summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/double-conversion/double-conversion.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/double-conversion/double-conversion.cc')
-rw-r--r--src/3rdparty/double-conversion/double-conversion.cc975
1 files changed, 975 insertions, 0 deletions
diff --git a/src/3rdparty/double-conversion/double-conversion.cc b/src/3rdparty/double-conversion/double-conversion.cc
new file mode 100644
index 0000000000..909985be82
--- /dev/null
+++ b/src/3rdparty/double-conversion/double-conversion.cc
@@ -0,0 +1,975 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <limits.h>
+#include <math.h>
+
+#include "double-conversion.h"
+
+#include "bignum-dtoa.h"
+#include "fast-dtoa.h"
+#include "fixed-dtoa.h"
+#include "ieee.h"
+#include "strtod.h"
+#include "utils.h"
+
+namespace double_conversion {
+
+const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
+ int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
+ static DoubleToStringConverter converter(flags,
+ "Infinity",
+ "NaN",
+ 'e',
+ -6, 21,
+ 6, 0);
+ return converter;
+}
+
+
+bool DoubleToStringConverter::HandleSpecialValues(
+ double value,
+ StringBuilder* result_builder) const {
+ Double double_inspect(value);
+ if (double_inspect.IsInfinite()) {
+ if (infinity_symbol_ == NULL) return false;
+ if (value < 0) {
+ result_builder->AddCharacter('-');
+ }
+ result_builder->AddString(infinity_symbol_);
+ return true;
+ }
+ if (double_inspect.IsNan()) {
+ if (nan_symbol_ == NULL) return false;
+ result_builder->AddString(nan_symbol_);
+ return true;
+ }
+ return false;
+}
+
+
+void DoubleToStringConverter::CreateExponentialRepresentation(
+ const char* decimal_digits,
+ int length,
+ int exponent,
+ StringBuilder* result_builder) const {
+ ASSERT(length != 0);
+ result_builder->AddCharacter(decimal_digits[0]);
+ if (length != 1) {
+ result_builder->AddCharacter('.');
+ result_builder->AddSubstring(&decimal_digits[1], length-1);
+ }
+ result_builder->AddCharacter(exponent_character_);
+ if (exponent < 0) {
+ result_builder->AddCharacter('-');
+ exponent = -exponent;
+ } else {
+ if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
+ result_builder->AddCharacter('+');
+ }
+ }
+ if (exponent == 0) {
+ result_builder->AddCharacter('0');
+ return;
+ }
+ ASSERT(exponent < 1e4);
+ const int kMaxExponentLength = 5;
+ char buffer[kMaxExponentLength + 1];
+ buffer[kMaxExponentLength] = '\0';
+ int first_char_pos = kMaxExponentLength;
+ while (exponent > 0) {
+ buffer[--first_char_pos] = '0' + (exponent % 10);
+ exponent /= 10;
+ }
+ result_builder->AddSubstring(&buffer[first_char_pos],
+ kMaxExponentLength - first_char_pos);
+}
+
+
+void DoubleToStringConverter::CreateDecimalRepresentation(
+ const char* decimal_digits,
+ int length,
+ int decimal_point,
+ int digits_after_point,
+ StringBuilder* result_builder) const {
+ // Create a representation that is padded with zeros if needed.
+ if (decimal_point <= 0) {
+ // "0.00000decimal_rep".
