summaryrefslogtreecommitdiffstats
path: root/src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp')
-rw-r--r--src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp3015
1 files changed, 3015 insertions, 0 deletions
diff --git a/src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp b/src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp
new file mode 100644
index 0000000000..48cbec3d62
--- /dev/null
+++ b/src/widgets/graphicsview/qgraphicsanchorlayout_p.cpp
@@ -0,0 +1,3015 @@
+/****************************************************************************
+**
+** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include <QtGui/qwidget.h>
+#include <QtGui/qapplication.h>
+#include <QtCore/qlinkedlist.h>
+#include <QtCore/qstack.h>
+
+#ifdef QT_DEBUG
+#include <QtCore/qfile.h>
+#endif
+
+#include "qgraphicsanchorlayout_p.h"
+
+#ifndef QT_NO_GRAPHICSVIEW
+QT_BEGIN_NAMESPACE
+
+// To ensure that all variables inside the simplex solver are non-negative,
+// we limit the size of anchors in the interval [-limit, limit]. Then before
+// sending them to the simplex solver we add "limit" as an offset, so that
+// they are actually calculated in the interval [0, 2 * limit]
+// To avoid numerical errors in platforms where we use single precision,
+// we use a tighter limit for the variables range.
+const qreal g_offset = (sizeof(qreal) == sizeof(double)) ? QWIDGETSIZE_MAX : QWIDGETSIZE_MAX / 32;
+
+QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version)
+ : QObjectPrivate(version), layoutPrivate(0), data(0),
+ sizePolicy(QSizePolicy::Fixed), preferredSize(0),
+ hasSize(true)
+{
+}
+
+QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate()
+{
+ if (data) {
+ // The QGraphicsAnchor was already deleted at this moment. We must clean
+ // the dangling pointer to avoid double deletion in the AnchorData dtor.
+ data->graphicsAnchor = 0;
+
+ layoutPrivate->removeAnchor(data->from, data->to);
+ }
+}
+
+void QGraphicsAnchorPrivate::setSizePolicy(QSizePolicy::Policy policy)
+{
+ if (sizePolicy != policy) {
+ sizePolicy = policy;
+ layoutPrivate->q_func()->invalidate();
+ }
+}
+
+void QGraphicsAnchorPrivate::setSpacing(qreal value)
+{
+ if (!data) {
+ qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
+ return;
+ }
+
+ if (hasSize && (preferredSize == value))
+ return;
+
+ // The anchor has an user-defined size
+ hasSize = true;
+ preferredSize = value;
+
+ layoutPrivate->q_func()->invalidate();
+}
+
+void QGraphicsAnchorPrivate::unsetSpacing()
+{
+ if (!data) {
+ qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
+ return;
+ }
+
+ // Return to standard direction
+ hasSize = false;
+
+ layoutPrivate->q_func()->invalidate();
+}
+
+qreal QGraphicsAnchorPrivate::spacing() const
+{
+ if (!data) {
+ qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
+ return 0;
+ }
+
+ return preferredSize;
+}
+
+
+static void applySizePolicy(QSizePolicy::Policy policy,
+ qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint,
+ qreal *minSize, qreal *prefSize,
+ qreal *maxSize)
+{
+ // minSize, prefSize and maxSize are initialized
+ // with item's preferred Size: this is QSizePolicy::Fixed.
+ //
+ // Then we check each flag to find the resultant QSizePolicy,
+ // according to the following table:
+ //
+ // constant value
+ // QSizePolicy::Fixed 0
+ // QSizePolicy::Minimum GrowFlag
+ // QSizePolicy::Maximum ShrinkFlag
+ // QSizePolicy::Preferred GrowFlag | ShrinkFlag
+ // QSizePolicy::Ignored GrowFlag | ShrinkFlag | IgnoreFlag
+
+ if (policy & QSizePolicy::ShrinkFlag)
+ *minSize = minSizeHint;
+ else
+ *minSize = prefSizeHint;
+
+ if (policy & QSizePolicy::GrowFlag)
+ *maxSize = maxSizeHint;
+ else
+ *maxSize = prefSizeHint;
+
+ // Note that these two initializations are affected by the previous flags
+ if (policy & QSizePolicy::IgnoreFlag)
+ *prefSize = *minSize;
+ else
+ *prefSize = prefSizeHint;
+}
+
+AnchorData::~AnchorData()
+{
+ if (graphicsAnchor) {
+ // Remove reference to ourself to avoid double removal in
+ // QGraphicsAnchorPrivate dtor.
+ graphicsAnchor->d_func()->data = 0;
+
+ delete graphicsAnchor;
+ }
+}
+
+
+void AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
+{
+ QSizePolicy::Policy policy;
+ qreal minSizeHint;
+ qreal prefSizeHint;
+ qreal maxSizeHint;
+
+ if (item) {
+ // It is an internal anchor, fetch size information from the item
+ if (isLayoutAnchor) {
+ minSize = 0;
+ prefSize = 0;
+ maxSize = QWIDGETSIZE_MAX;
+ if (isCenterAnchor)
+ maxSize /= 2;
+
+ minPrefSize = prefSize;
+ maxPrefSize = maxSize;
+ return;
+ } else {
+ if (orientation == QGraphicsAnchorLayoutPrivate::Horizontal) {
+ policy = item->sizePolicy().horizontalPolicy();
+ minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).width();
+ prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).width();
+ maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).width();
+ } else {
+ policy = item->sizePolicy().verticalPolicy();
+ minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).height();
+ prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).height();
+ maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).height();
+ }
+
+ if (isCenterAnchor) {
+ minSizeHint /= 2;
+ prefSizeHint /= 2;
+ maxSizeHint /= 2;
+ }
+ }
+ } else {
+ // It is a user-created anchor, fetch size information from the associated QGraphicsAnchor
+ Q_ASSERT(graphicsAnchor);
+ QGraphicsAnchorPrivate *anchorPrivate = graphicsAnchor->d_func();
+
+ // Policy, min and max sizes are straightforward
+ policy = anchorPrivate->sizePolicy;
+ minSizeHint = 0;
+ maxSizeHint = QWIDGETSIZE_MAX;
+
+ // Preferred Size
+ if (anchorPrivate->hasSize) {
+ // Anchor has user-defined size
+ prefSizeHint = anchorPrivate->preferredSize;
+ } else {
+ // Fetch size information from style
+ const Qt::Orientation orient = Qt::Orientation(QGraphicsAnchorLayoutPrivate::edgeOrientation(from->m_edge) + 1);
+ qreal s = styleInfo->defaultSpacing(orient);
+ if (s < 0) {
+ QSizePolicy::ControlType controlTypeFrom = from->m_item->sizePolicy().controlType();
+ QSizePolicy::ControlType controlTypeTo = to->m_item->sizePolicy().controlType();
+ s = styleInfo->perItemSpacing(controlTypeFrom, controlTypeTo, orient);
+
+ // ### Currently we do not support negative anchors inside the graph.
+ // To avoid those being created by a negative style spacing, we must
+ // make this test.
+ if (s < 0)
+ s = 0;
+ }
+ prefSizeHint = s;
+ }
+ }
+
+ // Fill minSize, prefSize and maxSize based on policy and sizeHints
+ applySizePolicy(policy, minSizeHint, prefSizeHint, maxSizeHint,
+ &minSize, &prefSize, &maxSize);
+
+ minPrefSize = prefSize;
+ maxPrefSize = maxSize;
+
+ // Set the anchor effective sizes to preferred.
+ //
+ // Note: The idea here is that all items should remain at their
+ // preferred size unless where that's impossible. In cases where
+ // the item is subject to restrictions (anchored to the layout
+ // edges, for instance), the simplex solver will be run to
+ // recalculate and override the values we set here.
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+}
+
+void ParallelAnchorData::updateChildrenSizes()
+{
+ firstEdge->sizeAtMinimum = sizeAtMinimum;
+ firstEdge->sizeAtPreferred = sizeAtPreferred;
+ firstEdge->sizeAtMaximum = sizeAtMaximum;
+
+ if (secondForward()) {
+ secondEdge->sizeAtMinimum = sizeAtMinimum;
+ secondEdge->sizeAtPreferred = sizeAtPreferred;
+ secondEdge->sizeAtMaximum = sizeAtMaximum;
+ } else {
+ secondEdge->sizeAtMinimum = -sizeAtMinimum;
+ secondEdge->sizeAtPreferred = -sizeAtPreferred;
+ secondEdge->sizeAtMaximum = -sizeAtMaximum;
+ }
+
+ firstEdge->updateChildrenSizes();
+ secondEdge->updateChildrenSizes();
+}
+
+/*
+ \internal
+
+ Initialize the parallel anchor size hints using the sizeHint information from
+ its children.
+
+ Note that parallel groups can lead to unfeasibility, so during calculation, we can
+ find out one unfeasibility. Because of that this method return boolean. This can't
+ happen in sequential, so there the method is void.
+ */
+bool ParallelAnchorData::calculateSizeHints()
+{
+ // Normalize second child sizes.
+ // A negative anchor of sizes min, minPref, pref, maxPref and max, is equivalent
+ // to a forward anchor of sizes -max, -maxPref, -pref, -minPref, -min
+ qreal secondMin;
+ qreal secondMinPref;
+ qreal secondPref;
+ qreal secondMaxPref;
+ qreal secondMax;
+
+ if (secondForward()) {
+ secondMin = secondEdge->minSize;
+ secondMinPref = secondEdge->minPrefSize;
+ secondPref = secondEdge->prefSize;
+ secondMaxPref = secondEdge->maxPrefSize;
+ secondMax = secondEdge->maxSize;
+ } else {
+ secondMin = -secondEdge->maxSize;
+ secondMinPref = -secondEdge->maxPrefSize;
+ secondPref = -secondEdge->prefSize;
+ secondMaxPref = -secondEdge->minPrefSize;
+ secondMax = -secondEdge->minSize;
+ }
+
+ minSize = qMax(firstEdge->minSize, secondMin);
+ maxSize = qMin(firstEdge->maxSize, secondMax);
+
+ // This condition means that the maximum size of one anchor being simplified is smaller than
+ // the minimum size of the other anchor. The consequence is that there won't be a valid size
+ // for this parallel setup.
