summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libjpeg/src/jchuff.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libjpeg/src/jchuff.c')
-rw-r--r--src/3rdparty/libjpeg/src/jchuff.c385
1 files changed, 213 insertions, 172 deletions
diff --git a/src/3rdparty/libjpeg/src/jchuff.c b/src/3rdparty/libjpeg/src/jchuff.c
index db85ce114f..8ff817b151 100644
--- a/src/3rdparty/libjpeg/src/jchuff.c
+++ b/src/3rdparty/libjpeg/src/jchuff.c
@@ -4,8 +4,10 @@
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
- * Copyright (C) 2009-2011, 2014-2016, 2018-2019, D. R. Commander.
+ * Copyright (C) 2009-2011, 2014-2016, 2018-2021, D. R. Commander.
* Copyright (C) 2015, Matthieu Darbois.
+ * Copyright (C) 2018, Matthias Räncker.
+ * Copyright (C) 2020, Arm Limited.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
@@ -43,14 +45,19 @@
*/
/* NOTE: Both GCC and Clang define __GNUC__ */
-#if defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))
+#if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
+ defined(_M_ARM) || defined(_M_ARM64)
#if !defined(__thumb__) || defined(__thumb2__)
#define USE_CLZ_INTRINSIC
#endif
#endif
#ifdef USE_CLZ_INTRINSIC
+#if defined(_MSC_VER) && !defined(__clang__)
+#define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x))
+#else
#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
+#endif
#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
#else
#include "jpeg_nbits_table.h"
@@ -65,31 +72,42 @@
* but must not be updated permanently until we complete the MCU.
*/
-typedef struct {
- size_t put_buffer; /* current bit-accumulation buffer */
- int put_bits; /* # of bits now in it */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
+#if defined(__x86_64__) && defined(__ILP32__)
+typedef unsigned long long bit_buf_type;
+#else
+typedef size_t bit_buf_type;
+#endif
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
+/* NOTE: The more optimal Huffman encoding algorithm is only used by the
+ * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
+ * retain the old Huffman encoder behavior when using the GAS implementation.
*/
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest, src) ((dest) = (src))
+#if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
+ defined(_M_ARM) || defined(_M_ARM64))
+typedef unsigned long long simd_bit_buf_type;
#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest, src) \
- ((dest).put_buffer = (src).put_buffer, \
- (dest).put_bits = (src).put_bits, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
+typedef bit_buf_type simd_bit_buf_type;
#endif
+
+#if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
+ (defined(__x86_64__) && defined(__ILP32__))
+#define BIT_BUF_SIZE 64
+#elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
+#define BIT_BUF_SIZE 32
+#else
+#error Cannot determine word size
#endif
+#define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
+typedef struct {
+ union {
+ bit_buf_type c;
+ simd_bit_buf_type simd;
+ } put_buffer; /* current bit accumulation buffer */
+ int free_bits; /* # of bits available in it */
+ /* (Neon GAS: # of bits now in it) */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
typedef struct {
struct jpeg_entropy_encoder pub; /* public fields */
@@ -123,6 +141,7 @@ typedef struct {
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
savable_state cur; /* Current bit buffer & DC state */
j_compress_ptr cinfo; /* dump_buffer needs access to this */
+ int simd;
} working_state;
@@ -201,8 +220,17 @@ start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
}
/* Initialize bit buffer to empty */
- entropy->saved.put_buffer = 0;
- entropy->saved.put_bits = 0;
+ if (entropy->simd) {
+ entropy->saved.put_buffer.simd = 0;
+#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
+ entropy->saved.free_bits = 0;
+#else
+ entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
+#endif
+ } else {
+ entropy->saved.put_buffer.c = 0;
+ entropy->saved.free_bits = BIT_BUF_SIZE;
+ }
/* Initialize restart stuff */
entropy->restarts_to_go = cinfo->restart_interval;
@@ -287,6 +315,7 @@ jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
* this lets us detect duplicate VAL entries here, and later
* allows emit_bits to detect any attempt to emit such symbols.
*/
+ MEMZERO(dtbl->ehufco, sizeof(dtbl->ehufco));
MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
/* This is also a convenient place to check for out-of-range
@@ -334,94 +363,94 @@ dump_buffer(working_state *state)
/* Outputting bits to the file */
-/* These macros perform the same task as the emit_bits() function in the
- * original libjpeg code. In addition to reducing overhead by explicitly
- * inlining the code, additional performance is achieved by taking into
- * account the size of the bit buffer and waiting until it is almost full
- * before emptying it. This mostly benefits 64-bit platforms, since 6
- * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
+/* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
+ * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
+ * byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
+ * the speculative 0 byte will be overwritten by the next byte.
