summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/pcre2/src/sljit/sljitLir.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/pcre2/src/sljit/sljitLir.h')
-rw-r--r--src/3rdparty/pcre2/src/sljit/sljitLir.h639
1 files changed, 397 insertions, 242 deletions
diff --git a/src/3rdparty/pcre2/src/sljit/sljitLir.h b/src/3rdparty/pcre2/src/sljit/sljitLir.h
index df69b8656f..470c84f592 100644
--- a/src/3rdparty/pcre2/src/sljit/sljitLir.h
+++ b/src/3rdparty/pcre2/src/sljit/sljitLir.h
@@ -1,7 +1,7 @@
/*
* Stack-less Just-In-Time compiler
*
- * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
+ * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
@@ -99,6 +99,8 @@ of sljitConfigInternal.h */
#define SLJIT_ERR_UNSUPPORTED 4
/* An ivalid argument is passed to any SLJIT function. */
#define SLJIT_ERR_BAD_ARGUMENT 5
+/* Dynamic code modification is not enabled. */
+#define SLJIT_ERR_DYN_CODE_MOD 6
/* --------------------------------------------------------------------- */
/* Registers */
@@ -118,8 +120,8 @@ of sljitConfigInternal.h */
If an architecture provides two scratch and three saved registers,
its scratch and saved register sets are the following:
- R0 | [S4] | R0 and S4 represent the same physical register
- R1 | [S3] | R1 and S3 represent the same physical register
+ R0 | | R0 is always a scratch register
+ R1 | | R1 is always a scratch register
[R2] | S2 | R2 and S2 represent the same physical register
[R3] | S1 | R3 and S1 represent the same physical register
[R4] | S0 | R4 and S0 represent the same physical register
@@ -127,38 +129,35 @@ of sljitConfigInternal.h */
Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
- Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
- and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
+ Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
+ and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
are virtual on x86-32. See below.
- The purpose of this definition is convenience. Although a register
- is either scratch register or saved register, SLJIT allows accessing
- them from the other set. For example, four registers can be used as
- scratch registers and the fifth one as saved register on the architecture
- above. Of course the last two scratch registers (R2 and R3) from this
- four will be saved on the stack, because they are defined as saved
- registers in the application binary interface. Still R2 and R3 can be
- used for referencing to these registers instead of S2 and S1, which
- makes easier to write platform independent code. Scratch registers
- can be saved registers in a similar way, but these extra saved
- registers will not be preserved across function calls! Hence the
- application must save them on those platforms, where the number of
- saved registers is too low. This can be done by copy them onto
- the stack and restore them after a function call.
+ The purpose of this definition is convenience: saved registers can
+ be used as extra scratch registers. For example four registers can
+ be specified as scratch registers and the fifth one as saved register
+ on the CPU above and any user code which requires four scratch
+ registers can run unmodified. The SLJIT compiler automatically saves
+ the content of the two extra scrath register on the stack. Scratch
+ registers can also be preserved by saving their value on the stack
+ but this needs to be done manually.
Note: To emphasize that registers assigned to R2-R4 are saved
- registers, they are enclosed by square brackets. S3-S4
- are marked in a similar way.
+ registers, they are enclosed by square brackets.
Note: sljit_emit_enter and sljit_set_context defines whether a register
is S or R register. E.g: when 3 scratches and 1 saved is mapped
by sljit_emit_enter, the allowed register set will be: R0-R2 and
S0. Although S2 is mapped to the same position as R2, it does not
- available in the current configuration. Furthermore the R3 (S1)
- register does not available as well.
+ available in the current configuration. Furthermore the S1 register
+ is not available at all.
