
+ std::min(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
break;
- case EbtUInt:
- resultArray[i].setUConst(std::min(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
+ case EbtUInt:
+ resultArray[i].setUConst(
+ std::min(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpMax:
+ case EOpMax:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setFConst(std::max(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
+ case EbtFloat:
+ resultArray[i].setFConst(
+ std::max(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
break;
- case EbtInt:
- resultArray[i].setIConst(std::max(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
+ case EbtInt:
+ resultArray[i].setIConst(
+ std::max(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
break;
- case EbtUInt:
- resultArray[i].setUConst(std::max(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
+ case EbtUInt:
+ resultArray[i].setUConst(
+ std::max(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpStep:
- {
- if (basicType == EbtFloat)
- {
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- resultArray[i].setFConst(unionArrays[1][i].getFConst() < unionArrays[0][i].getFConst() ? 0.0f : 1.0f);
- }
- else
- UNREACHABLE();
- }
+ case EOpStep:
+ {
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
+ resultArray[i].setFConst(
+ unionArrays[1][i].getFConst() < unionArrays[0][i].getFConst() ? 0.0f : 1.0f);
break;
+ }
- case EOpLessThan:
+ case EOpLessThanComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() < unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() <
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() < unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() <
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() < unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() <
+ unionArrays[1][i].getUConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpLessThanEqual:
+ case EOpLessThanEqualComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() <= unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() <=
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() <= unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() <=
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() <= unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() <=
+ unionArrays[1][i].getUConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpGreaterThan:
+ case EOpGreaterThanComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() > unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() >
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() > unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() >
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() > unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() >
+ unionArrays[1][i].getUConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
-
- case EOpGreaterThanEqual:
+ }
+ case EOpGreaterThanEqualComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() >= unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() >=
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() >= unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() >=
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() >= unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() >=
+ unionArrays[1][i].getUConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
- break;
+ }
+ break;
- case EOpVectorEqual:
+ case EOpEqualComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() == unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() ==
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() == unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() ==
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() == unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() ==
+ unionArrays[1][i].getUConst());
break;
- case EbtBool:
- resultArray[i].setBConst(unionArrays[0][i].getBConst() == unionArrays[1][i].getBConst());
+ case EbtBool:
+ resultArray[i].setBConst(unionArrays[0][i].getBConst() ==
+ unionArrays[1][i].getBConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpVectorNotEqual:
+ case EOpNotEqualComponentWise:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
- {
- case EbtFloat:
- resultArray[i].setBConst(unionArrays[0][i].getFConst() != unionArrays[1][i].getFConst());
+ case EbtFloat:
+ resultArray[i].setBConst(unionArrays[0][i].getFConst() !=
+ unionArrays[1][i].getFConst());
break;
- case EbtInt:
- resultArray[i].setBConst(unionArrays[0][i].getIConst() != unionArrays[1][i].getIConst());
+ case EbtInt:
+ resultArray[i].setBConst(unionArrays[0][i].getIConst() !=