*/
-
-#define EMIT_BYTE() { \
- JOCTET c; \
- put_bits -= 8; \
- c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
- *buffer++ = c; \
- if (c == 0xFF) /* need to stuff a zero byte? */ \
- *buffer++ = 0; \
+#define EMIT_BYTE(b) { \
+ buffer[0] = (JOCTET)(b); \
+ buffer[1] = 0; \
+ buffer -= -2 + ((JOCTET)(b) < 0xFF); \
}
-#define PUT_BITS(code, size) { \
- put_bits += size; \
- put_buffer = (put_buffer << size) | code; \
-}
-
-#if SIZEOF_SIZE_T != 8 && !defined(_WIN64)
-
-#define CHECKBUF15() { \
- if (put_bits > 15) { \
- EMIT_BYTE() \
- EMIT_BYTE() \
+/* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
+ * directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
+ * encode 0xFF as 0xFF 0x00.
+ */
+#if BIT_BUF_SIZE == 64
+
+#define FLUSH() { \
+ if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
+ EMIT_BYTE(put_buffer >> 56) \
+ EMIT_BYTE(put_buffer >> 48) \
+ EMIT_BYTE(put_buffer >> 40) \
+ EMIT_BYTE(put_buffer >> 32) \
+ EMIT_BYTE(put_buffer >> 24) \
+ EMIT_BYTE(put_buffer >> 16) \
+ EMIT_BYTE(put_buffer >> 8) \
+ EMIT_BYTE(put_buffer ) \
+ } else { \
+ buffer[0] = (JOCTET)(put_buffer >> 56); \
+ buffer[1] = (JOCTET)(put_buffer >> 48); \
+ buffer[2] = (JOCTET)(put_buffer >> 40); \
+ buffer[3] = (JOCTET)(put_buffer >> 32); \
+ buffer[4] = (JOCTET)(put_buffer >> 24); \
+ buffer[5] = (JOCTET)(put_buffer >> 16); \
+ buffer[6] = (JOCTET)(put_buffer >> 8); \
+ buffer[7] = (JOCTET)(put_buffer); \
+ buffer += 8; \
} \
}
-#endif
-
-#define CHECKBUF31() { \
- if (put_bits > 31) { \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
- } \
-}
+#else
-#define CHECKBUF47() { \
- if (put_bits > 47) { \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
- EMIT_BYTE() \
+#define FLUSH() { \
+ if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
+ EMIT_BYTE(put_buffer >> 24) \
+ EMIT_BYTE(put_buffer >> 16) \
+ EMIT_BYTE(put_buffer >> 8) \
+ EMIT_BYTE(put_buffer ) \
+ } else { \
+ buffer[0] = (JOCTET)(put_buffer >> 24); \
+ buffer[1] = (JOCTET)(put_buffer >> 16); \
+ buffer[2] = (JOCTET)(put_buffer >> 8); \
+ buffer[3] = (JOCTET)(put_buffer); \
+ buffer += 4; \
} \
}
-#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
-#error Cannot determine word size
#endif
-#if SIZEOF_SIZE_T == 8 || defined(_WIN64)
-
-#define EMIT_BITS(code, size) { \
- CHECKBUF47() \
- PUT_BITS(code, size) \
-}
-
-#define EMIT_CODE(code, size) { \
- temp2 &= (((JLONG)1) << nbits) - 1; \
- CHECKBUF31() \
- PUT_BITS(code, size) \
- PUT_BITS(temp2, nbits) \
+/* Fill the bit buffer to capacity with the leading bits from code, then output
+ * the bit buffer and put the remaining bits from code into the bit buffer.
+ */
+#define PUT_AND_FLUSH(code, size) { \
+ put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
+ FLUSH() \
+ free_bits += BIT_BUF_SIZE; \
+ put_buffer = code; \
}
-#else
-
-#define EMIT_BITS(code, size) { \
- PUT_BITS(code, size) \
- CHECKBUF15() \
+/* Insert code into the bit buffer and output the bit buffer if needed.