+ result_builder->AddCharacter('0');
+ if (digits_after_point > 0) {
+ result_builder->AddCharacter('.');
+ result_builder->AddPadding('0', -decimal_point);
+ ASSERT(length <= digits_after_point - (-decimal_point));
+ result_builder->AddSubstring(decimal_digits, length);
+ int remaining_digits = digits_after_point - (-decimal_point) - length;
+ result_builder->AddPadding('0', remaining_digits);
+ }
+ } else if (decimal_point >= length) {
+ // "decimal_rep0000.00000" or "decimal_rep.0000"
+ result_builder->AddSubstring(decimal_digits, length);
+ result_builder->AddPadding('0', decimal_point - length);
+ if (digits_after_point > 0) {
+ result_builder->AddCharacter('.');
+ result_builder->AddPadding('0', digits_after_point);
+ }
+ } else {
+ // "decima.l_rep000"
+ ASSERT(digits_after_point > 0);
+ result_builder->AddSubstring(decimal_digits, decimal_point);
+ result_builder->AddCharacter('.');
+ ASSERT(length - decimal_point <= digits_after_point);
+ result_builder->AddSubstring(&decimal_digits[decimal_point],
+ length - decimal_point);
+ int remaining_digits = digits_after_point - (length - decimal_point);
+ result_builder->AddPadding('0', remaining_digits);
+ }
+ if (digits_after_point == 0) {
+ if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
+ result_builder->AddCharacter('.');
+ }
+ if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
+ result_builder->AddCharacter('0');
+ }
+ }
+}
+
+
+bool DoubleToStringConverter::ToShortestIeeeNumber(
+ double value,
+ StringBuilder* result_builder,
+ DoubleToStringConverter::DtoaMode mode) const {
+ ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE);
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ int decimal_point;
+ bool sign;
+ const int kDecimalRepCapacity = kBase10MaximalLength + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+
+ bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ int exponent = decimal_point - 1;
+ if ((decimal_in_shortest_low_ <= exponent) &&
+ (exponent < decimal_in_shortest_high_)) {
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
+ decimal_point,
+ Max(0, decimal_rep_length - decimal_point),
+ result_builder);
+ } else {
+ CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
+ result_builder);
+ }
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToFixed(double value,
+ int requested_digits,
+ StringBuilder* result_builder) const {
+ ASSERT(kMaxFixedDigitsBeforePoint == 60);
+ const double kFirstNonFixed = 1e60;
+
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
+ if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
+
+ // Find a sufficiently precise decimal representation of n.
+ int decimal_point;
+ bool sign;
+ // Add space for the '\0' byte.
+ const int kDecimalRepCapacity =
+ kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+ DoubleToAscii(value, FIXED, requested_digits,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+ requested_digits, result_builder);
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToExponential(
+ double value,
+ int requested_digits,
+ StringBuilder* result_builder) const {
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (requested_digits < -1) return false;
+ if (requested_digits > kMaxExponentialDigits) return false;
+
+ int decimal_point;
+ bool sign;
+ // Add space for digit before the decimal point and the '\0' character.
+ const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
+ ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ if (requested_digits == -1) {
+ DoubleToAscii(value, SHORTEST, 0,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ } else {
+ DoubleToAscii(value, PRECISION, requested_digits + 1,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ ASSERT(decimal_rep_length <= requested_digits + 1);
+
+ for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
+ decimal_rep[i] = '0';
+ }
+ decimal_rep_length = requested_digits + 1;
+ }
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ int exponent = decimal_point - 1;
+ CreateExponentialRepresentation(decimal_rep,
+ decimal_rep_length,
+ exponent,
+ result_builder);
+ return true;
+}
+
+
+bool DoubleToStringConverter::ToPrecision(double value,
+ int precision,
+ StringBuilder* result_builder) const {
+ if (Double(value).IsSpecial()) {
+ return HandleSpecialValues(value, result_builder);
+ }
+
+ if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
+ return false;
+ }
+
+ // Find a sufficiently precise decimal representation of n.
+ int decimal_point;
+ bool sign;
+ // Add one for the terminating null character.
+ const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
+ char decimal_rep[kDecimalRepCapacity];
+ int decimal_rep_length;
+
+ DoubleToAscii(value, PRECISION, precision,
+ decimal_rep, kDecimalRepCapacity,
+ &sign, &decimal_rep_length, &decimal_point);
+ ASSERT(decimal_rep_length <= precision);
+
+ bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+ if (sign && (value != 0.0 || !unique_zero)) {
+ result_builder->AddCharacter('-');
+ }
+
+ // The exponent if we print the number as x.xxeyyy. That is with the
+ // decimal point after the first digit.
+ int exponent = decimal_point - 1;
+
+ int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
+ if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
+ (decimal_point - precision + extra_zero >
+ max_trailing_padding_zeroes_in_precision_mode_)) {
+ // Fill buffer to contain 'precision' digits.
+ // Usually the buffer is already at the correct length, but 'DoubleToAscii'
+ // is allowed to return less characters.