+ unionArrays[1][i].getIConst());
break;
- case EbtUInt:
- resultArray[i].setBConst(unionArrays[0][i].getUConst() != unionArrays[1][i].getUConst());
+ case EbtUInt:
+ resultArray[i].setBConst(unionArrays[0][i].getUConst() !=
+ unionArrays[1][i].getUConst());
break;
- case EbtBool:
- resultArray[i].setBConst(unionArrays[0][i].getBConst() != unionArrays[1][i].getBConst());
+ case EbtBool:
+ resultArray[i].setBConst(unionArrays[0][i].getBConst() !=
+ unionArrays[1][i].getBConst());
break;
- default:
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpDistance:
- if (basicType == EbtFloat)
+ case EOpDistance:
+ {
+ ASSERT(basicType == EbtFloat);
+ TConstantUnion *distanceArray = new TConstantUnion[maxObjectSize];
+ resultArray = new TConstantUnion();
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- TConstantUnion *distanceArray = new TConstantUnion[maxObjectSize];
- resultArray = new TConstantUnion();
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float x = unionArrays[0][i].getFConst();
- float y = unionArrays[1][i].getFConst();
- distanceArray[i].setFConst(x - y);
- }
- resultArray->setFConst(VectorLength(distanceArray, maxObjectSize));
+ float x = unionArrays[0][i].getFConst();
+ float y = unionArrays[1][i].getFConst();
+ distanceArray[i].setFConst(x - y);
}
- else
- UNREACHABLE();
+ resultArray->setFConst(VectorLength(distanceArray, maxObjectSize));
break;
+ }
- case EOpDot:
-
- if (basicType == EbtFloat)
- {
- resultArray = new TConstantUnion();
- resultArray->setFConst(VectorDotProduct(unionArrays[0], unionArrays[1], maxObjectSize));
- }
- else
- UNREACHABLE();
+ case EOpDot:
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion();
+ resultArray->setFConst(VectorDotProduct(unionArrays[0], unionArrays[1], maxObjectSize));
break;
- case EOpCross:
- if (basicType == EbtFloat && maxObjectSize == 3)
- {
- resultArray = new TConstantUnion[maxObjectSize];
- float x0 = unionArrays[0][0].getFConst();
- float x1 = unionArrays[0][1].getFConst();
- float x2 = unionArrays[0][2].getFConst();
- float y0 = unionArrays[1][0].getFConst();
- float y1 = unionArrays[1][1].getFConst();
- float y2 = unionArrays[1][2].getFConst();
- resultArray[0].setFConst(x1 * y2 - y1 * x2);
- resultArray[1].setFConst(x2 * y0 - y2 * x0);
- resultArray[2].setFConst(x0 * y1 - y0 * x1);
- }
- else
- UNREACHABLE();
+ case EOpCross:
+ {
+ ASSERT(basicType == EbtFloat && maxObjectSize == 3);
+ resultArray = new TConstantUnion[maxObjectSize];
+ float x0 = unionArrays[0][0].getFConst();
+ float x1 = unionArrays[0][1].getFConst();
+ float x2 = unionArrays[0][2].getFConst();
+ float y0 = unionArrays[1][0].getFConst();
+ float y1 = unionArrays[1][1].getFConst();
+ float y2 = unionArrays[1][2].getFConst();
+ resultArray[0].setFConst(x1 * y2 - y1 * x2);
+ resultArray[1].setFConst(x2 * y0 - y2 * x0);
+ resultArray[2].setFConst(x0 * y1 - y0 * x1);
break;
+ }
- case EOpReflect:
- if (basicType == EbtFloat)
+ case EOpReflect:
+ {
+ ASSERT(basicType == EbtFloat);
+ // genType reflect (genType I, genType N) :
+ // For the incident vector I and surface orientation N, returns the reflection
+ // direction:
+ // I - 2 * dot(N, I) * N.
+ resultArray = new TConstantUnion[maxObjectSize];
+ float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- // genType reflect (genType I, genType N) :
- // For the incident vector I and surface orientation N, returns the reflection direction:
- // I - 2 * dot(N, I) * N.
- resultArray = new TConstantUnion[maxObjectSize];
- float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float result = unionArrays[0][i].getFConst() -
- 2.0f * dotProduct * unionArrays[1][i].getFConst();
- resultArray[i].setFConst(result);
- }
+ float result = unionArrays[0][i].getFConst() -
+ 2.0f * dotProduct * unionArrays[1][i].getFConst();
+ resultArray[i].setFConst(result);
}
- else
- UNREACHABLE();
break;
+ }
- case EOpMul:
- if (basicType == EbtFloat && (*sequence)[0]->getAsTyped()->isMatrix() &&
- (*sequence)[1]->getAsTyped()->isMatrix())
- {
- // Perform component-wise matrix multiplication.
- resultArray = new TConstantUnion[maxObjectSize];
- int size = (*sequence)[0]->getAsTyped()->getNominalSize();
- angle::Matrix<float> result =
- GetMatrix(unionArrays[0], size).compMult(GetMatrix(unionArrays[1], size));
- SetUnionArrayFromMatrix(result, resultArray);
- }
- else
- UNREACHABLE();
+ case EOpMulMatrixComponentWise:
+ {
+ ASSERT(basicType == EbtFloat && (*arguments)[0]->getAsTyped()->isMatrix() &&
+ (*arguments)[1]->getAsTyped()->isMatrix());
+ // Perform component-wise matrix multiplication.