*/
-/* When SLJIT_UNUSED is specified as destination, the result is discarded. */
+/* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1 and
+ and sljit_emit_op2 operations the result is discarded. If no status
+ flags are set, no instructions are emitted for these operations. Data
+ prefetch is a special exception, see SLJIT_MOV operation. Other SLJIT
+ operations do not support SLJIT_UNUSED as a destination operand. */
#define SLJIT_UNUSED 0
/* Scratch registers. */
@@ -323,19 +322,22 @@ struct sljit_compiler {
sljit_s32 local_size;
/* Code size. */
sljit_uw size;
- /* For statistical purposes. */
+ /* Relative offset of the executable mapping from the writable mapping. */
+ sljit_uw executable_offset;
+ /* Executable size for statistical purposes. */
sljit_uw executable_size;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 args;
+ sljit_s32 locals_offset;
+ sljit_s32 saveds_offset;
#endif
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 mode32;
+#ifdef _WIN64
+ sljit_s32 locals_offset;
#endif
-
-#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
- sljit_s32 flags_saved;
#endif
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
@@ -352,13 +354,6 @@ struct sljit_compiler {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
/* Temporary fields. */
sljit_uw shift_imm;
- sljit_s32 cache_arg;
- sljit_sw cache_argw;
-#endif
-
-#if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
- sljit_s32 cache_arg;
- sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
@@ -395,6 +390,9 @@ struct sljit_compiler {
#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
+ /* Flags specified by the last arithmetic instruction.
+ It contains the type of the variable flag. */
+ sljit_s32 last_flags;
/* Local size passed to the functions. */
sljit_s32 logical_local_size;
#endif
@@ -402,6 +400,7 @@ struct sljit_compiler {
#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
+ /* Trust arguments when the API function is called. */
sljit_s32 skip_checks;
#endif
};
@@ -455,19 +454,67 @@ SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compile
SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
#endif
+/*
+ Create executable code from the sljit instruction stream. This is the final step
+ of the code generation so no more instructions can be added after this call.
+*/
+
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
+
+/* Free executable code. */
+
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
/*
- After the machine code generation is finished we can retrieve the allocated
- executable memory size, although this area may not be fully filled with
- instructions depending on some optimizations. This function is useful only
- for statistical purposes.
+ When the protected executable allocator is used the JIT code is mapped
+ twice. The first mapping has read/write and the second mapping has read/exec
+ permissions. This function returns with the relative offset of the executable
+ mapping using the writable mapping as the base after the machine code is
+ successfully generated. The returned value is always 0 for the normal executable
+ allocator, since it uses only one mapping with read/write/exec permissions.
+ Dynamic code modifications requires this value.
+
+ Before a successful code generation, this function returns with 0.
+*/
+static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
+
+/*
+ The executable memory consumption of the generated code can be retrieved by
+ this function. The returned value can be used for statistical purposes.
Before a successful code generation, this function returns with 0.
*/
static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
+/* Returns with non-zero if the feature or limitation type passed as its
+ argument is present on the current CPU.
+
+ Some features (e.g. floating point operations) require hardware (CPU)
+ support while others (e.g. move with update) are emulated if not available.
+ However even if a feature is emulated, specialized code paths can be faster
+ than the emulation. Some limitations are emulated as well so their general
+ case is supported but it has extra performance costs. */
+
+/* [Not emulated] Floating-point support is available. */
+#define SLJIT_HAS_FPU 0
+/* [Limitation] Some registers are virtual registers. */
+#define SLJIT_HAS_VIRTUAL_REGISTERS 1
+/* [Emulated] Some forms of move with pre update is supported. */
+#define SLJIT_HAS_PRE_UPDATE 2
+/* [Emulated] Count leading zero is supported. */
+#define SLJIT_HAS_CLZ 3
+/* [Emulated] Conditional move is supported. */
+#define SLJIT_HAS_CMOV 4
+/* [Limitation] [Emulated] Shifting with register is limited to SLJIT_PREF_SHIFT_REG. */
+#define SLJIT_HAS_PREF_SHIFT_REG 5
+
+#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
+/* [Not emulated] SSE2 support is available on x86. */
+#define SLJIT_HAS_SSE2 100
+#endif
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
+
/* Instruction generation. Returns with any error code. If there is no
error, they return with SLJIT_SUCCESS. */
@@ -512,8 +559,8 @@ static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler
*/