+ if (minSize > maxSize) {
+ return false;
+ }
+
+ // Preferred size calculation
+ // The calculation of preferred size is done as follows:
+ //
+ // 1) Check whether one of the child anchors is the layout structural anchor
+ // If so, we can simply copy the preferred information from the other child,
+ // after bounding it to our minimum and maximum sizes.
+ // If not, then we proceed with the actual calculations.
+ //
+ // 2) The whole algorithm for preferred size calculation is based on the fact
+ // that, if a given anchor cannot remain at its preferred size, it'd rather
+ // grow than shrink.
+ //
+ // What happens though is that while this affirmative is true for simple
+ // anchors, it may not be true for sequential anchors that have one or more
+ // reversed anchors inside it. That happens because when a sequential anchor
+ // grows, any reversed anchors inside it may be required to shrink, something
+ // we try to avoid, as said above.
+ //
+ // To overcome this, besides their actual preferred size "prefSize", each anchor
+ // exports what we call "minPrefSize" and "maxPrefSize". These two values define
+ // a surrounding interval where, if required to move, the anchor would rather
+ // remain inside.
+ //
+ // For standard anchors, this area simply represents the region between
+ // prefSize and maxSize, which makes sense since our first affirmation.
+ // For composed anchors, these values are calculated as to reduce the global
+ // "damage", that is, to reduce the total deviation and the total amount of
+ // anchors that had to shrink.
+
+ if (firstEdge->isLayoutAnchor) {
+ prefSize = qBound(minSize, secondPref, maxSize);
+ minPrefSize = qBound(minSize, secondMinPref, maxSize);
+ maxPrefSize = qBound(minSize, secondMaxPref, maxSize);
+ } else if (secondEdge->isLayoutAnchor) {
+ prefSize = qBound(minSize, firstEdge->prefSize, maxSize);
+ minPrefSize = qBound(minSize, firstEdge->minPrefSize, maxSize);
+ maxPrefSize = qBound(minSize, firstEdge->maxPrefSize, maxSize);
+ } else {
+ // Calculate the intersection between the "preferred" regions of each child
+ const qreal lowerBoundary =
+ qBound(minSize, qMax(firstEdge->minPrefSize, secondMinPref), maxSize);
+ const qreal upperBoundary =
+ qBound(minSize, qMin(firstEdge->maxPrefSize, secondMaxPref), maxSize);
+ const qreal prefMean =
+ qBound(minSize, (firstEdge->prefSize + secondPref) / 2, maxSize);
+
+ if (lowerBoundary < upperBoundary) {
+ // If there is an intersection between the two regions, this intersection
+ // will be used as the preferred region of the parallel anchor itself.
+ // The preferred size will be the bounded average between the two preferred
+ // sizes.
+ prefSize = qBound(lowerBoundary, prefMean, upperBoundary);
+ minPrefSize = lowerBoundary;
+ maxPrefSize = upperBoundary;
+ } else {
+ // If there is no intersection, we have to attribute "damage" to at least
+ // one of the children. The minimum total damage is achieved in points
+ // inside the region that extends from (1) the upper boundary of the lower
+ // region to (2) the lower boundary of the upper region.
+ // Then, we expose this region as _our_ preferred region and once again,
+ // use the bounded average as our preferred size.
+ prefSize = qBound(upperBoundary, prefMean, lowerBoundary);
+ minPrefSize = upperBoundary;
+ maxPrefSize = lowerBoundary;
+ }
+ }
+
+ // See comment in AnchorData::refreshSizeHints() about sizeAt* values
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+
+ return true;
+}
+
+/*!
+ \internal
+ returns the factor in the interval [-1, 1].
+ -1 is at Minimum
+ 0 is at Preferred
+ 1 is at Maximum
+*/
+static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal value, qreal min,
+ qreal minPref, qreal pref,
+ qreal maxPref, qreal max)
+{
+ QGraphicsAnchorLayoutPrivate::Interval interval;
+ qreal lower;
+ qreal upper;
+
+ if (value < minPref) {
+ interval = QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred;
+ lower = min;
+ upper = minPref;
+ } else if (value < pref) {
+ interval = QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred;
+ lower = minPref;
+ upper = pref;
+ } else if (value < maxPref) {
+ interval = QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred;
+ lower = pref;
+ upper = maxPref;
+ } else {
+ interval = QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum;
+ lower = maxPref;
+ upper = max;
+ }
+
+ qreal progress;
+ if (upper == lower) {
+ progress = 0;
+ } else {
+ progress = (value - lower) / (upper - lower);
+ }
+
+ return qMakePair(interval, progress);
+}
+
+static qreal interpolate(const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> &factor,
+ qreal min, qreal minPref, qreal pref, qreal maxPref, qreal max)
+{
+ qreal lower;
+ qreal upper;
+
+ switch (factor.first) {
+ case QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred:
+ lower = min;
+ upper = minPref;
+ break;
+ case QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred:
+ lower = minPref;
+ upper = pref;
+ break;
+ case QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred:
+ lower = pref;
+ upper = maxPref;
+ break;
+ case QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum:
+ lower = maxPref;
+ upper = max;
+ break;
+ }
+
+ return lower + factor.second * (upper - lower);
+}
+
+void SequentialAnchorData::updateChildrenSizes()
+{
+ // Band here refers if the value is in the Minimum To Preferred
+ // band (the lower band) or the Preferred To Maximum (the upper band).
+
+ const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> minFactor =
+ getFactor(sizeAtMinimum, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
+ const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> prefFactor =
+ getFactor(sizeAtPreferred, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
+ const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> maxFactor =
+ getFactor(sizeAtMaximum, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
+
+ // XXX This is not safe if Vertex simplification takes place after the sequential
+ // anchor is created. In that case, "prev" will be a group-vertex, different from
+ // "from" or "to", that _contains_ one of them.
+ AnchorVertex *prev = from;
+
+ for (int i = 0; i < m_edges.count(); ++i) {
+ AnchorData *e = m_edges.at(i);
+
+ const bool edgeIsForward = (e->from == prev);
+ if (edgeIsForward) {
+ e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->minPrefSize,
+ e->prefSize, e->maxPrefSize, e->maxSize);
+ e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->minPrefSize,
+ e->prefSize, e->maxPrefSize, e->maxSize);
+ e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->minPrefSize,
+ e->prefSize, e->maxPrefSize, e->maxSize);
+ prev = e->to;
+ } else {
+ Q_ASSERT(prev == e->to);
+ e->sizeAtMinimum = interpolate(minFactor, e->maxSize, e->maxPrefSize,
+ e->prefSize, e->minPrefSize, e->minSize);
+ e->sizeAtPreferred = interpolate(prefFactor, e->maxSize, e->maxPrefSize,
+ e->prefSize, e->minPrefSize, e->minSize);
+ e->sizeAtMaximum = interpolate(maxFactor, e->maxSize, e->maxPrefSize,
+ e->prefSize, e->minPrefSize, e->minSize);
+ prev = e->from;
+ }
+
+ e->updateChildrenSizes();
+ }
+}
+
+void SequentialAnchorData::calculateSizeHints()
+{
+ minSize = 0;
+ prefSize = 0;
+ maxSize = 0;
+ minPrefSize = 0;
+ maxPrefSize = 0;
+
+ AnchorVertex *prev = from;
+
+ for (int i = 0; i < m_edges.count(); ++i) {
+ AnchorData *edge = m_edges.at(i);
+
+ const bool edgeIsForward = (edge->from == prev);
+ if (edgeIsForward) {
+ minSize += edge->minSize;
+ prefSize += edge->prefSize;
+ maxSize += edge->maxSize;
+ minPrefSize += edge->minPrefSize;
+ maxPrefSize += edge->maxPrefSize;
+ prev = edge->to;
+ } else {
+ Q_ASSERT(prev == edge->to);
+ minSize -= edge->maxSize;
+ prefSize -= edge->prefSize;
+ maxSize -= edge->minSize;
+ minPrefSize -= edge->maxPrefSize;
+ maxPrefSize -= edge->minPrefSize;
+ prev = edge->from;
+ }
+ }
+
+ // See comment in AnchorData::refreshSizeHints() about sizeAt* values
+ sizeAtMinimum = prefSize;
+ sizeAtPreferred = prefSize;
+ sizeAtMaximum = prefSize;
+}
+
+#ifdef QT_DEBUG
+void AnchorData::dump(int indent) {
+ if (type == Parallel) {
+ qDebug("%*s type: parallel:", indent, "");
+ ParallelAnchorData *p = static_cast<ParallelAnchorData *>(this);
+ p->firstEdge->dump(indent+2);
+ p->secondEdge->dump(indent+2);
+ } else if (type == Sequential) {
+ SequentialAnchorData *s = static_cast<SequentialAnchorData *>(this);
+ int kids = s->m_edges.count();
+ qDebug("%*s type: sequential(%d):", indent, "", kids);
+ for (int i = 0; i < kids; ++i) {
+ s->m_edges.at(i)->dump(indent+2);
+ }
+ } else {
+ qDebug("%*s type: Normal:", indent, "");
+ }
+}
+
+#endif
+
+QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const
+{
+ // Calculate
+ QSet<AnchorData *> cPositives;
+ QSet<AnchorData *> cNegatives;
+ QSet<AnchorData *> intersection;
+
+ cPositives = positives + path.negatives;
+ cNegatives = negatives + path.positives;
+
+ intersection = cPositives & cNegatives;
+
+ cPositives -= intersection;
+ cNegatives -= intersection;
+
+ // Fill
+ QSimplexConstraint *c = new QSimplexConstraint;
+ QSet<AnchorData *>::iterator i;
+ for (i = cPositives.begin(); i != cPositives.end(); ++i)
+ c->variables.insert(*i, 1.0);
+
+ for (i = cNegatives.begin(); i != cNegatives.end(); ++i)
+ c->variables.insert(*i, -1.0);
+
+ return c;
+}
+
+#ifdef QT_DEBUG
+QString GraphPath::toString() const
+{
+ QString string(QLatin1String("Path: "));
+ foreach(AnchorData *edge, positives)
+ string += QString::fromAscii(" (+++) %1").arg(edge->toString());
+
+ foreach(AnchorData *edge, negatives)
+ string += QString::fromAscii(" (---) %1").arg(edge->toString());
+
+ return string;
+}
+#endif
+
+QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate()
+ : calculateGraphCacheDirty(true), styleInfoDirty(true)
+{
+ for (int i = 0; i < NOrientations; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ sizeHints[i][j] = -1;
+ }
+ interpolationProgress[i] = -1;
+
+ spacings[i] = -1;
+ graphHasConflicts[i] = false;
+
+ layoutFirstVertex[i] = 0;
+ layoutCentralVertex[i] = 0;
+ layoutLastVertex[i] = 0;
+ }
+}
+
+Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge)
+{
+ switch (edge) {
+ case Qt::AnchorLeft:
+ edge = Qt::AnchorRight;
+ break;
+ case Qt::AnchorRight:
+ edge = Qt::AnchorLeft;
+ break;
+ case Qt::AnchorTop:
+ edge = Qt::AnchorBottom;
+ break;
+ case Qt::AnchorBottom:
+ edge = Qt::AnchorTop;
+ break;
+ default:
+ break;
+ }
+ return edge;
+}
+
+
+/*!