+ for (int i = decimal_rep_length; i < precision; ++i) {
+ decimal_rep[i] = '0';
+ }
+
+ CreateExponentialRepresentation(decimal_rep,
+ precision,
+ exponent,
+ result_builder);
+ } else {
+ CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+ Max(0, precision - decimal_point),
+ result_builder);
+ }
+ return true;
+}
+
+
+static BignumDtoaMode DtoaToBignumDtoaMode(
+ DoubleToStringConverter::DtoaMode dtoa_mode) {
+ switch (dtoa_mode) {
+ case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST;
+ case DoubleToStringConverter::SHORTEST_SINGLE:
+ return BIGNUM_DTOA_SHORTEST_SINGLE;
+ case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED;
+ case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void DoubleToStringConverter::DoubleToAscii(double v,
+ DtoaMode mode,
+ int requested_digits,
+ char* buffer,
+ int buffer_length,
+ bool* sign,
+ int* length,
+ int* point) {
+ Vector<char> vector(buffer, buffer_length);
+ ASSERT(!Double(v).IsSpecial());
+ ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
+
+ if (Double(v).Sign() < 0) {
+ *sign = true;
+ v = -v;
+ } else {
+ *sign = false;
+ }
+
+ if (mode == PRECISION && requested_digits == 0) {
+ vector[0] = '\0';
+ *length = 0;
+ return;
+ }
+
+ if (v == 0) {
+ vector[0] = '0';
+ vector[1] = '\0';
+ *length = 1;
+ *point = 1;
+ return;
+ }
+
+ bool fast_worked;
+ switch (mode) {
+ case SHORTEST:
+ fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
+ break;
+ case SHORTEST_SINGLE:
+ fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
+ vector, length, point);
+ break;
+ case FIXED:
+ fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
+ break;
+ case PRECISION:
+ fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
+ vector, length, point);
+ break;
+ default:
+ fast_worked = false;
+ UNREACHABLE();
+ }
+ if (fast_worked) return;
+
+ // If the fast dtoa didn't succeed use the slower bignum version.
+ BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
+ BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
+ vector[*length] = '\0';
+}
+
+
+// Consumes the given substring from the iterator.
+// Returns false, if the substring does not match.
+template <class Iterator>
+static bool ConsumeSubString(Iterator* current,
+ Iterator end,
+ const char* substring) {
+ ASSERT(**current == *substring);
+ for (substring++; *substring != '\0'; substring++) {
+ ++*current;
+ if (*current == end || **current != *substring) return false;
+ }
+ ++*current;
+ return true;
+}
+
+
+// Maximum number of significant digits in decimal representation.
+// The longest possible double in decimal representation is
+// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
+// (768 digits). If we parse a number whose first digits are equal to a
+// mean of 2 adjacent doubles (that could have up to 769 digits) the result
+// must be rounded to the bigger one unless the tail consists of zeros, so
+// we don't need to preserve all the digits.
+const int kMaxSignificantDigits = 772;
+
+
+static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
+static const int kWhitespaceTable7Length = ARRAY_SIZE(kWhitespaceTable7);
+
+
+static const uc16 kWhitespaceTable16[] = {
+ 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
+ 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
+};
+static const int kWhitespaceTable16Length = ARRAY_SIZE(kWhitespaceTable16);
+
+
+static bool isWhitespace(int x) {
+ if (x < 128) {
+ for (int i = 0; i < kWhitespaceTable7Length; i++) {
+ if (kWhitespaceTable7[i] == x) return true;
+ }
+ } else {
+ for (int i = 0; i < kWhitespaceTable16Length; i++) {
+ if (kWhitespaceTable16[i] == x) return true;
+ }
+ }
+ return false;
+}
+
+
+// Returns true if a nonspace found and false if the end has reached.
+template <class Iterator>
+static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
+ while (*current != end) {
+ if (!isWhitespace(**current)) return true;
+ ++*current;
+ }
+ return false;
+}
+
+
+static bool isDigit(int x, int radix) {
+ return (x >= '0' && x <= '9' && x < '0' + radix)
+ || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
+ || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
+}
+
+
+static double SignedZero(bool sign) {
+ return sign ? -0.0 : 0.0;
+}
+
+
+// Returns true if 'c' is a decimal digit that is valid for the given radix.