/* The absolute address returned by sljit_get_local_base with
-offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
-#define SLJIT_DOUBLE_ALIGNMENT 0x00000001
+offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
+#define SLJIT_F64_ALIGNMENT 0x00000001
/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
#define SLJIT_MAX_LOCAL_SIZE 65536
@@ -555,7 +602,7 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *comp
and setting up a new stack frame would cost too much performance. However, it is still
possible to return to the address of the caller (or anywhere else). */
-/* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
+/* Note: may destroy flags. */
/* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
since many architectures do clever branch prediction on call / return instruction pairs. */
@@ -624,57 +671,97 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler
#define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
#define SLJIT_IMM 0x40
-/* Set 32 bit operation mode (I) on 64 bit CPUs. This flag is ignored on 32
- bit CPUs. When this flag is set for an arithmetic operation, only the
- lower 32 bit of the input register(s) are used, and the CPU status flags
- are set according to the 32 bit result. Although the higher 32 bit of
- the input and the result registers are not defined by SLJIT, it might be
- defined by the CPU architecture (e.g. MIPS). To satisfy these requirements
- all source registers must be computed by operations where this flag is
- also set. In other words 32 and 64 bit arithmetic operations cannot be
- mixed. The only exception is SLJIT_IMOV and SLJIT_IMOVU whose source
- register can hold any 32 or 64 bit value. This source register is
- converted to a 32 bit compatible format. SLJIT does not generate any
- instructions on certain CPUs (e.g. on x86 and ARM) if the source and
- destination operands are the same registers. Affects sljit_emit_op0,
- sljit_emit_op1 and sljit_emit_op2. */
+/* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
+ 32 bit CPUs. When this option is set for an arithmetic operation, only
+ the lower 32 bit of the input registers are used, and the CPU status
+ flags are set according to the 32 bit result. Although the higher 32 bit
+ of the input and the result registers are not defined by SLJIT, it might
+ be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
+ requirements all source registers must be the result of those operations
+ where this option was also set. Memory loads read 32 bit values rather
+ than 64 bit ones. In other words 32 bit and 64 bit operations cannot
+ be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
+ register can hold any 32 or 64 bit value, and it is converted to a 32 bit
+ compatible format first. This conversion is free (no instructions are
+ emitted) on most CPUs. A 32 bit value can also be coverted to a 64 bit
+ value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
+
+ Note: memory addressing always uses 64 bit values on 64 bit systems so
+ the result of a 32 bit operation must not be used with SLJIT_MEMx
+ macros.
+
+ This option is part of the instruction name, so there is no need to
+ manually set it. E.g:
+
+ SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
#define SLJIT_I32_OP 0x100
-/* F32 precision mode (SP). This flag is similar to SLJIT_I32_OP, just
- it applies to floating point registers (it is even the same bit). When
- this flag is passed, the CPU performs 32 bit floating point operations.
- Similar to SLJIT_I32_OP, all register arguments must be computed by
- floating point operations where this flag is also set. Affects
- sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
-#define SLJIT_F32_OP 0x100
-
-/* Common CPU status flags for all architectures (x86, ARM, PPC)
- - carry flag
- - overflow flag
- - zero flag
- - negative/positive flag (depends on arc)
- On mips, these flags are emulated by software. */
-
-/* By default, the instructions may, or may not set the CPU status flags.
- Forcing to set or keep status flags can be done with the following flags: */
-
-/* Note: sljit tries to emit the minimum number of instructions. Using these
- flags can increase them, so use them wisely to avoid unnecessary code generation. */
-
-/* Set Equal (Zero) status flag (E). */
-#define SLJIT_SET_E 0x0200
-/* Set unsigned status flag (U). */
-#define SLJIT_SET_U 0x0400
-/* Set signed status flag (S). */
-#define SLJIT_SET_S 0x0800
-/* Set signed overflow flag (O). */
-#define SLJIT_SET_O 0x1000
-/* Set carry flag (C).
- Note: Kinda unsigned overflow, but behaves differently on various cpus. */
-#define SLJIT_SET_C 0x2000
-/* Do not modify the flags (K).
- Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
-#define SLJIT_KEEP_FLAGS 0x4000
+/* Set F32 (single) precision mode for floating-point computation. This
+ option is similar to SLJIT_I32_OP, it just applies to floating point
+ registers. When this option is passed, the CPU performs 32 bit floating
+ point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
+ register arguments must be the result of those operations where this
+ option was also set.