+ * \internal
+ *
+ * helper function in order to avoid overflowing anchor sizes
+ * the returned size will never be larger than FLT_MAX
+ *
+ */
+inline static qreal checkAdd(qreal a, qreal b)
+{
+ if (FLT_MAX - b < a)
+ return FLT_MAX;
+ return a + b;
+}
+
+/*!
+ \internal
+
+ Adds \a newAnchor to the graph.
+
+ Returns the newAnchor itself if it could be added without further changes to the graph. If a
+ new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor
+ had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise
+ true.
+
+ Note that in the case a new parallel anchor is created, it might also take over some constraints
+ from its children anchors.
+*/
+AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible)
+{
+ Orientation orientation = Orientation(newAnchor->orientation);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ *feasible = true;
+
+ // If already exists one anchor where newAnchor is supposed to be, we create a parallel
+ // anchor.
+ if (AnchorData *oldAnchor = g.takeEdge(newAnchor->from, newAnchor->to)) {
+ ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor);
+
+ // The parallel anchor will "replace" its children anchors in
+ // every center constraint that they appear.
+
+ // ### If the dependent (center) anchors had reference(s) to their constraints, we
+ // could avoid traversing all the itemCenterConstraints.
+ QList<QSimplexConstraint *> &constraints = itemCenterConstraints[orientation];
+
+ AnchorData *children[2] = { oldAnchor, newAnchor };
+ QList<QSimplexConstraint *> *childrenConstraints[2] = { &parallel->m_firstConstraints,
+ &parallel->m_secondConstraints };
+
+ for (int i = 0; i < 2; ++i) {
+ AnchorData *child = children[i];
+ QList<QSimplexConstraint *> *childConstraints = childrenConstraints[i];
+
+ // We need to fix the second child constraints if the parallel group will have the
+ // opposite direction of the second child anchor. For the point of view of external
+ // entities, this anchor was reversed. So if at some point we say that the parallel
+ // has a value of 20, this mean that the second child (when reversed) will be
+ // assigned -20.
+ const bool needsReverse = i == 1 && !parallel->secondForward();
+
+ if (!child->isCenterAnchor)
+ continue;
+
+ parallel->isCenterAnchor = true;
+
+ for (int j = 0; j < constraints.count(); ++j) {
+ QSimplexConstraint *c = constraints[j];
+ if (c->variables.contains(child)) {
+ childConstraints->append(c);
+ qreal v = c->variables.take(child);
+ if (needsReverse)
+ v *= -1;
+ c->variables.insert(parallel, v);
+ }
+ }
+ }
+
+ // At this point we can identify that the parallel anchor is not feasible, e.g. one
+ // anchor minimum size is bigger than the other anchor maximum size.
+ *feasible = parallel->calculateSizeHints();
+ newAnchor = parallel;
+ }
+
+ g.createEdge(newAnchor->from, newAnchor->to, newAnchor);
+ return newAnchor;
+}
+
+/*!
+ \internal
+
+ Takes the sequence of vertices described by (\a before, \a vertices, \a after) and removes
+ all anchors connected to the vertices in \a vertices, returning one simplified anchor between
+ \a before and \a after.
+
+ Note that this function doesn't add the created anchor to the graph. This should be done by
+ the caller.
+*/
+static AnchorData *createSequence(Graph<AnchorVertex, AnchorData> *graph,
+ AnchorVertex *before,
+ const QVector<AnchorVertex*> &vertices,
+ AnchorVertex *after)
+{
+#if defined(QT_DEBUG) && 0
+ QString strVertices;
+ for (int i = 0; i < vertices.count(); ++i) {
+ strVertices += QString::fromAscii("%1 - ").arg(vertices.at(i)->toString());
+ }
+ QString strPath = QString::fromAscii("%1 - %2%3").arg(before->toString(), strVertices, after->toString());
+ qDebug("simplifying [%s] to [%s - %s]", qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString()));
+#endif
+
+ AnchorVertex *prev = before;
+ QVector<AnchorData *> edges;
+
+ // Take from the graph, the edges that will be simplificated
+ for (int i = 0; i < vertices.count(); ++i) {
+ AnchorVertex *next = vertices.at(i);
+ AnchorData *ad = graph->takeEdge(prev, next);
+ Q_ASSERT(ad);
+ edges.append(ad);
+ prev = next;
+ }
+
+ // Take the last edge (not covered in the loop above)
+ AnchorData *ad = graph->takeEdge(vertices.last(), after);
+ Q_ASSERT(ad);
+ edges.append(ad);
+
+ // Create sequence
+ SequentialAnchorData *sequence = new SequentialAnchorData(vertices, edges);
+ sequence->from = before;
+ sequence->to = after;
+
+ sequence->calculateSizeHints();
+
+ return sequence;
+}
+
+/*!
+ \internal
+
+ The purpose of this function is to simplify the graph.
+ Simplification serves two purposes:
+ 1. Reduce the number of edges in the graph, (thus the number of variables to the equation
+ solver is reduced, and the solver performs better).
+ 2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential
+ anchors)
+
+ It is essential that it must be possible to restore simplified anchors back to their "original"
+ form. This is done by restoreSimplifiedAnchor().
+
+ There are two types of simplification that can be done:
+ 1. Sequential simplification
+ Sequential simplification means that all sequences of anchors will be merged into one single
+ anchor. Only anhcors that points in the same direction will be merged.
+ 2. Parallel simplification
+ If a simplified sequential anchor is about to be inserted between two vertices in the graph
+ and there already exist an anchor between those two vertices, a parallel anchor will be
+ created that serves as a placeholder for the sequential anchor and the anchor that was
+ already between the two vertices.
+
+ The process of simplification can be described as:
+
+ 1. Simplify all sequences of anchors into one anchor.
+ If no further simplification was done, go to (3)
+ - If there already exist an anchor where the sequential anchor is supposed to be inserted,
+ take that anchor out of the graph
+ - Then create a parallel anchor that holds the sequential anchor and the anchor just taken
+ out of the graph.
+ 2. Go to (1)
+ 3. Done
+
+ When creating the parallel anchors, the algorithm might identify unfeasible situations. In this
+ case the simplification process stops and returns false. Otherwise returns true.
+*/
+bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation)
+{
+ if (items.isEmpty())
+ return true;
+
+#if defined(QT_DEBUG) && 0
+ qDebug("Simplifying Graph for %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+
+ static int count = 0;
+ if (orientation == Horizontal) {
+ count++;
+ dumpGraph(QString::fromAscii("%1-full").arg(count));
+ }
+#endif
+
+ // Vertex simplification
+ if (!simplifyVertices(orientation)) {
+ restoreVertices(orientation);
+ return false;
+ }
+
+ // Anchor simplification
+ bool dirty;
+ bool feasible = true;
+ do {
+ dirty = simplifyGraphIteration(orientation, &feasible);
+ } while (dirty && feasible);
+
+ // Note that if we are not feasible, we fallback and make sure that the graph is fully restored
+ if (!feasible) {
+ restoreSimplifiedGraph(orientation);
+ restoreVertices(orientation);
+ return false;
+ }
+
+#if defined(QT_DEBUG) && 0
+ dumpGraph(QString::fromAscii("%1-simplified-%2").arg(count).arg(
+ QString::fromAscii(orientation == Horizontal ? "Horizontal" : "Vertical")));
+#endif
+
+ return true;
+}
+
+static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV)
+{
+ AnchorVertex *other;
+ if (data->from == oldV) {
+ data->from = newV;
+ other = data->to;
+ } else {
+ data->to = newV;
+ other = data->from;
+ }
+ return other;
+}
+
+bool QGraphicsAnchorLayoutPrivate::replaceVertex(Orientation orientation, AnchorVertex *oldV,
+ AnchorVertex *newV, const QList<AnchorData *> &edges)
+{
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ bool feasible = true;
+
+ for (int i = 0; i < edges.count(); ++i) {
+ AnchorData *ad = edges[i];
+ AnchorVertex *otherV = replaceVertex_helper(ad, oldV, newV);
+
+#if defined(QT_DEBUG)
+ ad->name = QString::fromAscii("%1 --to--> %2").arg(ad->from->toString()).arg(ad->to->toString());
+#endif
+
+ bool newFeasible;
+ AnchorData *newAnchor = addAnchorMaybeParallel(ad, &newFeasible);
+ feasible &= newFeasible;
+
+ if (newAnchor != ad) {
+ // A parallel was created, we mark that in the list of anchors created by vertex
+ // simplification. This is needed because we want to restore them in a separate step
+ // from the restoration of anchor simplification.