+ resultArray = new TConstantUnion[maxObjectSize];
+ int size = (*arguments)[0]->getAsTyped()->getNominalSize();
+ angle::Matrix<float> result =
+ GetMatrix(unionArrays[0], size).compMult(GetMatrix(unionArrays[1], size));
+ SetUnionArrayFromMatrix(result, resultArray);
break;
+ }
- case EOpOuterProduct:
- if (basicType == EbtFloat)
- {
- size_t numRows = (*sequence)[0]->getAsTyped()->getType().getObjectSize();
- size_t numCols = (*sequence)[1]->getAsTyped()->getType().getObjectSize();
- resultArray = new TConstantUnion[numRows * numCols];
- angle::Matrix<float> result =
- GetMatrix(unionArrays[0], 1, static_cast<int>(numCols))
- .outerProduct(GetMatrix(unionArrays[1], static_cast<int>(numRows), 1));
- SetUnionArrayFromMatrix(result, resultArray);
- }
- else
- UNREACHABLE();
+ case EOpOuterProduct:
+ {
+ ASSERT(basicType == EbtFloat);
+ size_t numRows = (*arguments)[0]->getAsTyped()->getType().getObjectSize();
+ size_t numCols = (*arguments)[1]->getAsTyped()->getType().getObjectSize();
+ resultArray = new TConstantUnion[numRows * numCols];
+ angle::Matrix<float> result =
+ GetMatrix(unionArrays[0], static_cast<int>(numRows), 1)
+ .outerProduct(GetMatrix(unionArrays[1], 1, static_cast<int>(numCols)));
+ SetUnionArrayFromMatrix(result, resultArray);
break;
-
- default:
- UNREACHABLE();
- // TODO: Add constant folding support for other built-in operations that take 2 parameters and not handled above.
- return nullptr;
}
- }
- else if (paramsCount == 3)
- {
- //
- // Ternary built-in
- //
- switch (op)
+
+ case EOpClamp:
{
- case EOpClamp:
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
+ switch (basicType)
{
- switch (basicType)
+ case EbtFloat:
{
- case EbtFloat:
- {
- float x = unionArrays[0][i].getFConst();
- float min = unionArrays[1][i].getFConst();
- float max = unionArrays[2][i].getFConst();
- // Results are undefined if min > max.
- if (min > max)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else
- resultArray[i].setFConst(gl::clamp(x, min, max));
- }
+ float x = unionArrays[0][i].getFConst();
+ float min = unionArrays[1][i].getFConst();
+ float max = unionArrays[2][i].getFConst();
+ // Results are undefined if min > max.
+ if (min > max)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
+ &resultArray[i]);
+ else
+ resultArray[i].setFConst(gl::clamp(x, min, max));
break;
- case EbtInt:
- {
- int x = unionArrays[0][i].getIConst();
- int min = unionArrays[1][i].getIConst();
- int max = unionArrays[2][i].getIConst();
- // Results are undefined if min > max.
- if (min > max)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else
- resultArray[i].setIConst(gl::clamp(x, min, max));
- }
+ }
+
+ case EbtInt:
+ {
+ int x = unionArrays[0][i].getIConst();
+ int min = unionArrays[1][i].getIConst();
+ int max = unionArrays[2][i].getIConst();
+ // Results are undefined if min > max.
+ if (min > max)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
+ &resultArray[i]);
+ else
+ resultArray[i].setIConst(gl::clamp(x, min, max));
break;
- case EbtUInt:
- {
- unsigned int x = unionArrays[0][i].getUConst();
- unsigned int min = unionArrays[1][i].getUConst();
- unsigned int max = unionArrays[2][i].getUConst();
- // Results are undefined if min > max.
- if (min > max)
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- else
- resultArray[i].setUConst(gl::clamp(x, min, max));
- }
+ }
+ case EbtUInt:
+ {
+ unsigned int x = unionArrays[0][i].getUConst();
+ unsigned int min = unionArrays[1][i].getUConst();
+ unsigned int max = unionArrays[2][i].getUConst();
+ // Results are undefined if min > max.
+ if (min > max)
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
+ &resultArray[i]);
+ else
+ resultArray[i].setUConst(gl::clamp(x, min, max));
break;
- default:
+ }
+ default:
UNREACHABLE();
break;
- }
}
}
break;
+ }
- case EOpMix:
+ case EOpMix:
+ {
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- if (basicType == EbtFloat)
+ float x = unionArrays[0][i].getFConst();
+ float y = unionArrays[1][i].getFConst();
+ TBasicType type = (*arguments)[2]->getAsTyped()->getType().getBasicType();
+ if (type == EbtFloat)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float x = unionArrays[0][i].getFConst();
- float y = unionArrays[1][i].getFConst();
- TBasicType type = (*sequence)[2]->getAsTyped()->getType().getBasicType();
- if (type == EbtFloat)
- {
- // Returns the linear blend of x and y, i.e., x * (1 - a) + y * a.