+
+ This option is part of the instruction name, so there is no need to
+ manually set it. E.g:
+
+ SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
+ */
+#define SLJIT_F32_OP SLJIT_I32_OP
+
+/* Many CPUs (x86, ARM, PPC) has status flags which can be set according
+ to the result of an operation. Other CPUs (MIPS) does not have status
+ flags, and results must be stored in registers. To cover both architecture
+ types efficiently only two flags are defined by SLJIT:
+
+ * Zero (equal) flag: it is set if the result is zero
+ * Variable flag: its value is defined by the last arithmetic operation
+
+ SLJIT instructions can set any or both of these flags. The value of
+ these flags is undefined if the instruction does not specify their value.
+ The description of each instruction contains the list of allowed flag
+ types.
+
+ Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
+
+ sljit_op2(..., SLJIT_ADD, ...)
+ Both the zero and variable flags are undefined so they can
+ have any value after the operation is completed.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
+ Sets the zero flag if the result is zero, clears it otherwise.
+ The variable flag is undefined.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
+ Sets the variable flag if an integer overflow occurs, clears
+ it otherwise. The zero flag is undefined.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
+ Sets the zero flag if the result is zero, clears it otherwise.
+ Sets the variable flag if unsigned overflow (carry) occurs,
+ clears it otherwise.
+
+ If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
+ unchanged.
+
+ Using these flags can reduce the number of emitted instructions. E.g. a
+ fast loop can be implemented by decreasing a counter register and set the
+ zero flag to jump back if the counter register is not reached zero.
+
+ Motivation: although CPUs can set a large number of flags, usually their
+ values are ignored or only one of them is used. Emulating a large number
+ of flags on systems without flag register is complicated so SLJIT
+ instructions must specify the flag they want to use and only that flag
+ will be emulated. The last arithmetic instruction can be repeated if
+ multiple flags needs to be checked.
+*/
+
+/* Set Zero status flag. */
+#define SLJIT_SET_Z 0x0200
+/* Set the variable status flag if condition is true.
+ See comparison types. */
+#define SLJIT_SET(condition) ((condition) << 10)
/* Notes:
- you cannot postpone conditional jump instructions except if noted that
@@ -684,11 +771,11 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler
/* Starting index of opcodes for sljit_emit_op0. */
#define SLJIT_OP0_BASE 0
-/* Flags: - (never set any flags)
+/* Flags: - (does not modify flags)
Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
It falls back to SLJIT_NOP in those cases. */
#define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
-/* Flags: - (never set any flags)
+/* Flags: - (does not modify flags)
Note: may or may not cause an extra cycle wait
it can even decrease the runtime in a few cases. */
#define SLJIT_NOP (SLJIT_OP0_BASE + 1)
@@ -700,13 +787,13 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler
Signed multiplication of SLJIT_R0 and SLJIT_R1.
Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
#define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
-/* Flags: I - (may destroy flags)
+/* Flags: - (may destroy flags)
Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
Note: if SLJIT_R1 is 0, the behaviour is undefined. */
#define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
#define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
-/* Flags: I - (may destroy flags)
+/* Flags: - (may destroy flags)
Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
Note: if SLJIT_R1 is 0, the behaviour is undefined.
@@ -714,13 +801,13 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler
the behaviour is undefined. */
#define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
#define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
-/* Flags: I - (may destroy flags)
+/* Flags: - (may destroy flags)
Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
Note: if SLJIT_R1 is 0, the behaviour is undefined. */
#define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
#define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
-/* Flags: I - (may destroy flags)
+/* Flags: - (may destroy flags)
Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
Note: if SLJIT_R1 is 0, the behaviour is undefined.
@@ -734,75 +821,113 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compile
/* Starting index of opcodes for sljit_emit_op1. */
#define SLJIT_OP1_BASE 32
-/* Notes for MOV instructions:
- U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
- or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
- UB = unsigned byte (8 bit)
- SB = signed byte (8 bit)
- UH = unsigned half (16 bit)
- SH = signed half (16 bit)
- UI = unsigned int (32 bit)
- SI = signed int (32 bit)
- P = pointer (sljit_p) size */
-
-/* Flags: - (never set any flags) */
+/* The MOV instruction transfer data from source to destination.