+//
+// The function is small and could be inlined, but VS2012 emitted a warning
+// because it constant-propagated the radix and concluded that the last
+// condition was always true. By moving it into a separate function the
+// compiler wouldn't warn anymore.
+static bool IsDecimalDigitForRadix(int c, int radix) {
+ return '0' <= c && c <= '9' && (c - '0') < radix;
+}
+
+// Returns true if 'c' is a character digit that is valid for the given radix.
+// The 'a_character' should be 'a' or 'A'.
+//
+// The function is small and could be inlined, but VS2012 emitted a warning
+// because it constant-propagated the radix and concluded that the first
+// condition was always false. By moving it into a separate function the
+// compiler wouldn't warn anymore.
+static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
+ return radix > 10 && c >= a_character && c < a_character + radix - 10;
+}
+
+
+// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+template <int radix_log_2, class Iterator>
+static double RadixStringToIeee(Iterator* current,
+ Iterator end,
+ bool sign,
+ bool allow_trailing_junk,
+ double junk_string_value,
+ bool read_as_double,
+ bool* result_is_junk) {
+ ASSERT(*current != end);
+
+ const int kDoubleSize = Double::kSignificandSize;
+ const int kSingleSize = Single::kSignificandSize;
+ const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
+
+ *result_is_junk = true;
+
+ // Skip leading 0s.
+ while (**current == '0') {
+ ++(*current);
+ if (*current == end) {
+ *result_is_junk = false;
+ return SignedZero(sign);
+ }
+ }
+
+ int64_t number = 0;
+ int exponent = 0;
+ const int radix = (1 << radix_log_2);
+
+ do {
+ int digit;
+ if (IsDecimalDigitForRadix(**current, radix)) {
+ digit = static_cast<char>(**current) - '0';
+ } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
+ digit = static_cast<char>(**current) - 'a' + 10;
+ } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
+ digit = static_cast<char>(**current) - 'A' + 10;
+ } else {
+ if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
+ break;
+ } else {
+ return junk_string_value;
+ }
+ }
+
+ number = number * radix + digit;
+ int overflow = static_cast<int>(number >> kSignificandSize);
+ if (overflow != 0) {
+ // Overflow occurred. Need to determine which direction to round the
+ // result.
+ int overflow_bits_count = 1;
+ while (overflow > 1) {
+ overflow_bits_count++;
+ overflow >>= 1;
+ }
+
+ int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
+ int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
+ number >>= overflow_bits_count;
+ exponent = overflow_bits_count;
+
+ bool zero_tail = true;
+ for (;;) {
+ ++(*current);
+ if (*current == end || !isDigit(**current, radix)) break;
+ zero_tail = zero_tail && **current == '0';
+ exponent += radix_log_2;
+ }
+
+ if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
+ return junk_string_value;
+ }
+
+ int middle_value = (1 << (overflow_bits_count - 1));
+ if (dropped_bits > middle_value) {
+ number++; // Rounding up.
+ } else if (dropped_bits == middle_value) {
+ // Rounding to even to consistency with decimals: half-way case rounds
+ // up if significant part is odd and down otherwise.
+ if ((number & 1) != 0 || !zero_tail) {
+ number++; // Rounding up.
+ }
+ }
+
+ // Rounding up may cause overflow.
+ if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
+ exponent++;
+ number >>= 1;
+ }
+ break;
+ }
+ ++(*current);
+ } while (*current != end);
+
+ ASSERT(number < ((int64_t)1 << kSignificandSize));
+ ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
+
+ *result_is_junk = false;
+
+ if (exponent == 0) {
+ if (sign) {
+ if (number == 0) return -0.0;
+ number = -number;
+ }
+ return static_cast<double>(number);
+ }
+
+ ASSERT(number != 0);
+ return Double(DiyFp(number, exponent)).value();
+}
+
+
+template <class Iterator>
+double StringToDoubleConverter::StringToIeee(
+ Iterator input,
+ int length,
+ bool read_as_double,
+ int* processed_characters_count) const {
+ Iterator current = input;
+ Iterator end = input + length;
+
+ *processed_characters_count = 0;
+
+ const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
+ const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
+ const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
+ const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
+
+ // To make sure that iterator dereferencing is valid the following
+ // convention is used:
+ // 1. Each '++current' statement is followed by check for equality to 'end'.