- float a = unionArrays[2][i].getFConst();
- resultArray[i].setFConst(x * (1.0f - a) + y * a);
- }
- else // 3rd parameter is EbtBool
- {
- ASSERT(type == EbtBool);
- // Selects which vector each returned component comes from.
- // For a component of a that is false, the corresponding component of x is returned.
- // For a component of a that is true, the corresponding component of y is returned.
- bool a = unionArrays[2][i].getBConst();
- resultArray[i].setFConst(a ? y : x);
- }
- }
+ // Returns the linear blend of x and y, i.e., x * (1 - a) + y * a.
+ float a = unionArrays[2][i].getFConst();
+ resultArray[i].setFConst(x * (1.0f - a) + y * a);
+ }
+ else // 3rd parameter is EbtBool
+ {
+ ASSERT(type == EbtBool);
+ // Selects which vector each returned component comes from.
+ // For a component of a that is false, the corresponding component of x is
+ // returned.
+ // For a component of a that is true, the corresponding component of y is
+ // returned.
+ bool a = unionArrays[2][i].getBConst();
+ resultArray[i].setFConst(a ? y : x);
}
- else
- UNREACHABLE();
}
break;
+ }
- case EOpSmoothStep:
+ case EOpSmoothStep:
+ {
+ ASSERT(basicType == EbtFloat);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- if (basicType == EbtFloat)
+ float edge0 = unionArrays[0][i].getFConst();
+ float edge1 = unionArrays[1][i].getFConst();
+ float x = unionArrays[2][i].getFConst();
+ // Results are undefined if edge0 >= edge1.
+ if (edge0 >= edge1)
{
- resultArray = new TConstantUnion[maxObjectSize];
- for (size_t i = 0; i < maxObjectSize; i++)
- {
- float edge0 = unionArrays[0][i].getFConst();
- float edge1 = unionArrays[1][i].getFConst();
- float x = unionArrays[2][i].getFConst();
- // Results are undefined if edge0 >= edge1.
- if (edge0 >= edge1)
- {
- UndefinedConstantFoldingError(loc, op, basicType, infoSink, &resultArray[i]);
- }
- else
- {
- // Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth
- // Hermite interpolation between 0 and 1 when edge0 < x < edge1.
- float t = gl::clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f);
- resultArray[i].setFConst(t * t * (3.0f - 2.0f * t));
- }
- }
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
}
else
- UNREACHABLE();
+ {
+ // Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth
+ // Hermite interpolation between 0 and 1 when edge0 < x < edge1.
+ float t = gl::clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f);
+ resultArray[i].setFConst(t * t * (3.0f - 2.0f * t));
+ }
}
break;
+ }
- case EOpFaceForward:
- if (basicType == EbtFloat)
+ case EOpLdexp:
+ {
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; i++)
{
- // genType faceforward(genType N, genType I, genType Nref) :
- // If dot(Nref, I) < 0 return N, otherwise return -N.
- resultArray = new TConstantUnion[maxObjectSize];
- float dotProduct = VectorDotProduct(unionArrays[2], unionArrays[1], maxObjectSize);
- for (size_t i = 0; i < maxObjectSize; i++)
+ float x = unionArrays[0][i].getFConst();
+ int exp = unionArrays[1][i].getIConst();
+ if (exp > 128)
{
- if (dotProduct < 0)
- resultArray[i].setFConst(unionArrays[0][i].getFConst());
- else
- resultArray[i].setFConst(-unionArrays[0][i].getFConst());
+ UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
}
- }
- else
- UNREACHABLE();
- break;
-
- case EOpRefract:
- if (basicType == EbtFloat)
- {
- // genType refract(genType I, genType N, float eta) :
- // For the incident vector I and surface normal N, and the ratio of indices of refraction eta,
- // return the refraction vector. The result is computed by
- // k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
- // if (k < 0.0)
- // return genType(0.0)
- // else
- // return eta * I - (eta * dot(N, I) + sqrt(k)) * N
- resultArray = new TConstantUnion[maxObjectSize];
- float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
- for (size_t i = 0; i < maxObjectSize; i++)
+ else
{
- float eta = unionArrays[2][i].getFConst();
- float k = 1.0f - eta * eta * (1.0f - dotProduct * dotProduct);
- if (k < 0.0f)
- resultArray[i].setFConst(0.0f);
- else
- resultArray[i].setFConst(eta * unionArrays[0][i].getFConst() -
- (eta * dotProduct + sqrtf(k)) * unionArrays[1][i].getFConst());
+ resultArray[i].setFConst(gl::Ldexp(x, exp));
}
}
- else
- UNREACHABLE();
break;
-
- default:
- UNREACHABLE();
- // TODO: Add constant folding support for other built-in operations that take 3 parameters and not handled above.