+
+ MOV instruction suffixes:
+
+ U8 - unsigned 8 bit data transfer
+ S8 - signed 8 bit data transfer
+ U16 - unsigned 16 bit data transfer
+ S16 - signed 16 bit data transfer
+ U32 - unsigned int (32 bit) data transfer
+ S32 - signed int (32 bit) data transfer
+ P - pointer (sljit_p) data transfer
+
+ U = move with update (pre form). If source or destination defined as
+ SLJIT_MEM1(r1) or SLJIT_MEM2(r1, r2), r1 is increased by the
+ offset part of the address.
+
+ Register arguments and base registers can only be used once for move
+ with update instructions. The shift value of SLJIT_MEM2 addressing
+ mode must also be 0. Reason: SLJIT_MOVU instructions are expected to
+ be in high-performance loops where complex instruction emulation
+ would be too costly.
+
+ Examples for invalid move with update instructions:
+
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_R0, 0, SLJIT_MEM1(SLJIT_R0), 8);
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_R0, 0);
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM1(SLJIT_R0), 8);
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0);
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_R2, 0, SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 1);
+
+ The following example is valid, since only the offset register is
+ used multiple times:
+
+ sljit_emit_op1(..., SLJIT_MOVU_U8,
+ SLJIT_MEM2(SLJIT_R0, SLJIT_R2), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R2), 0);
+
+ If the destination of a MOV without update instruction is SLJIT_UNUSED
+ and the source operand is a memory address the compiler emits a prefetch
+ instruction if this instruction is supported by the current CPU.
+ Higher data sizes bring the data closer to the core: a MOV with word
+ size loads the data into a higher level cache than a byte size. Otherwise
+ the type does not affect the prefetch instruction. Furthermore a prefetch
+ instruction never fails, so it can be used to prefetch a data from an
+ address and check whether that address is NULL afterwards.
+*/
+
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV (SLJIT_OP1_BASE + 0)
-/* Flags: I - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
#define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
#define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
#define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
#define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags)
+/* Flags: - (does not modify flags)
Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
#define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
-/* Flags: I - (never set any flags)
+/* Flags: - (does not modify flags)
Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
#define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
-/* Flags: I - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
-/* Flags: - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
-/* Flags: - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
-/* Flags: I - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU_U8 (SLJIT_OP1_BASE + 9)
#define SLJIT_MOVU32_U8 (SLJIT_MOVU_U8 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU_S8 (SLJIT_OP1_BASE + 10)
#define SLJIT_MOVU32_S8 (SLJIT_MOVU_S8 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU_U16 (SLJIT_OP1_BASE + 11)
#define SLJIT_MOVU32_U16 (SLJIT_MOVU_U16 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU_S16 (SLJIT_OP1_BASE + 12)
#define SLJIT_MOVU32_S16 (SLJIT_MOVU_S16 | SLJIT_I32_OP)
-/* Flags: I - (never set any flags)
+/* Flags: - (may destroy flags)
Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
#define SLJIT_MOVU_U32 (SLJIT_OP1_BASE + 13)
-/* Flags: I - (never set any flags)
+/* Flags: - (may destroy flags)
Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
#define SLJIT_MOVU_S32 (SLJIT_OP1_BASE + 14)
-/* Flags: I - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU32 (SLJIT_MOVU_S32 | SLJIT_I32_OP)
-/* Flags: - (never set any flags) */
+/* Flags: - (may destroy flags) */
#define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
-/* Flags: I | E | K */
+/* Flags: Z */
#define SLJIT_NOT (SLJIT_OP1_BASE + 16)
#define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
-/* Flags: I | E | O | K */
+/* Flags: Z | OVERFLOW */
#define SLJIT_NEG (SLJIT_OP1_BASE + 17)
#define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
/* Count leading zeroes
- Flags: I | E | K
- Important note! Sparc 32 does not support K flag, since
- the required popc instruction is introduced only in sparc 64. */
+ Flags: - (may destroy flags) */
#define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
#define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
@@ -813,46 +938,48 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compile
/* Starting index of opcodes for sljit_emit_op2. */
#define SLJIT_OP2_BASE 96
-/* Flags: I | E | O | C | K */
+/* Flags: Z | OVERFLOW | CARRY */
#define SLJIT_ADD (SLJIT_OP2_BASE + 0)
#define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
-/* Flags: I | C | K */
+/* Flags: CARRY */
#define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
#define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
-/* Flags: I | E | U | S | O | C | K */
+/* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
+ SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
+ SIG_LESS_EQUAL | CARRY */
#define SLJIT_SUB (SLJIT_OP2_BASE + 2)
#define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
-/* Flags: I | C | K */
+/* Flags: CARRY */
#define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
#define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
/* Note: integer mul
- Flags: I | O (see SLJIT_C_MUL_*) | K */
+ Flags: MUL_OVERFLOW */
#define SLJIT_MUL (SLJIT_OP2_BASE + 4)
#define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
-/* Flags: I | E | K */
+/* Flags: Z */
#define SLJIT_AND (SLJIT_OP2_BASE + 5)
#define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
-/* Flags: I | E | K */
+/* Flags: Z */
#define SLJIT_OR (SLJIT_OP2_BASE + 6)
#define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
-/* Flags: I | E | K */
+/* Flags: Z */
#define SLJIT_XOR (SLJIT_OP2_BASE + 7)
#define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
-/* Flags: I | E | K
+/* Flags: Z
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
to bit_length - 1, the result is undefined. */