+ // 2. If AdvanceToNonspace returned false then current == end.
+ // 3. If 'current' becomes equal to 'end' the function returns or goes to
+ // 'parsing_done'.
+ // 4. 'current' is not dereferenced after the 'parsing_done' label.
+ // 5. Code before 'parsing_done' may rely on 'current != end'.
+ if (current == end) return empty_string_value_;
+
+ if (allow_leading_spaces || allow_trailing_spaces) {
+ if (!AdvanceToNonspace(&current, end)) {
+ *processed_characters_count = static_cast<int>(current - input);
+ return empty_string_value_;
+ }
+ if (!allow_leading_spaces && (input != current)) {
+ // No leading spaces allowed, but AdvanceToNonspace moved forward.
+ return junk_string_value_;
+ }
+ }
+
+ // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
+ const int kBufferSize = kMaxSignificantDigits + 10;
+ char buffer[kBufferSize]; // NOLINT: size is known at compile time.
+ int buffer_pos = 0;
+
+ // Exponent will be adjusted if insignificant digits of the integer part
+ // or insignificant leading zeros of the fractional part are dropped.
+ int exponent = 0;
+ int significant_digits = 0;
+ int insignificant_digits = 0;
+ bool nonzero_digit_dropped = false;
+
+ bool sign = false;
+
+ if (*current == '+' || *current == '-') {
+ sign = (*current == '-');
+ ++current;
+ Iterator next_non_space = current;
+ // Skip following spaces (if allowed).
+ if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
+ if (!allow_spaces_after_sign && (current != next_non_space)) {
+ return junk_string_value_;
+ }
+ current = next_non_space;
+ }
+
+ if (infinity_symbol_ != NULL) {
+ if (*current == infinity_symbol_[0]) {
+ if (!ConsumeSubString(&current, end, infinity_symbol_)) {
+ return junk_string_value_;
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+
+ ASSERT(buffer_pos == 0);
+ *processed_characters_count = static_cast<int>(current - input);
+ return sign ? -Double::Infinity() : Double::Infinity();
+ }
+ }
+
+ if (nan_symbol_ != NULL) {
+ if (*current == nan_symbol_[0]) {
+ if (!ConsumeSubString(&current, end, nan_symbol_)) {
+ return junk_string_value_;
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+
+ ASSERT(buffer_pos == 0);
+ *processed_characters_count = static_cast<int>(current - input);
+ return sign ? -Double::NaN() : Double::NaN();
+ }
+ }
+
+ bool leading_zero = false;
+ if (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = static_cast<int>(current - input);
+ return SignedZero(sign);
+ }
+
+ leading_zero = true;
+
+ // It could be hexadecimal value.
+ if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+ ++current;
+ if (current == end || !isDigit(*current, 16)) {
+ return junk_string_value_; // "0x".
+ }
+
+ bool result_is_junk;
+ double result = RadixStringToIeee<4>(&current,
+ end,
+ sign,
+ allow_trailing_junk,
+ junk_string_value_,
+ read_as_double,
+ &result_is_junk);
+ if (!result_is_junk) {
+ if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
+ *processed_characters_count = static_cast<int>(current - input);
+ }
+ return result;
+ }
+
+ // Ignore leading zeros in the integer part.
+ while (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = static_cast<int>(current - input);
+ return SignedZero(sign);
+ }
+ }
+ }
+
+ bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
+
+ // Copy significant digits of the integer part (if any) to the buffer.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ // Will later check if it's an octal in the buffer.
+ } else {
+ insignificant_digits++; // Move the digit into the exponential part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ octal = octal && *current < '8';
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+
+ if (significant_digits == 0) {
+ octal = false;
+ }
+
+ if (*current == '.') {
+ if (octal && !allow_trailing_junk) return junk_string_value_;
+ if (octal) goto parsing_done;
+
+ ++current;
+ if (current == end) {
+ if (significant_digits == 0 && !leading_zero) {
+ return junk_string_value_;
+ } else {
+ goto parsing_done;
+ }
+ }
+
+ if (significant_digits == 0) {
+ // octal = false;
+ // Integer part consists of 0 or is absent. Significant digits start after
+ // leading zeros (if any).