+ * NOTE: We can't flush with free_bits == 0, since the left shift in
+ * PUT_AND_FLUSH() would have undefined behavior.
+ */
+#define PUT_BITS(code, size) { \
+ free_bits -= size; \
+ if (free_bits < 0) \
+ PUT_AND_FLUSH(code, size) \
+ else \
+ put_buffer = (put_buffer << size) | code; \
}
-#define EMIT_CODE(code, size) { \
- temp2 &= (((JLONG)1) << nbits) - 1; \
- PUT_BITS(code, size) \
- CHECKBUF15() \
- PUT_BITS(temp2, nbits) \
- CHECKBUF15() \
+#define PUT_CODE(code, size) { \
+ temp &= (((JLONG)1) << nbits) - 1; \
+ temp |= code << nbits; \
+ nbits += size; \
+ PUT_BITS(temp, nbits) \
}
-#endif
-
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
* coefficient block to be larger than the 128-byte unencoded block. For each
@@ -444,6 +473,7 @@ dump_buffer(working_state *state)
#define STORE_BUFFER() { \
if (localbuf) { \
+ size_t bytes, bytestocopy; \
bytes = buffer - _buffer; \
buffer = _buffer; \
while (bytes > 0) { \
@@ -466,20 +496,46 @@ dump_buffer(working_state *state)
LOCAL(boolean)
flush_bits(working_state *state)
{
- JOCTET _buffer[BUFSIZE], *buffer;
- size_t put_buffer; int put_bits;
- size_t bytes, bytestocopy; int localbuf = 0;
+ JOCTET _buffer[BUFSIZE], *buffer, temp;
+ simd_bit_buf_type put_buffer; int put_bits;
+ int localbuf = 0;
+
+ if (state->simd) {
+#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
+ put_bits = state->cur.free_bits;
+#else
+ put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
+#endif
+ put_buffer = state->cur.put_buffer.simd;
+ } else {
+ put_bits = BIT_BUF_SIZE - state->cur.free_bits;
+ put_buffer = state->cur.put_buffer.c;
+ }
- put_buffer = state->cur.put_buffer;
- put_bits = state->cur.put_bits;
LOAD_BUFFER()
- /* fill any partial byte with ones */
- PUT_BITS(0x7F, 7)
- while (put_bits >= 8) EMIT_BYTE()
+ while (put_bits >= 8) {
+ put_bits -= 8;
+ temp = (JOCTET)(put_buffer >> put_bits);
+ EMIT_BYTE(temp)
+ }
+ if (put_bits) {
+ /* fill partial byte with ones */
+ temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
+ EMIT_BYTE(temp)
+ }
- state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
- state->cur.put_bits = 0;
+ if (state->simd) { /* and reset bit buffer to empty */
+ state->cur.put_buffer.simd = 0;
+#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
+ state->cur.free_bits = 0;
+#else
+ state->cur.free_bits = SIMD_BIT_BUF_SIZE;
+#endif
+ } else {
+ state->cur.put_buffer.c = 0;
+ state->cur.free_bits = BIT_BUF_SIZE;
+ }
STORE_BUFFER()
return TRUE;
@@ -493,7 +549,7 @@ encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
c_derived_tbl *dctbl, c_derived_tbl *actbl)
{
JOCTET _buffer[BUFSIZE], *buffer;
- size_t bytes, bytestocopy; int localbuf = 0;
+ int localbuf = 0;
LOAD_BUFFER()
@@ -509,53 +565,41 @@ LOCAL(boolean)
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
c_derived_tbl *dctbl, c_derived_tbl *actbl)
{
- int temp, temp2, temp3;
- int nbits;
- int r, code, size;
+ int temp, nbits, free_bits;
+ bit_buf_type put_buffer;
JOCTET _buffer[BUFSIZE], *buffer;
- size_t put_buffer; int put_bits;
- int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
- size_t bytes, bytestocopy; int localbuf = 0;
+ int localbuf = 0;
- put_buffer = state->cur.put_buffer;
- put_bits = state->cur.put_bits;
+ free_bits = state->cur.free_bits;
+ put_buffer = state->cur.put_buffer.c;
LOAD_BUFFER()
/* Encode the DC coefficient difference per section F.1.2.1 */
- temp = temp2 = block[0] - last_dc_val;
+ temp = block[0] - last_dc_val;
/* This is a well-known technique for obtaining the absolute value without a
* branch. It is derived from an assembly language technique presented in
* "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
- * Agner Fog.