#define SLJIT_SHL (SLJIT_OP2_BASE + 8)
#define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
-/* Flags: I | E | K
+/* Flags: Z
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
to bit_length - 1, the result is undefined. */
#define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
#define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
-/* Flags: I | E | K
+/* Flags: Z
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
@@ -865,44 +992,38 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compile
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
-/* Returns with non-zero if fpu is available. */
-
-SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void);
-
/* Starting index of opcodes for sljit_emit_fop1. */
#define SLJIT_FOP1_BASE 128
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
#define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
Rounding mode when the destination is W or I: round towards zero. */
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
#define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
#define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
#define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
#define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
#define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
/* Note: dst is the left and src is the right operand for SLJIT_CMPD.
- Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
- is set, the comparison result is unpredictable.
- Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
+ Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
#define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
#define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
#define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
#define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
@@ -913,16 +1034,16 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compil
/* Starting index of opcodes for sljit_emit_fop2. */
#define SLJIT_FOP2_BASE 160
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
#define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
#define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
#define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
-/* Flags: SP - (never set any flags) */
+/* Flags: - (does not modify flags) */
#define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
#define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
@@ -949,56 +1070,77 @@ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compi
#define SLJIT_LESS 2
#define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
+#define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
#define SLJIT_GREATER_EQUAL 3
#define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
+#define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
#define SLJIT_GREATER 4
#define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
+#define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
#define SLJIT_LESS_EQUAL 5
#define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
+#define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
#define SLJIT_SIG_LESS 6
#define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
+#define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
#define SLJIT_SIG_GREATER_EQUAL 7
#define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
+#define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
#define SLJIT_SIG_GREATER 8
#define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
+#define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
#define SLJIT_SIG_LESS_EQUAL 9
#define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
+#define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
#define SLJIT_OVERFLOW 10
#define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
+#define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
#define SLJIT_NOT_OVERFLOW 11
#define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
#define SLJIT_MUL_OVERFLOW 12
#define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
+#define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
#define SLJIT_MUL_NOT_OVERFLOW 13
#define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
+/* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
+#define SLJIT_SET_CARRY SLJIT_SET(14)
+
/* Floating point comparison types. */
-#define SLJIT_EQUAL_F64 14
+#define SLJIT_EQUAL_F64 16
#define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
-#define SLJIT_NOT_EQUAL_F64 15
+#define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
+#define SLJIT_NOT_EQUAL_F64 17
#define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
-#define SLJIT_LESS_F64 16
+#define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
+#define SLJIT_LESS_F64 18
#define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
-#define SLJIT_GREATER_EQUAL_F64 17
+#define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
+#define SLJIT_GREATER_EQUAL_F64 19
#define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
-#define SLJIT_GREATER_F64 18
+#define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
+#define SLJIT_GREATER_F64 20
#define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
-#define SLJIT_LESS_EQUAL_F64 19
+#define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
+#define SLJIT_LESS_EQUAL_F64 21
#define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
-#define SLJIT_UNORDERED_F64 20
+#define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
+#define SLJIT_UNORDERED_F64 22
#define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
-#define SLJIT_ORDERED_F64 21
+#define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
+#define SLJIT_ORDERED_F64 23
#define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
+#define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
/* Unconditional jump types. */
-#define SLJIT_JUMP 22
-#define SLJIT_FAST_CALL 23
-#define SLJIT_CALL0 24
-#define SLJIT_CALL1 25
-#define SLJIT_CALL2 26
-#define SLJIT_CALL3 27
+#define SLJIT_JUMP 24
+#define SLJIT_FAST_CALL 25
+#define SLJIT_CALL0 26
+#define SLJIT_CALL1 27
+#define SLJIT_CALL2 28
+#define SLJIT_CALL3 29
/* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
@@ -1008,8 +1150,9 @@ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compi
/* Emit a jump instruction. The destination is not set, only the type of the jump.