+ anchorsFromSimplifiedVertices[orientation].append(newAnchor);
+ }
+
+ g.takeEdge(oldV, otherV);
+ }
+
+ return feasible;
+}
+
+/*!
+ \internal
+*/
+bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+ // We'll walk through vertices
+ QStack<AnchorVertex *> stack;
+ stack.push(layoutFirstVertex[orientation]);
+ QSet<AnchorVertex *> visited;
+
+ while (!stack.isEmpty()) {
+ AnchorVertex *v = stack.pop();
+ visited.insert(v);
+
+ // Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of
+ // them. Since once a merge is made, we might add new adjacents, and we don't want to
+ // pass two times through one adjacent. The 'index' is used to track our position.
+ QList<AnchorVertex *> adjacents = g.adjacentVertices(v);
+ int index = 0;
+
+ while (index < adjacents.count()) {
+ AnchorVertex *next = adjacents.at(index);
+ index++;
+
+ AnchorData *data = g.edgeData(v, next);
+ const bool bothLayoutVertices = v->m_item == q && next->m_item == q;
+ const bool zeroSized = !data->minSize && !data->maxSize;
+
+ if (!bothLayoutVertices && zeroSized) {
+
+ // Create a new vertex pair, note that we keep a list of those vertices so we can
+ // easily process them when restoring the graph.
+ AnchorVertexPair *newV = new AnchorVertexPair(v, next, data);
+ simplifiedVertices[orientation].append(newV);
+
+ // Collect the anchors of both vertices, the new vertex pair will take their place
+ // in those anchors
+ const QList<AnchorVertex *> &vAdjacents = g.adjacentVertices(v);
+ const QList<AnchorVertex *> &nextAdjacents = g.adjacentVertices(next);
+
+ for (int i = 0; i < vAdjacents.count(); ++i) {
+ AnchorVertex *adjacent = vAdjacents.at(i);
+ if (adjacent != next) {
+ AnchorData *ad = g.edgeData(v, adjacent);
+ newV->m_firstAnchors.append(ad);
+ }
+ }
+
+ for (int i = 0; i < nextAdjacents.count(); ++i) {
+ AnchorVertex *adjacent = nextAdjacents.at(i);
+ if (adjacent != v) {
+ AnchorData *ad = g.edgeData(next, adjacent);
+ newV->m_secondAnchors.append(ad);
+
+ // We'll also add new vertices to the adjacent list of the new 'v', to be
+ // created as a vertex pair and replace the current one.
+ if (!adjacents.contains(adjacent))
+ adjacents.append(adjacent);
+ }
+ }
+
+ // ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors?
+ // Make newV take the place of v and next
+ bool feasible = replaceVertex(orientation, v, newV, newV->m_firstAnchors);
+ feasible &= replaceVertex(orientation, next, newV, newV->m_secondAnchors);
+
+ // Update the layout vertex information if one of the vertices is a layout vertex.
+ AnchorVertex *layoutVertex = 0;
+ if (v->m_item == q)
+ layoutVertex = v;
+ else if (next->m_item == q)
+ layoutVertex = next;
+
+ if (layoutVertex) {
+ // Layout vertices always have m_item == q...
+ newV->m_item = q;
+ changeLayoutVertex(orientation, layoutVertex, newV);
+ }
+
+ g.takeEdge(v, next);
+
+ // If a non-feasibility is found, we leave early and cancel the simplification
+ if (!feasible)
+ return false;
+
+ v = newV;
+ visited.insert(newV);
+
+ } else if (!visited.contains(next) && !stack.contains(next)) {
+ // If the adjacent is not fit for merge and it wasn't visited by the outermost
+ // loop, we add it to the stack.
+ stack.push(next);
+ }
+ }
+ }
+
+ return true;
+}
+
+/*!
+ \internal
+
+ One iteration of the simplification algorithm. Returns true if another iteration is needed.
+
+ The algorithm walks the graph in depth-first order, and only collects vertices that has two
+ edges connected to it. If the vertex does not have two edges or if it is a layout edge, it
+ will take all the previously collected vertices and try to create a simplified sequential
+ anchor representing all the previously collected vertices. Once the simplified anchor is
+ inserted, the collected list is cleared in order to find the next sequence to simplify.
+
+ Note that there are some catches to this that are not covered by the above explanation, see
+ the function comments for more details.
+*/
+bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutPrivate::Orientation orientation,
+ bool *feasible)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+ QSet<AnchorVertex *> visited;
+ QStack<QPair<AnchorVertex *, AnchorVertex *> > stack;
+ stack.push(qMakePair(static_cast<AnchorVertex *>(0), layoutFirstVertex[orientation]));
+ QVector<AnchorVertex*> candidates;
+
+ // Walk depth-first, in the stack we store start of the candidate sequence (beforeSequence)
+ // and the vertex to be visited.
+ while (!stack.isEmpty()) {
+ QPair<AnchorVertex *, AnchorVertex *> pair = stack.pop();
+ AnchorVertex *beforeSequence = pair.first;
+ AnchorVertex *v = pair.second;
+
+ // The basic idea is to determine whether we found an end of sequence,
+ // if that's the case, we stop adding vertices to the candidate list
+ // and do a simplification step.
+ //
+ // A vertex can trigger an end of sequence if
+ // (a) it is a layout vertex, we don't simplify away the layout vertices;
+ // (b) it does not have exactly 2 adjacents;
+ // (c) its next adjacent is already visited (a cycle in the graph).
+ // (d) the next anchor is a center anchor.
+
+ const QList<AnchorVertex *> &adjacents = g.adjacentVertices(v);
+ const bool isLayoutVertex = v->m_item == q;
+ AnchorVertex *afterSequence = v;
+ bool endOfSequence = false;
+
+ //
+ // Identify the end cases.
+ //
+
+ // Identifies cases (a) and (b)
+ endOfSequence = isLayoutVertex || adjacents.count() != 2;
+
+ if (!endOfSequence) {
+ // This is a tricky part. We peek at the next vertex to find out whether
+ //
+ // - we already visited the next vertex (c);
+ // - the next anchor is a center (d).
+ //
+ // Those are needed to identify the remaining end of sequence cases. Note that unlike
+ // (a) and (b), we preempt the end of sequence by looking into the next vertex.
+
+ // Peek at the next vertex
+ AnchorVertex *after;
+ if (candidates.isEmpty())
+ after = (beforeSequence == adjacents.last() ? adjacents.first() : adjacents.last());
+ else
+ after = (candidates.last() == adjacents.last() ? adjacents.first() : adjacents.last());
+
+ // ### At this point we assumed that candidates will not contain 'after', this may not hold
+ // when simplifying FLOATing anchors.
+ Q_ASSERT(!candidates.contains(after));
+
+ const AnchorData *data = g.edgeData(v, after);
+ Q_ASSERT(data);
+ const bool cycleFound = visited.contains(after);
+
+ // Now cases (c) and (d)...
+ endOfSequence = cycleFound || data->isCenterAnchor;
+
+ if (!endOfSequence) {
+ // If it's not an end of sequence, then the vertex didn't trigger neither of the
+ // previously three cases, so it can be added to the candidates list.
+ candidates.append(v);
+ } else if (cycleFound && (beforeSequence != after)) {
+ afterSequence = after;
+ candidates.append(v);
+ }
+ }
+
+ //
+ // Add next non-visited vertices to the stack.
+ //
+ for (int i = 0; i < adjacents.count(); ++i) {
+ AnchorVertex *next = adjacents.at(i);
+ if (visited.contains(next))
+ continue;
+
+ // If current vertex is an end of sequence, and it'll reset the candidates list. So
+ // the next vertices will build candidates lists with the current vertex as 'before'
+ // vertex. If it's not an end of sequence, we keep the original 'before' vertex,
+ // since we are keeping the candidates list.
+ if (endOfSequence)
+ stack.push(qMakePair(v, next));
+ else
+ stack.push(qMakePair(beforeSequence, next));
+ }
+
+ visited.insert(v);
+
+ if (!endOfSequence || candidates.isEmpty())
+ continue;
+
+ //
+ // Create a sequence for (beforeSequence, candidates, afterSequence).
+ //
+
+ // One restriction we have is to not simplify half of an anchor and let the other half
+ // unsimplified. So we remove center edges before and after the sequence.
+ const AnchorData *firstAnchor = g.edgeData(beforeSequence, candidates.first());
+ if (firstAnchor->isCenterAnchor) {
+ beforeSequence = candidates.first();
+ candidates.remove(0);
+
+ // If there's not candidates to be simplified, leave.
+ if (candidates.isEmpty())
+ continue;
+ }
+
+ const AnchorData *lastAnchor = g.edgeData(candidates.last(), afterSequence);
+ if (lastAnchor->isCenterAnchor) {
+ afterSequence = candidates.last();
+ candidates.remove(candidates.count() - 1);
+
+ if (candidates.isEmpty())
+ continue;
+ }
+
+ //
+ // Add the sequence to the graph.
+ //
+
+ AnchorData *sequence = createSequence(&g, beforeSequence, candidates, afterSequence);
+
+ // If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll
+ // create a parallel anchor between the new sequence and the old anchor.
+ bool newFeasible;
+ AnchorData *newAnchor = addAnchorMaybeParallel(sequence, &newFeasible);
+
+ if (!newFeasible) {
+ *feasible = false;
+ return false;
+ }
+
+ // When a new parallel anchor is create in the graph, we finish the iteration and return
+ // true to indicate a new iteration is needed. This happens because a parallel anchor
+ // changes the number of adjacents one vertex has, possibly opening up oportunities for
+ // building candidate lists (when adjacents == 2).
+ if (newAnchor != sequence)
+ return true;
+
+ // If there was no parallel simplification, we'll keep walking the graph. So we clear the
+ // candidates list to start again.