- return nullptr;
}
- }
- return resultArray;
-}
-// static
-TString TIntermTraverser::hash(const TString &name, ShHashFunction64 hashFunction)
-{
- if (hashFunction == NULL || name.empty())
- return name;
- khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
- TStringStream stream;
- stream << HASHED_NAME_PREFIX << std::hex << number;
- TString hashedName = stream.str();
- return hashedName;
-}
+ case EOpFaceforward:
+ {
+ ASSERT(basicType == EbtFloat);
+ // genType faceforward(genType N, genType I, genType Nref) :
+ // If dot(Nref, I) < 0 return N, otherwise return -N.
+ resultArray = new TConstantUnion[maxObjectSize];
+ float dotProduct = VectorDotProduct(unionArrays[2], unionArrays[1], maxObjectSize);
+ for (size_t i = 0; i < maxObjectSize; i++)
+ {
+ if (dotProduct < 0)
+ resultArray[i].setFConst(unionArrays[0][i].getFConst());
+ else
+ resultArray[i].setFConst(-unionArrays[0][i].getFConst());
+ }
+ break;
+ }
-void TIntermTraverser::updateTree()
-{
- for (size_t ii = 0; ii < mInsertions.size(); ++ii)
- {
- const NodeInsertMultipleEntry &insertion = mInsertions[ii];
- ASSERT(insertion.parent);
- if (!insertion.insertionsAfter.empty())
+ case EOpRefract:
{
- bool inserted = insertion.parent->insertChildNodes(insertion.position + 1,
- insertion.insertionsAfter);
- ASSERT(inserted);
- UNUSED_ASSERTION_VARIABLE(inserted);
+ ASSERT(basicType == EbtFloat);
+ // genType refract(genType I, genType N, float eta) :
+ // For the incident vector I and surface normal N, and the ratio of indices of
+ // refraction eta,
+ // return the refraction vector. The result is computed by
+ // k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
+ // if (k < 0.0)
+ // return genType(0.0)
+ // else
+ // return eta * I - (eta * dot(N, I) + sqrt(k)) * N
+ resultArray = new TConstantUnion[maxObjectSize];
+ float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
+ for (size_t i = 0; i < maxObjectSize; i++)
+ {
+ float eta = unionArrays[2][i].getFConst();
+ float k = 1.0f - eta * eta * (1.0f - dotProduct * dotProduct);
+ if (k < 0.0f)
+ resultArray[i].setFConst(0.0f);
+ else
+ resultArray[i].setFConst(eta * unionArrays[0][i].getFConst() -
+ (eta * dotProduct + sqrtf(k)) *
+ unionArrays[1][i].getFConst());
+ }
+ break;
}
- if (!insertion.insertionsBefore.empty())
+ case EOpBitfieldExtract:
{
- bool inserted =
- insertion.parent->insertChildNodes(insertion.position, insertion.insertionsBefore);
- ASSERT(inserted);
- UNUSED_ASSERTION_VARIABLE(inserted);
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; ++i)
+ {
+ int offset = unionArrays[1][0].getIConst();
+ int bits = unionArrays[2][0].getIConst();
+ if (bits == 0)
+ {
+ if (aggregate->getBasicType() == EbtInt)
+ {
+ resultArray[i].setIConst(0);
+ }
+ else
+ {
+ ASSERT(aggregate->getBasicType() == EbtUInt);
+ resultArray[i].setUConst(0);
+ }
+ }
+ else if (offset < 0 || bits < 0 || offset >= 32 || bits > 32 || offset + bits > 32)
+ {
+ UndefinedConstantFoldingError(loc, op, aggregate->getBasicType(), diagnostics,
+ &resultArray[i]);
+ }
+ else
+ {
+ // bits can be 32 here, so we need to avoid bit shift overflow.