type must be between SLJIT_EQUAL and SLJIT_CALL3
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
- Flags: - (never set any flags) for both conditional and unconditional jumps.
- Flags: destroy all flags for calls. */
+
+ Flags: does not modify flags for conditional and unconditional
+ jumps but destroy all flags for calls. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
/* Basic arithmetic comparison. In most architectures it is implemented as
@@ -1019,7 +1162,7 @@ SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compile
It is suggested to use this comparison form when appropriate.
type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
- Flags: destroy flags. */
+ Flags: may destroy flags. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
@@ -1047,36 +1190,55 @@ SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw
type must be between SLJIT_JUMP and SLJIT_CALL3
Direct form: set src to SLJIT_IMM() and srcw to the address
Indirect form: any other valid addressing mode
- Flags: - (never set any flags) for unconditional jumps.
- Flags: destroy all flags for calls. */
+
+ Flags: does not modify flags for unconditional jumps but
+ destroy all flags for calls. */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
/* Perform the operation using the conditional flags as the second argument.
- Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
+ Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
represented by the type is 1, if the condition represented by the type
is fulfilled, and 0 otherwise.
- If op == SLJIT_MOV, SLJIT_MOV_S32, SLJIT_MOV_U32:
+ If op == SLJIT_MOV, SLJIT_MOV32:
Set dst to the value represented by the type (0 or 1).
- Src must be SLJIT_UNUSED, and srcw must be 0
- Flags: - (never set any flags)
+ Flags: - (does not modify flags)
If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
- Performs the binary operation using src as the first, and the value
- represented by type as the second argument.
- Important note: only dst=src and dstw=srcw is supported at the moment!
- Flags: I | E | K
- Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
+ Performs the binary operation using dst as the first, and the value
+ represented by type as the second argument. Result is written into dst.
+ Flags: Z (may destroy flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
- sljit_s32 src, sljit_sw srcw,
sljit_s32 type);
-/* Copies the base address of SLJIT_SP + offset to dst.
- Flags: - (never set any flags) */
+/* Emit a conditional mov instruction which moves source to destination,
+ if the condition is satisfied. Unlike other arithmetic operations this
+ instruction does not support memory accesses.
+
+ type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
+ dst_reg must be a valid register and it can be combined
+ with SLJIT_I32_OP to perform a 32 bit arithmetic operation
+ src must be register or immediate (SLJIT_IMM)
+
+ Flags: - (does not modify flags) */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 dst_reg,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Copies the base address of SLJIT_SP + offset to dst. The offset can be
+ anything to negate the effect of relative addressing. For example if an
+ array of sljit_sw values is stored on the stack from offset 0x40, and R0
+ contains the offset of an array item plus 0x120, this item can be
+ overwritten by two SLJIT instructions:
+
+ sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
+ sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
+
+ Flags: - (may destroy flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
/* The constant can be changed runtime (see: sljit_set_const)
- Flags: - (never set any flags) */
+ Flags: - (does not modify flags) */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
/* After the code generation the address for label, jump and const instructions
@@ -1086,16 +1248,17 @@ static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { r
static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
-/* Only the address is required to rewrite the code. */
-SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
-SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
+/* Only the address and executable offset are required to perform dynamic
+ code modifications. See sljit_get_executable_offset function. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
/* --------------------------------------------------------------------- */
/* Miscellaneous utility functions */
/* --------------------------------------------------------------------- */
#define SLJIT_MAJOR_VERSION 0
-#define SLJIT_MINOR_VERSION 93
+#define SLJIT_MINOR_VERSION 94
/* Get the human readable name of the platform. Can be useful on platforms
like ARM, where ARM and Thumb2 functions can be mixed, and
@@ -1113,19 +1276,23 @@ SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
-/* The sljit_stack is a utiliy feature of sljit, which allocates a
- writable memory region between base (inclusive) and limit (exclusive).