+ candidates.clear();
+ }
+
+ return false;
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge)
+{
+#if 0
+ static const char *anchortypes[] = {"Normal",
+ "Sequential",
+ "Parallel"};
+ qDebug("Restoring %s edge.", anchortypes[int(edge->type)]);
+#endif
+
+ Graph<AnchorVertex, AnchorData> &g = graph[edge->orientation];
+
+ if (edge->type == AnchorData::Normal) {
+ g.createEdge(edge->from, edge->to, edge);
+
+ } else if (edge->type == AnchorData::Sequential) {
+ SequentialAnchorData *sequence = static_cast<SequentialAnchorData *>(edge);
+
+ for (int i = 0; i < sequence->m_edges.count(); ++i) {
+ AnchorData *data = sequence->m_edges.at(i);
+ restoreSimplifiedAnchor(data);
+ }
+
+ delete sequence;
+
+ } else if (edge->type == AnchorData::Parallel) {
+
+ // Skip parallel anchors that were created by vertex simplification, they will be processed
+ // later, when restoring vertex simplification.
+ // ### we could improve this check bit having a bit inside 'edge'
+ if (anchorsFromSimplifiedVertices[edge->orientation].contains(edge))
+ return;
+
+ ParallelAnchorData* parallel = static_cast<ParallelAnchorData*>(edge);
+ restoreSimplifiedConstraints(parallel);
+
+ // ### Because of the way parallel anchors are created in the anchor simplification
+ // algorithm, we know that one of these will be a sequence, so it'll be safe if the other
+ // anchor create an edge between the same vertices as the parallel.
+ Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential
+ || parallel->secondEdge->type == AnchorData::Sequential);
+ restoreSimplifiedAnchor(parallel->firstEdge);
+ restoreSimplifiedAnchor(parallel->secondEdge);
+
+ delete parallel;
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel)
+{
+ if (!parallel->isCenterAnchor)
+ return;
+
+ for (int i = 0; i < parallel->m_firstConstraints.count(); ++i) {
+ QSimplexConstraint *c = parallel->m_firstConstraints.at(i);
+ qreal v = c->variables[parallel];
+ c->variables.remove(parallel);
+ c->variables.insert(parallel->firstEdge, v);
+ }
+
+ // When restoring, we might have to revert constraints back. See comments on
+ // addAnchorMaybeParallel().
+ const bool needsReverse = !parallel->secondForward();
+
+ for (int i = 0; i < parallel->m_secondConstraints.count(); ++i) {
+ QSimplexConstraint *c = parallel->m_secondConstraints.at(i);
+ qreal v = c->variables[parallel];
+ if (needsReverse)
+ v *= -1;
+ c->variables.remove(parallel);
+ c->variables.insert(parallel->secondEdge, v);
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientation)
+{
+#if 0
+ qDebug("Restoring Simplified Graph for %s",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ // Restore anchor simplification
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ QList<QPair<AnchorVertex*, AnchorVertex*> > connections = g.connections();
+ for (int i = 0; i < connections.count(); ++i) {
+ AnchorVertex *v1 = connections.at(i).first;
+ AnchorVertex *v2 = connections.at(i).second;
+ AnchorData *edge = g.edgeData(v1, v2);
+
+ // We restore only sequential anchors and parallels that were not created by
+ // vertex simplification.
+ if (edge->type == AnchorData::Sequential
+ || (edge->type == AnchorData::Parallel &&
+ !anchorsFromSimplifiedVertices[orientation].contains(edge))) {
+
+ g.takeEdge(v1, v2);
+ restoreSimplifiedAnchor(edge);
+ }
+ }
+
+ restoreVertices(orientation);
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreVertices(Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ QList<AnchorVertexPair *> &toRestore = simplifiedVertices[orientation];
+
+ // Since we keep a list of parallel anchors and vertices that were created during vertex
+ // simplification, we can now iterate on those lists instead of traversing the graph
+ // recursively.
+
+ // First, restore the constraints changed when we created parallel anchors. Note that this
+ // works at this point because the constraints doesn't depend on vertex information and at
+ // this point it's always safe to identify whether the second child is forward or backwards.
+ // In the next step, we'll change the anchors vertices so that would not be possible anymore.
+ QList<AnchorData *> &parallelAnchors = anchorsFromSimplifiedVertices[orientation];
+
+ for (int i = parallelAnchors.count() - 1; i >= 0; --i) {
+ ParallelAnchorData *parallel = static_cast<ParallelAnchorData *>(parallelAnchors.at(i));
+ restoreSimplifiedConstraints(parallel);
+ }
+
+ // Then, we will restore the vertices in the inverse order of creation, this way we ensure that
+ // the vertex being restored was not wrapped by another simplification.
+ for (int i = toRestore.count() - 1; i >= 0; --i) {
+ AnchorVertexPair *pair = toRestore.at(i);
+ QList<AnchorVertex *> adjacents = g.adjacentVertices(pair);
+
+ // Restore the removed edge, this will also restore both vertices 'first' and 'second' to
+ // the graph structure.
+ AnchorVertex *first = pair->m_first;
+ AnchorVertex *second = pair->m_second;
+ g.createEdge(first, second, pair->m_removedAnchor);
+
+ // Restore the anchors for the first child vertex
+ for (int j = 0; j < pair->m_firstAnchors.count(); ++j) {
+ AnchorData *ad = pair->m_firstAnchors.at(j);
+ Q_ASSERT(ad->from == pair || ad->to == pair);
+
+ replaceVertex_helper(ad, pair, first);
+ g.createEdge(ad->from, ad->to, ad);
+ }
+
+ // Restore the anchors for the second child vertex
+ for (int j = 0; j < pair->m_secondAnchors.count(); ++j) {
+ AnchorData *ad = pair->m_secondAnchors.at(j);
+ Q_ASSERT(ad->from == pair || ad->to == pair);
+
+ replaceVertex_helper(ad, pair, second);
+ g.createEdge(ad->from, ad->to, ad);
+ }
+
+ for (int j = 0; j < adjacents.count(); ++j) {
+ g.takeEdge(pair, adjacents.at(j));
+ }
+
+ // The pair simplified a layout vertex, so place back the correct vertex in the variable
+ // that track layout vertices
+ if (pair->m_item == q) {
+ AnchorVertex *layoutVertex = first->m_item == q ? first : second;
+ Q_ASSERT(layoutVertex->m_item == q);
+ changeLayoutVertex(orientation, pair, layoutVertex);
+ }
+
+ delete pair;
+ }
+ qDeleteAll(parallelAnchors);
+ parallelAnchors.clear();
+ toRestore.clear();
+}
+
+QGraphicsAnchorLayoutPrivate::Orientation
+QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge)
+{
+ return edge > Qt::AnchorRight ? Vertical : Horizontal;
+}
+
+/*!
+ \internal
+
+ Create internal anchors to connect the layout edges (Left to Right and
+ Top to Bottom).
+
+ These anchors doesn't have size restrictions, that will be enforced by
+ other anchors and items in the layout.
+*/
+void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
+{
+ Q_Q(QGraphicsAnchorLayout);
+ QGraphicsLayoutItem *layout = q;
+
+ // Horizontal
+ AnchorData *data = new AnchorData;
+ addAnchor_helper(layout, Qt::AnchorLeft, layout,
+ Qt::AnchorRight, data);
+ data->maxSize = QWIDGETSIZE_MAX;
+
+ // Save a reference to layout vertices
+ layoutFirstVertex[Horizontal] = internalVertex(layout, Qt::AnchorLeft);
+ layoutCentralVertex[Horizontal] = 0;
+ layoutLastVertex[Horizontal] = internalVertex(layout, Qt::AnchorRight);
+
+ // Vertical
+ data = new AnchorData;
+ addAnchor_helper(layout, Qt::AnchorTop, layout,
+ Qt::AnchorBottom, data);
+ data->maxSize = QWIDGETSIZE_MAX;
+
+ // Save a reference to layout vertices
+ layoutFirstVertex[Vertical] = internalVertex(layout, Qt::AnchorTop);
+ layoutCentralVertex[Vertical] = 0;
+ layoutLastVertex[Vertical] = internalVertex(layout, Qt::AnchorBottom);
+}
+
+void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges()
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter));
+ Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter));
+
+ removeAnchor_helper(internalVertex(q, Qt::AnchorLeft),
+ internalVertex(q, Qt::AnchorRight));
+ removeAnchor_helper(internalVertex(q, Qt::AnchorTop),
+ internalVertex(q, Qt::AnchorBottom));
+}
+
+void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item)
+{
+ items.append(item);
+
+ // Create horizontal and vertical internal anchors for the item and
+ // refresh its size hint / policy values.
+ AnchorData *data = new AnchorData;
+ addAnchor_helper(item, Qt::AnchorLeft, item, Qt::AnchorRight, data);
+ data->refreshSizeHints();
+
+ data = new AnchorData;
+ addAnchor_helper(item, Qt::AnchorTop, item, Qt::AnchorBottom, data);
+ data->refreshSizeHints();
+}
+
+/*!
+ \internal
+
+ By default, each item in the layout is represented internally as
+ a single anchor in each direction. For instance, from Left to Right.
+
+ However, to support anchorage of items to the center of items, we
+ must split this internal anchor into two half-anchors. From Left
+ to Center and then from Center to Right, with the restriction that
+ these anchors must have the same time at all times.