+ * Agner Fog. This code assumes we are on a two's complement machine.
*/
- temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
- temp ^= temp3;
- temp -= temp3;
-
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2 += temp3;
+ nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
+ temp += nbits;
+ nbits ^= temp;
/* Find the number of bits needed for the magnitude of the coefficient */
- nbits = JPEG_NBITS(temp);
-
- /* Emit the Huffman-coded symbol for the number of bits */
- code = dctbl->ehufco[nbits];
- size = dctbl->ehufsi[nbits];
- EMIT_BITS(code, size)
+ nbits = JPEG_NBITS(nbits);
- /* Mask off any extra bits in code */
- temp2 &= (((JLONG)1) << nbits) - 1;
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- EMIT_BITS(temp2, nbits)
+ /* Emit the Huffman-coded symbol for the number of bits.
+ * Emit that number of bits of the value, if positive,
+ * or the complement of its magnitude, if negative.
+ */
+ PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
/* Encode the AC coefficients per section F.1.2.2 */
- r = 0; /* r = run length of zeros */
+ {
+ int r = 0; /* r = run length of zeros */
/* Manually unroll the k loop to eliminate the counter variable. This
* improves performance greatly on systems with a limited number of
@@ -563,51 +607,46 @@ encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
*/
#define kloop(jpeg_natural_order_of_k) { \
if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
- r++; \
+ r += 16; \
} else { \
- temp2 = temp; \
/* Branch-less absolute value, bitwise complement, etc., same as above */ \
- temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
- temp ^= temp3; \
- temp -= temp3; \
- temp2 += temp3; \
- nbits = JPEG_NBITS_NONZERO(temp); \
+ nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
+ temp += nbits; \
+ nbits ^= temp; \
+ nbits = JPEG_NBITS_NONZERO(nbits); \
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
- while (r > 15) { \
- EMIT_BITS(code_0xf0, size_0xf0) \
- r -= 16; \
+ while (r >= 16 * 16) { \
+ r -= 16 * 16; \
+ PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
} \
/* Emit Huffman symbol for run length / number of bits */ \
- temp3 = (r << 4) + nbits; \
- code = actbl->ehufco[temp3]; \
- size = actbl->ehufsi[temp3]; \
- EMIT_CODE(code, size) \
+ r += nbits; \
+ PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
r = 0; \
} \
}
- /* One iteration for each value in jpeg_natural_order[] */
- kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
- kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
- kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
- kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
- kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
- kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
- kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
- kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
- kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
- kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
- kloop(55); kloop(62); kloop(63);
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0) {
- code = actbl->ehufco[0];
- size = actbl->ehufsi[0];
- EMIT_BITS(code, size)
+ /* One iteration for each value in jpeg_natural_order[] */
+ kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
+ kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
+ kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
+ kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
+ kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
+ kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
+ kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
+ kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
+ kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
+ kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
+ kloop(55); kloop(62); kloop(63);
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0) {
+ PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
+ }
}
- state->cur.put_buffer = put_buffer;
- state->cur.put_bits = put_bits;
+ state->cur.put_buffer.c = put_buffer;
+ state->cur.free_bits = free_bits;
STORE_BUFFER()
return TRUE;
@@ -654,8 +693,9 @@ encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Load up working state */
state.next_output_byte = cinfo->dest->next_output_byte;
state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
+ state.cur = entropy->saved;
state.cinfo = cinfo;
+ state.simd = entropy->simd;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
@@ -694,7 +734,7 @@ encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Completed MCU, so update state */
cinfo->dest->next_output_byte = state.next_output_byte;
cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
+ entropy->saved = state.cur;
/* Update restart-interval state too */
if (cinfo->restart_interval) {
@@ -723,8 +763,9 @@ finish_pass_huff(j_compress_ptr cinfo)
/* Load up working state ... flush_bits needs it */
state.next_output_byte = cinfo->dest->next_output_byte;
state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
+ state.cur = entropy->saved;
state.cinfo = cinfo;
+ state.simd = entropy->simd;
/* Flush out the last data */
if (!flush_bits(&state))
@@ -733,7 +774,7 @@ finish_pass_huff(j_compress_ptr cinfo)
/* Update state */
cinfo->dest->next_output_byte = state.next_output_byte;
cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
+ entropy->saved = state.cur;
}