- Both base and limit is a pointer, and base is always <= than limit.
- This feature uses the "address space reserve" feature
- of modern operating systems. Basically we don't need to allocate a
- huge memory block in one step for the worst case, we can start with
- a smaller chunk and extend it later. Since the address space is
- reserved, the data never copied to other regions, thus it is safe
- to store pointers here. */
-
-/* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
- Note: stack growing should not happen in small steps: 4k, 16k or even
- bigger growth is better.
+/* The sljit_stack is a utility extension of sljit, which provides
+ a top-down stack. The stack starts at base and goes down to
+ max_limit, so the memory region for this stack is between
+ max_limit (inclusive) and base (exclusive). However the
+ application can only use the region between limit (inclusive)
+ and base (exclusive). The sljit_stack_resize can be used to
+ extend this region up to max_limit.
+
+ This feature uses the "address space reserve" feature of modern
+ operating systems, so instead of allocating a huge memory block
+ applications can allocate a small region and extend it later
+ without moving the memory area. Hence pointers can be stored
+ in this area. */
+
+/* Note: base and max_limit fields are aligned to PAGE_SIZE bytes
+ (usually 4 Kbyte or more).
+ Note: stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more.
Note: this structure may not be supported by all operating systems.
Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
is not defined. */
@@ -1133,15 +1300,16 @@ SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
struct sljit_stack {
/* User data, anything can be stored here.
Starting with the same value as base. */
- sljit_uw top;
+ sljit_u8 *top;
/* These members are read only. */
- sljit_uw base;
- sljit_uw limit;
- sljit_uw max_limit;
+ sljit_u8 *base;
+ sljit_u8 *limit;
+ sljit_u8 *max_limit;
};
/* Returns NULL if unsuccessful.
- Note: limit and max_limit contains the size for stack allocation.
+ Note: max_limit contains the maximum stack size in bytes.
+ Note: limit contains the starting stack size in bytes.
Note: the top field is initialized to base.
Note: see sljit_create_compiler for the explanation of allocator_data. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
@@ -1153,7 +1321,7 @@ SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *st
since the growth ratio can be added to the current limit, and sljit_stack_resize
will do all the necessary checks. The fields of the stack are not changed if
sljit_stack_resize fails. */
-SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
+SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_limit);
#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
@@ -1182,6 +1350,15 @@ SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct
#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
+#if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
+/* Free unused executable memory. The allocator keeps some free memory
+ around to reduce the number of OS executable memory allocations.
+ This improves performance since these calls are costly. However
+ it is sometimes desired to free all unused memory regions, e.g.
+ before the application terminates. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
+#endif
+
/* --------------------------------------------------------------------- */
/* CPU specific functions */
/* --------------------------------------------------------------------- */
@@ -1214,32 +1391,10 @@ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg)
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_s32 size);
-#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
-
-/* Returns with non-zero if sse2 is available. */
+/* Define the currently available CPU status flags. It is usually used after an
+ sljit_emit_op_custom call to define which flags are set. */
-SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_sse2_available(void);
-
-/* Returns with non-zero if cmov instruction is available. */
-
-SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_cmov_available(void);
-
-/* Emit a conditional mov instruction on x86 CPUs. This instruction
- moves src to destination, if the condition is satisfied. Unlike
- other arithmetic instructions, destination must be a register.
- Before such instructions are emitted, cmov support should be
- checked by sljit_x86_is_cmov_available function.
- type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
- dst_reg must be a valid register and it can be combined
- with SLJIT_I32_OP to perform 32 bit arithmetic
- Flags: I - (never set any flags)
- */
-
-SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_emit_cmov(struct sljit_compiler *compiler,
- sljit_s32 type,
- sljit_s32 dst_reg,
- sljit_s32 src, sljit_sw srcw);
-
-#endif
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
+ sljit_s32 current_flags);
#endif /* _SLJIT_LIR_H_ */