+*/
+void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
+ QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Orientation orientation;
+ switch (centerEdge) {
+ case Qt::AnchorHorizontalCenter:
+ orientation = Horizontal;
+ break;
+ case Qt::AnchorVerticalCenter:
+ orientation = Vertical;
+ break;
+ default:
+ // Don't create center edges unless needed
+ return;
+ }
+
+ // Check if vertex already exists
+ if (internalVertex(item, centerEdge))
+ return;
+
+ // Orientation code
+ Qt::AnchorPoint firstEdge;
+ Qt::AnchorPoint lastEdge;
+
+ if (orientation == Horizontal) {
+ firstEdge = Qt::AnchorLeft;
+ lastEdge = Qt::AnchorRight;
+ } else {
+ firstEdge = Qt::AnchorTop;
+ lastEdge = Qt::AnchorBottom;
+ }
+
+ AnchorVertex *first = internalVertex(item, firstEdge);
+ AnchorVertex *last = internalVertex(item, lastEdge);
+ Q_ASSERT(first && last);
+
+ // Create new anchors
+ QSimplexConstraint *c = new QSimplexConstraint;
+
+ AnchorData *data = new AnchorData;
+ c->variables.insert(data, 1.0);
+ addAnchor_helper(item, firstEdge, item, centerEdge, data);
+ data->isCenterAnchor = true;
+ data->dependency = AnchorData::Master;
+ data->refreshSizeHints();
+
+ data = new AnchorData;
+ c->variables.insert(data, -1.0);
+ addAnchor_helper(item, centerEdge, item, lastEdge, data);
+ data->isCenterAnchor = true;
+ data->dependency = AnchorData::Slave;
+ data->refreshSizeHints();
+
+ itemCenterConstraints[orientation].append(c);
+
+ // Remove old one
+ removeAnchor_helper(first, last);
+
+ if (item == q) {
+ layoutCentralVertex[orientation] = internalVertex(q, centerEdge);
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
+ QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge,
+ bool substitute)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Orientation orientation;
+ switch (centerEdge) {
+ case Qt::AnchorHorizontalCenter:
+ orientation = Horizontal;
+ break;
+ case Qt::AnchorVerticalCenter:
+ orientation = Vertical;
+ break;
+ default:
+ // Don't remove edges that not the center ones
+ return;
+ }
+
+ // Orientation code
+ Qt::AnchorPoint firstEdge;
+ Qt::AnchorPoint lastEdge;
+
+ if (orientation == Horizontal) {
+ firstEdge = Qt::AnchorLeft;
+ lastEdge = Qt::AnchorRight;
+ } else {
+ firstEdge = Qt::AnchorTop;
+ lastEdge = Qt::AnchorBottom;
+ }
+
+ AnchorVertex *center = internalVertex(item, centerEdge);
+ if (!center)
+ return;
+ AnchorVertex *first = internalVertex(item, firstEdge);
+
+ Q_ASSERT(first);
+ Q_ASSERT(center);
+
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+
+ AnchorData *oldData = g.edgeData(first, center);
+ // Remove center constraint
+ for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) {
+ if (itemCenterConstraints[orientation].at(i)->variables.contains(oldData)) {
+ delete itemCenterConstraints[orientation].takeAt(i);
+ break;
+ }
+ }
+
+ if (substitute) {
+ // Create the new anchor that should substitute the left-center-right anchors.
+ AnchorData *data = new AnchorData;
+ addAnchor_helper(item, firstEdge, item, lastEdge, data);
+ data->refreshSizeHints();
+
+ // Remove old anchors
+ removeAnchor_helper(first, center);
+ removeAnchor_helper(center, internalVertex(item, lastEdge));
+
+ } else {
+ // this is only called from removeAnchors()
+ // first, remove all non-internal anchors
+ QList<AnchorVertex*> adjacents = g.adjacentVertices(center);
+ for (int i = 0; i < adjacents.count(); ++i) {
+ AnchorVertex *v = adjacents.at(i);
+ if (v->m_item != item) {
+ removeAnchor_helper(center, internalVertex(v->m_item, v->m_edge));
+ }
+ }
+ // when all non-internal anchors is removed it will automatically merge the
+ // center anchor into a left-right (or top-bottom) anchor. We must also delete that.
+ // by this time, the center vertex is deleted and merged into a non-centered internal anchor
+ removeAnchor_helper(first, internalVertex(item, lastEdge));
+ }
+
+ if (item == q) {
+ layoutCentralVertex[orientation] = 0;
+ }
+}
+
+
+void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item,
+ Orientation orientation)
+{
+ // Remove the item center constraints associated to this item
+ // ### This is a temporary solution. We should probably use a better
+ // data structure to hold items and/or their associated constraints
+ // so that we can remove those easily
+
+ AnchorVertex *first = internalVertex(item, orientation == Horizontal ?
+ Qt::AnchorLeft :
+ Qt::AnchorTop);
+ AnchorVertex *center = internalVertex(item, orientation == Horizontal ?
+ Qt::AnchorHorizontalCenter :
+ Qt::AnchorVerticalCenter);
+
+ // Skip if no center constraints exist
+ if (!center)
+ return;
+
+ Q_ASSERT(first);
+ AnchorData *internalAnchor = graph[orientation].edgeData(first, center);
+
+ // Look for our anchor in all item center constraints, then remove it
+ for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) {
+ if (itemCenterConstraints[orientation].at(i)->variables.contains(internalAnchor)) {
+ delete itemCenterConstraints[orientation].takeAt(i);
+ break;
+ }
+ }
+}
+
+/*!
+ * \internal
+ * Implements the high level "addAnchor" feature. Called by the public API
+ * addAnchor method.
+ *
+ * The optional \a spacing argument defines the size of the anchor. If not provided,
+ * the anchor size is either 0 or not-set, depending on type of anchor created (see
+ * matrix below).
+ *
+ * All anchors that remain with size not-set will assume the standard spacing,
+ * set either by the layout style or through the "setSpacing" layout API.
+ */
+QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ qreal *spacing)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ if ((firstItem == 0) || (secondItem == 0)) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor NULL items");
+ return 0;
+ }
+
+ if (firstItem == secondItem) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor the item to itself");
+ return 0;
+ }
+
+ if (edgeOrientation(secondEdge) != edgeOrientation(firstEdge)) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "Cannot anchor edges of different orientations");
+ return 0;
+ }
+
+ const QGraphicsLayoutItem *parentWidget = q->parentLayoutItem();
+ if (firstItem == parentWidget || secondItem == parentWidget) {
+ qWarning("QGraphicsAnchorLayout::addAnchor(): "
+ "You cannot add the parent of the layout to the layout.");
+ return 0;
+ }
+
+ // In QGraphicsAnchorLayout, items are represented in its internal
+ // graph as four anchors that connect:
+ // - Left -> HCenter
+ // - HCenter-> Right
+ // - Top -> VCenter
+ // - VCenter -> Bottom
+
+ // Ensure that the internal anchors have been created for both items.
+ if (firstItem != q && !items.contains(firstItem)) {
+ createItemEdges(firstItem);
+ addChildLayoutItem(firstItem);
+ }
+ if (secondItem != q && !items.contains(secondItem)) {
+ createItemEdges(secondItem);
+ addChildLayoutItem(secondItem);
+ }
+
+ // Create center edges if needed
+ createCenterAnchors(firstItem, firstEdge);
+ createCenterAnchors(secondItem, secondEdge);
+
+ // Use heuristics to find out what the user meant with this anchor.
+ correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge);
+
+ AnchorData *data = new AnchorData;
+ QGraphicsAnchor *graphicsAnchor = acquireGraphicsAnchor(data);
+
+ addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data);
+
+ if (spacing) {
+ graphicsAnchor->setSpacing(*spacing);
+ } else {
+ // If firstItem or secondItem is the layout itself, the spacing will default to 0.
+ // Otherwise, the following matrix is used (questionmark means that the spacing
+ // is queried from the style):
+ // from
+ // to Left HCenter Right
+ // Left 0 0 ?
+ // HCenter 0 0 0
+ // Right ? 0 0
+ if (firstItem == q
+ || secondItem == q
+ || pickEdge(firstEdge, Horizontal) == Qt::AnchorHorizontalCenter
+ || oppositeEdge(firstEdge) != secondEdge) {
+ graphicsAnchor->setSpacing(0);
+ } else {
+ graphicsAnchor->unsetSpacing();
+ }
+ }
+
+ return graphicsAnchor;
+}
+
+/*
+ \internal
+
+ This method adds an AnchorData to the internal graph. It is responsible for doing
+ the boilerplate part of such task.
+
+ If another AnchorData exists between the mentioned vertices, it is deleted and
+ the new one is inserted.
+*/
+void QGraphicsAnchorLayoutPrivate::addAnchor_helper(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge,
+ AnchorData *data)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ const Orientation orientation = edgeOrientation(firstEdge);
+
+ // Create or increase the reference count for the related vertices.
+ AnchorVertex *v1 = addInternalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = addInternalVertex(secondItem, secondEdge);
+
+ // Remove previous anchor
+ if (graph[orientation].edgeData(v1, v2)) {
+ removeAnchor_helper(v1, v2);
+ }
+
+ // If its an internal anchor, set the associated item
+ if (firstItem == secondItem)
+ data->item = firstItem;
+
+ data->orientation = orientation;
+
+ // Create a bi-directional edge in the sense it can be transversed both
+ // from v1 or v2. "data" however is shared between the two references
+ // so we still know that the anchor direction is from 1 to 2.
+ data->from = v1;
+ data->to = v2;
+#ifdef QT_DEBUG
+ data->name = QString::fromAscii("%1 --to--> %2").arg(v1->toString()).arg(v2->toString());
+#endif
+ // ### bit to track internal anchors, since inside AnchorData methods
+ // we don't have access to the 'q' pointer.
+ data->isLayoutAnchor = (data->item == q);
+
+ graph[orientation].createEdge(v1, v2, data);
+}
+
+QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::getAnchor(QGraphicsLayoutItem *firstItem,
+ Qt::AnchorPoint firstEdge,
+ QGraphicsLayoutItem *secondItem,
+ Qt::AnchorPoint secondEdge)
+{
+ // Do not expose internal anchors
+ if (firstItem == secondItem)
+ return 0;
+
+ const Orientation orientation = edgeOrientation(firstEdge);
+ AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
+ AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
+
+ QGraphicsAnchor *graphicsAnchor = 0;
+
+ AnchorData *data = graph[orientation].edgeData(v1, v2);
+ if (data) {
+ // We could use "acquireGraphicsAnchor" here, but to avoid a regression where
+ // an internal anchor was wrongly exposed, I want to ensure no new
+ // QGraphicsAnchor instances are created by this call.
+ // This assumption must hold because anchors are either user-created (and already
+ // have their public object created), or they are internal (and must not reach
+ // this point).