+ while (*current == '0') {
+ ++current;
+ if (current == end) {
+ *processed_characters_count = static_cast<int>(current - input);
+ return SignedZero(sign);
+ }
+ exponent--; // Move this 0 into the exponent.
+ }
+ }
+
+ // There is a fractional part.
+ // We don't emit a '.', but adjust the exponent instead.
+ while (*current >= '0' && *current <= '9') {
+ if (significant_digits < kMaxSignificantDigits) {
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos++] = static_cast<char>(*current);
+ significant_digits++;
+ exponent--;
+ } else {
+ // Ignore insignificant digits in the fractional part.
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+ }
+ ++current;
+ if (current == end) goto parsing_done;
+ }
+ }
+
+ if (!leading_zero && exponent == 0 && significant_digits == 0) {
+ // If leading_zeros is true then the string contains zeros.
+ // If exponent < 0 then string was [+-]\.0*...
+ // If significant_digits != 0 the string is not equal to 0.
+ // Otherwise there are no digits in the string.
+ return junk_string_value_;
+ }
+
+ // Parse exponential part.
+ if (*current == 'e' || *current == 'E') {
+ if (octal && !allow_trailing_junk) return junk_string_value_;
+ if (octal) goto parsing_done;
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+ char sign = '+';
+ if (*current == '+' || *current == '-') {
+ sign = static_cast<char>(*current);
+ ++current;
+ if (current == end) {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+ }
+
+ if (current == end || *current < '0' || *current > '9') {
+ if (allow_trailing_junk) {
+ goto parsing_done;
+ } else {
+ return junk_string_value_;
+ }
+ }
+
+ const int max_exponent = INT_MAX / 2;
+ ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
+ int num = 0;
+ do {
+ // Check overflow.
+ int digit = *current - '0';
+ if (num >= max_exponent / 10
+ && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
+ num = max_exponent;
+ } else {
+ num = num * 10 + digit;
+ }
+ ++current;
+ } while (current != end && *current >= '0' && *current <= '9');
+
+ exponent += (sign == '-' ? -num : num);
+ }
+
+ if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+ return junk_string_value_;
+ }
+ if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ return junk_string_value_;
+ }
+ if (allow_trailing_spaces) {
+ AdvanceToNonspace(&current, end);
+ }
+
+ parsing_done:
+ exponent += insignificant_digits;
+
+ if (octal) {
+ double result;
+ bool result_is_junk;
+ char* start = buffer;
+ result = RadixStringToIeee<3>(&start,
+ buffer + buffer_pos,
+ sign,
+ allow_trailing_junk,
+ junk_string_value_,
+ read_as_double,
+ &result_is_junk);
+ ASSERT(!result_is_junk);
+ *processed_characters_count = static_cast<int>(current - input);
+ return result;
+ }
+
+ if (nonzero_digit_dropped) {
+ buffer[buffer_pos++] = '1';
+ exponent--;
+ }
+
+ ASSERT(buffer_pos < kBufferSize);
+ buffer[buffer_pos] = '\0';
+
+ double converted;
+ if (read_as_double) {
+ converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
+ } else {
+ converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
+ }
+ *processed_characters_count = static_cast<int>(current - input);
+ return sign? -converted: converted;
+}
+
+
+double StringToDoubleConverter::StringToDouble(
+ const char* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return StringToIeee(buffer, length, true, processed_characters_count);
+}
+
+
+double StringToDoubleConverter::StringToDouble(
+ const uc16* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return StringToIeee(buffer, length, true, processed_characters_count);
+}
+
+
+float StringToDoubleConverter::StringToFloat(
+ const char* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return static_cast<float>(StringToIeee(buffer, length, false,
+ processed_characters_count));
+}
+
+
+float StringToDoubleConverter::StringToFloat(
+ const uc16* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return static_cast<float>(StringToIeee(buffer, length, false,
+ processed_characters_count));
+}
+
+} // namespace double_conversion