+ uint32_t maskMsb = 1u << (bits - 1);
+ uint32_t mask = ((maskMsb - 1u) | maskMsb) << offset;
+ if (aggregate->getBasicType() == EbtInt)
+ {
+ uint32_t value = static_cast<uint32_t>(unionArrays[0][i].getIConst());
+ uint32_t resultUnsigned = (value & mask) >> offset;
+ if ((resultUnsigned & maskMsb) != 0)
+ {
+ // The most significant bits (from bits+1 to the most significant bit)
+ // should be set to 1.
+ uint32_t higherBitsMask = ((1u << (32 - bits)) - 1u) << bits;
+ resultUnsigned |= higherBitsMask;
+ }
+ resultArray[i].setIConst(static_cast<int32_t>(resultUnsigned));
+ }
+ else
+ {
+ ASSERT(aggregate->getBasicType() == EbtUInt);
+ uint32_t value = unionArrays[0][i].getUConst();
+ resultArray[i].setUConst((value & mask) >> offset);
+ }
+ }
+ }
+ break;
}
- }
- for (size_t ii = 0; ii < mReplacements.size(); ++ii)
- {
- const NodeUpdateEntry &replacement = mReplacements[ii];
- ASSERT(replacement.parent);
- bool replaced = replacement.parent->replaceChildNode(
- replacement.original, replacement.replacement);
- ASSERT(replaced);
- UNUSED_ASSERTION_VARIABLE(replaced);
-
- if (!replacement.originalBecomesChildOfReplacement)
+ case EOpBitfieldInsert:
{
- // In AST traversing, a parent is visited before its children.
- // After we replace a node, if its immediate child is to
- // be replaced, we need to make sure we don't update the replaced
- // node; instead, we update the replacement node.
- for (size_t jj = ii + 1; jj < mReplacements.size(); ++jj)
+ resultArray = new TConstantUnion[maxObjectSize];
+ for (size_t i = 0; i < maxObjectSize; ++i)
{
- NodeUpdateEntry &replacement2 = mReplacements[jj];
- if (replacement2.parent == replacement.original)
- replacement2.parent = replacement.replacement;
+ int offset = unionArrays[2][0].getIConst();
+ int bits = unionArrays[3][0].getIConst();
+ if (bits == 0)
+ {
+ if (aggregate->getBasicType() == EbtInt)
+ {
+ int32_t base = unionArrays[0][i].getIConst();
+ resultArray[i].setIConst(base);
+ }
+ else
+ {
+ ASSERT(aggregate->getBasicType() == EbtUInt);
+ uint32_t base = unionArrays[0][i].getUConst();
+ resultArray[i].setUConst(base);
+ }
+ }
+ else if (offset < 0 || bits < 0 || offset >= 32 || bits > 32 || offset + bits > 32)
+ {
+ UndefinedConstantFoldingError(loc, op, aggregate->getBasicType(), diagnostics,
+ &resultArray[i]);
+ }
+ else
+ {
+ // bits can be 32 here, so we need to avoid bit shift overflow.
+ uint32_t maskMsb = 1u << (bits - 1);
+ uint32_t insertMask = ((maskMsb - 1u) | maskMsb) << offset;
+ uint32_t baseMask = ~insertMask;
+ if (aggregate->getBasicType() == EbtInt)
+ {
+ uint32_t base = static_cast<uint32_t>(unionArrays[0][i].getIConst());
+ uint32_t insert = static_cast<uint32_t>(unionArrays[1][i].getIConst());
+ uint32_t resultUnsigned =
+ (base & baseMask) | ((insert << offset) & insertMask);
+ resultArray[i].setIConst(static_cast<int32_t>(resultUnsigned));
+ }
+ else
+ {
+ ASSERT(aggregate->getBasicType() == EbtUInt);
+ uint32_t base = unionArrays[0][i].getUConst();
+ uint32_t insert = unionArrays[1][i].getUConst();
+ resultArray[i].setUConst((base & baseMask) |
+ ((insert << offset) & insertMask));
+ }
+ }
}
+ break;
}
- }
- for (size_t ii = 0; ii < mMultiReplacements.size(); ++ii)
- {
- const NodeReplaceWithMultipleEntry &replacement = mMultiReplacements[ii];
- ASSERT(replacement.parent);
- bool replaced = replacement.parent->replaceChildNodeWithMultiple(
- replacement.original, replacement.replacements);
- ASSERT(replaced);
- UNUSED_ASSERTION_VARIABLE(replaced);
- }
- mInsertions.clear();
- mReplacements.clear();
- mMultiReplacements.clear();
+ default:
+ UNREACHABLE();
+ return nullptr;
+ }
+ return resultArray;
}
+
+} // namespace sh