+ Q_ASSERT(data->graphicsAnchor);
+ graphicsAnchor = data->graphicsAnchor;
+ }
+ return graphicsAnchor;
+}
+
+/*!
+ * \internal
+ *
+ * Implements the high level "removeAnchor" feature. Called by
+ * the QAnchorData destructor.
+ */
+void QGraphicsAnchorLayoutPrivate::removeAnchor(AnchorVertex *firstVertex,
+ AnchorVertex *secondVertex)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ // Save references to items while it's safe to assume the vertices exist
+ QGraphicsLayoutItem *firstItem = firstVertex->m_item;
+ QGraphicsLayoutItem *secondItem = secondVertex->m_item;
+
+ // Delete the anchor (may trigger deletion of center vertices)
+ removeAnchor_helper(firstVertex, secondVertex);
+
+ // Ensure no dangling pointer is left behind
+ firstVertex = secondVertex = 0;
+
+ // Checking if the item stays in the layout or not
+ bool keepFirstItem = false;
+ bool keepSecondItem = false;
+
+ QPair<AnchorVertex *, int> v;
+ int refcount = -1;
+
+ if (firstItem != q) {
+ for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
+ v = m_vertexList.value(qMakePair(firstItem, static_cast<Qt::AnchorPoint>(i)));
+ if (v.first) {
+ if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
+ refcount = 2;
+ else
+ refcount = 1;
+
+ if (v.second > refcount) {
+ keepFirstItem = true;
+ break;
+ }
+ }
+ }
+ } else
+ keepFirstItem = true;
+
+ if (secondItem != q) {
+ for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
+ v = m_vertexList.value(qMakePair(secondItem, static_cast<Qt::AnchorPoint>(i)));
+ if (v.first) {
+ if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
+ refcount = 2;
+ else
+ refcount = 1;
+
+ if (v.second > refcount) {
+ keepSecondItem = true;
+ break;
+ }
+ }
+ }
+ } else
+ keepSecondItem = true;
+
+ if (!keepFirstItem)
+ q->removeAt(items.indexOf(firstItem));
+
+ if (!keepSecondItem)
+ q->removeAt(items.indexOf(secondItem));
+
+ // Removing anchors invalidates the layout
+ q->invalidate();
+}
+
+/*
+ \internal
+
+ Implements the low level "removeAnchor" feature. Called by
+ private methods.
+*/
+void QGraphicsAnchorLayoutPrivate::removeAnchor_helper(AnchorVertex *v1, AnchorVertex *v2)
+{
+ Q_ASSERT(v1 && v2);
+
+ // Remove edge from graph
+ const Orientation o = edgeOrientation(v1->m_edge);
+ graph[o].removeEdge(v1, v2);
+
+ // Decrease vertices reference count (may trigger a deletion)
+ removeInternalVertex(v1->m_item, v1->m_edge);
+ removeInternalVertex(v2->m_item, v2->m_edge);
+}
+
+AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item,
+ Qt::AnchorPoint edge)
+{
+ QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
+ QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
+
+ if (!v.first) {
+ Q_ASSERT(v.second == 0);
+ v.first = new AnchorVertex(item, edge);
+ }
+ v.second++;
+ m_vertexList.insert(pair, v);
+ return v.first;
+}
+
+/**
+ * \internal
+ *
+ * returns the AnchorVertex that was dereferenced, also when it was removed.
+ * returns 0 if it did not exist.
+ */
+void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item,
+ Qt::AnchorPoint edge)
+{
+ QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
+ QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
+
+ if (!v.first) {
+ qWarning("This item with this edge is not in the graph");
+ return;
+ }
+
+ v.second--;
+ if (v.second == 0) {
+ // Remove reference and delete vertex
+ m_vertexList.remove(pair);
+ delete v.first;
+ } else {
+ // Update reference count
+ m_vertexList.insert(pair, v);
+
+ if ((v.second == 2) &&
+ ((edge == Qt::AnchorHorizontalCenter) ||
+ (edge == Qt::AnchorVerticalCenter))) {
+ removeCenterAnchors(item, edge, true);
+ }
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge)
+{
+ if (AnchorVertex *v = internalVertex(item, edge)) {
+ Graph<AnchorVertex, AnchorData> &g = graph[edgeOrientation(edge)];
+ const QList<AnchorVertex *> allVertices = graph[edgeOrientation(edge)].adjacentVertices(v);
+ AnchorVertex *v2;
+ foreach (v2, allVertices) {
+ g.removeEdge(v, v2);
+ removeInternalVertex(item, edge);
+ removeInternalVertex(v2->m_item, v2->m_edge);
+ }
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item)
+{
+ // remove the center anchor first!!
+ removeCenterAnchors(item, Qt::AnchorHorizontalCenter, false);
+ removeVertex(item, Qt::AnchorLeft);
+ removeVertex(item, Qt::AnchorRight);
+
+ removeCenterAnchors(item, Qt::AnchorVerticalCenter, false);
+ removeVertex(item, Qt::AnchorTop);
+ removeVertex(item, Qt::AnchorBottom);
+}
+
+/*!
+ \internal
+
+ Use heuristics to determine the correct orientation of a given anchor.
+
+ After API discussions, we decided we would like expressions like
+ anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left).
+ The problem with this is that anchors could become ambiguous, for
+ instance, what does the anchor A, B of size X mean?
+
+ "pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ?
+
+ To keep the API user friendly and at the same time, keep our algorithm
+ deterministic, we use an heuristic to determine a direction for each
+ added anchor and then keep it. The heuristic is based on the fact
+ that people usually avoid overlapping items, therefore:
+
+ "A, RIGHT to B, LEFT" means that B is to the LEFT of A.
+ "B, LEFT to A, RIGHT" is corrected to the above anchor.
+
+ Special correction is also applied when one of the items is the
+ layout. We handle Layout Left as if it was another items's Right
+ and Layout Right as another item's Left.
+*/
+void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem,
+ Qt::AnchorPoint &firstEdge,
+ QGraphicsLayoutItem *&secondItem,
+ Qt::AnchorPoint &secondEdge)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ if ((firstItem != q) && (secondItem != q)) {
+ // If connection is between widgets (not the layout itself)
+ // Ensure that "right-edges" sit to the left of "left-edges".
+ if (firstEdge < secondEdge) {
+ qSwap(firstItem, secondItem);
+ qSwap(firstEdge, secondEdge);
+ }
+ } else if (firstItem == q) {
+ // If connection involves the right or bottom of a layout, ensure
+ // the layout is the second item.
+ if ((firstEdge == Qt::AnchorRight) || (firstEdge == Qt::AnchorBottom)) {
+ qSwap(firstItem, secondItem);
+ qSwap(firstEdge, secondEdge);
+ }
+ } else if ((secondEdge != Qt::AnchorRight) && (secondEdge != Qt::AnchorBottom)) {
+ // If connection involves the left, center or top of layout, ensure
+ // the layout is the first item.
+ qSwap(firstItem, secondItem);
+ qSwap(firstEdge, secondEdge);
+ }
+}
+
+QLayoutStyleInfo &QGraphicsAnchorLayoutPrivate::styleInfo() const
+{
+ if (styleInfoDirty) {
+ Q_Q(const QGraphicsAnchorLayout);
+ //### Fix this if QGV ever gets support for Metal style or different Aqua sizes.
+ QWidget *wid = 0;
+
+ QGraphicsLayoutItem *parent = q->parentLayoutItem();
+ while (parent && parent->isLayout()) {
+ parent = parent->parentLayoutItem();
+ }
+ QGraphicsWidget *w = 0;
+ if (parent) {
+ QGraphicsItem *parentItem = parent->graphicsItem();
+ if (parentItem && parentItem->isWidget())
+ w = static_cast<QGraphicsWidget*>(parentItem);
+ }
+
+ QStyle *style = w ? w->style() : QApplication::style();
+ cachedStyleInfo = QLayoutStyleInfo(style, wid);
+ cachedStyleInfo.setDefaultSpacing(Qt::Horizontal, spacings[0]);
+ cachedStyleInfo.setDefaultSpacing(Qt::Vertical, spacings[1]);
+
+ styleInfoDirty = false;
+ }
+ return cachedStyleInfo;
+}
+
+/*!
+ \internal
+
+ Called on activation. Uses Linear Programming to define minimum, preferred
+ and maximum sizes for the layout. Also calculates the sizes that each item
+ should assume when the layout is in one of such situations.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateGraphs()
+{
+ if (!calculateGraphCacheDirty)
+ return;
+ calculateGraphs(Horizontal);
+ calculateGraphs(Vertical);
+ calculateGraphCacheDirty = false;
+}
+
+// ### Maybe getGraphParts could return the variables when traversing, at least
+// for trunk...
+QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
+{
+ QSet<AnchorData *> variableSet;
+ for (int i = 0; i < constraints.count(); ++i) {
+ const QSimplexConstraint *c = constraints.at(i);
+ foreach (QSimplexVariable *var, c->variables.keys()) {
+ variableSet += static_cast<AnchorData *>(var);
+ }
+ }
+ return variableSet.toList();
+}
+
+/*!
+ \internal
+
+ Calculate graphs is the method that puts together all the helper routines
+ so that the AnchorLayout can calculate the sizes of each item.
+
+ In a nutshell it should do:
+
+ 1) Refresh anchor nominal sizes, that is, the size that each anchor would
+ have if no other restrictions applied. This is done by quering the
+ layout style and the sizeHints of the items belonging to the layout.
+
+ 2) Simplify the graph by grouping together parallel and sequential anchors
+ into "group anchors". These have equivalent minimum, preferred and maximum
+ sizeHints as the anchors they replace.
+
+ 3) Check if we got to a trivial case. In some cases, the whole graph can be
+ simplified into a single anchor. If so, use this information. If not,
+ then call the Simplex solver to calculate the anchors sizes.
+
+ 4) Once the root anchors had its sizes calculated, propagate that to the
+ anchors they represent.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateGraphs(
+ QGraphicsAnchorLayoutPrivate::Orientation orientation)
+{
+#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
+ lastCalculationUsedSimplex[orientation] = false;
+#endif
+
+ static bool simplificationEnabled = qgetenv("QT_ANCHORLAYOUT_NO_SIMPLIFICATION").isEmpty();
+
+ // Reset the nominal sizes of each anchor based on the current item sizes
+ refreshAllSizeHints(orientation);
+
+ // Simplify the graph
+ if (simplificationEnabled && !simplifyGraph(orientation)) {
+ qWarning("QGraphicsAnchorLayout: anchor setup is not feasible.");
+ graphHasConflicts[orientation] = true;
+ return;
+ }
+
+ // Traverse all graph edges and store the possible paths to each vertex
+ findPaths(orientation);
+
+ // From the paths calculated above, extract the constraints that the current
+ // anchor setup impose, to our Linear Programming problem.
+ constraintsFromPaths(orientation);
+
+ // Split the constraints and anchors into groups that should be fed to the
+ // simplex solver independently. Currently we find two groups:
+ //
+ // 1) The "trunk", that is, the set of anchors (items) that are connected
+ // to the two opposite sides of our layout, and thus need to stretch in
+ // order to fit in the current layout size.
+ //
+ // 2) The floating or semi-floating anchors (items) that are those which
+ // are connected to only one (or none) of the layout sides, thus are not
+ // influenced by the layout size.
+ QList<QList<QSimplexConstraint *> > parts = getGraphParts(orientation);
+
+ // Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes
+ // of the "trunk" set of constraints and variables.
+ // ### does trunk always exist? empty = trunk is the layout left->center->right
+ QList<QSimplexConstraint *> trunkConstraints = parts.at(0);
+ QList<AnchorData *> trunkVariables = getVariables(trunkConstraints);
+
+ // For minimum and maximum, use the path between the two layout sides as the
+ // objective function.
+ AnchorVertex *v = layoutLastVertex[orientation];
+ GraphPath trunkPath = graphPaths[orientation].value(v);
+
+ bool feasible = calculateTrunk(orientation, trunkPath, trunkConstraints, trunkVariables);
+
+ // For the other parts that not the trunk, solve only for the preferred size
+ // that is the size they will remain at, since they are not stretched by the
+ // layout.
+
+ // Skipping the first (trunk)
+ for (int i = 1; i < parts.count(); ++i) {
+ if (!feasible)
+ break;
+
+ QList<QSimplexConstraint *> partConstraints = parts.at(i);
+ QList<AnchorData *> partVariables = getVariables(partConstraints);
+ Q_ASSERT(!partVariables.isEmpty());
+ feasible &= calculateNonTrunk(partConstraints, partVariables);
+ }
+
+ // Propagate the new sizes down the simplified graph, ie. tell the
+ // group anchors to set their children anchors sizes.
+ updateAnchorSizes(orientation);
+
+ graphHasConflicts[orientation] = !feasible;
+
+ // Clean up our data structures. They are not needed anymore since
+ // distribution uses just interpolation.
+ qDeleteAll(constraints[orientation]);
+ constraints[orientation].clear();
+ graphPaths[orientation].clear(); // ###
+
+ if (simplificationEnabled)
+ restoreSimplifiedGraph(orientation);
+}
+
+/*!
+ \internal
+
+ Shift all the constraints by a certain amount. This allows us to deal with negative values in
+ the linear program if they are bounded by a certain limit. Functions should be careful to
+ call it again with a negative amount, to shift the constraints back.
+*/
+static void shiftConstraints(const QList<QSimplexConstraint *> &constraints, qreal amount)
+{
+ for (int i = 0; i < constraints.count(); ++i) {
+ QSimplexConstraint *c = constraints.at(i);
+ qreal multiplier = 0;
+ foreach (qreal v, c->variables.values()) {
+ multiplier += v;
+ }
+ c->constant += multiplier * amount;
+ }
+}
+
+/*!
+ \internal
+
+ Calculate the sizes for all anchors which are part of the trunk. This works
+ on top of a (possibly) simplified graph.
+*/
+bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const GraphPath &path,
+ const QList<QSimplexConstraint *> &constraints,
+ const QList<AnchorData *> &variables)
+{
+ bool feasible = true;
+ bool needsSimplex = !constraints.isEmpty();
+
+#if 0
+ qDebug("Simplex %s for trunk of %s", needsSimplex ? "used" : "NOT used",
+ orientation == Horizontal ? "Horizontal" : "Vertical");
+#endif
+
+ if (needsSimplex) {
+
+ QList<QSimplexConstraint *> sizeHintConstraints = constraintsFromSizeHints(variables);
+ QList<QSimplexConstraint *> allConstraints = constraints + sizeHintConstraints;
+
+ shiftConstraints(allConstraints, g_offset);
+
+ // Solve min and max size hints
+ qreal min, max;
+ feasible = solveMinMax(allConstraints, path, &min, &max);
+
+ if (feasible) {
+ solvePreferred(constraints, variables);
+
+ // Calculate and set the preferred size for the layout,
+ // from the edge sizes that were calculated above.
+ qreal pref(0.0);
+ foreach (const AnchorData *ad, path.positives) {
+ pref += ad->sizeAtPreferred;
+ }
+ foreach (const AnchorData *ad, path.negatives) {
+ pref -= ad->sizeAtPreferred;
+ }
+
+ sizeHints[orientation][Qt::MinimumSize] = min;
+ sizeHints[orientation][Qt::PreferredSize] = pref;
+ sizeHints[orientation][Qt::MaximumSize] = max;
+ }
+
+ qDeleteAll(sizeHintConstraints);
+ shiftConstraints(constraints, -g_offset);
+
+ } else {
+ // No Simplex is necessary because the path was simplified all the way to a single
+ // anchor.
+ Q_ASSERT(path.positives.count() == 1);
+ Q_ASSERT(path.negatives.count() == 0);
+
+ AnchorData *ad = path.positives.toList()[0];
+ ad->sizeAtMinimum = ad->minSize;
+ ad->sizeAtPreferred = ad->prefSize;
+ ad->sizeAtMaximum = ad->maxSize;
+
+ sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum;
+ sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred;
+ sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum;
+ }
+
+#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
+ lastCalculationUsedSimplex[orientation] = needsSimplex;
+#endif
+
+ return feasible;
+}
+
+/*!
+ \internal
+*/
+bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList<QSimplexConstraint *> &constraints,
+ const QList<AnchorData *> &variables)
+{
+ shiftConstraints(constraints, g_offset);
+ bool feasible = solvePreferred(constraints, variables);
+
+ if (feasible) {
+ // Propagate size at preferred to other sizes. Semi-floats always will be
+ // in their sizeAtPreferred.
+ for (int j = 0; j < variables.count(); ++j) {
+ AnchorData *ad = variables.at(j);
+ Q_ASSERT(ad);
+ ad->sizeAtMinimum = ad->sizeAtPreferred;
+ ad->sizeAtMaximum = ad->sizeAtPreferred;
+ }
+ }
+
+ shiftConstraints(constraints, -g_offset);
+ return feasible;
+}
+
+/*!
+ \internal
+
+ Traverse the graph refreshing the size hints. Edges will query their associated
+ item or graphicsAnchor for their size hints.
+*/
+void QGraphicsAnchorLayoutPrivate::refreshAllSizeHints(Orientation orientation)
+{
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ QList<QPair<AnchorVertex *, AnchorVertex *> > vertices = g.connections();
+
+ QLayoutStyleInfo styleInf = styleInfo();
+ for (int i = 0; i < vertices.count(); ++i) {
+ AnchorData *data = g.edgeData(vertices.at(i).first, vertices.at(i).second);
+ data->refreshSizeHints(&styleInf);
+ }
+}
+
+/*!
+ \internal
+
+ This method walks the graph using a breadth-first search to find paths
+ between the root vertex and each vertex on the graph. The edges
+ directions in each path are considered and they are stored as a
+ positive edge (left-to-right) or negative edge (right-to-left).
+
+ The list of paths is used later to generate a list of constraints.
+ */
+void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation)
+{
+ QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
+
+ QSet<AnchorData *> visited;
+
+ AnchorVertex *root = layoutFirstVertex[orientation];
+
+ graphPaths[orientation].insert(root, GraphPath());
+
+ foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
+ queue.enqueue(qMakePair(root, v));
+ }
+
+ while(!queue.isEmpty()) {
+ QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
+ AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
+
+ if (visited.contains(edge))
+ continue;
+
+ visited.insert(edge);
+ GraphPath current = graphPaths[orientation].value(pair.first);
+
+ if (edge->from == pair.first)
+ current.positives.insert(edge);
+ else
+ current.negatives.insert(edge);
+
+ graphPaths[orientation].insert(pair.second, current);
+
+ foreach (AnchorVertex *v,
+ graph[orientation].adjacentVertices(pair.second)) {
+ queue.enqueue(qMakePair(pair.second, v));
+ }
+ }
+
+ // We will walk through every reachable items (non-float) store them in a temporary set.
+ // We them create a set of all items and subtract the non-floating items from the set in
+ // order to get the floating items. The floating items is then stored in m_floatItems
+ identifyFloatItems(visited, orientation);
+}
+
+/*!
+ \internal
+
+ Each vertex on the graph that has more than one path to it
+ represents a contra int to the sizes of the items in these paths.
+
+ This method walks the list of paths to each vertex, generate
+ the constraints and store them in a list so they can be used later
+ by the Simplex solver.
+*/
+void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation)
+{
+ foreach (AnchorVertex *vertex, graphPaths[orientation].uniqueKeys())
+ {
+ int valueCount = graphPaths[orientation].count(vertex);
+ if (valueCount == 1)
+ continue;
+
+ QList<GraphPath> pathsToVertex = graphPaths[orientation].values(vertex);
+ for (int i = 1; i < valueCount; ++i) {
+ constraints[orientation] += \
+ pathsToVertex[0].constraint(pathsToVertex.at(i));
+ }
+ }
+}
+
+/*!
+ \internal
+*/
+void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Orientation orientation)
+{
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ const QList<QPair<AnchorVertex *, AnchorVertex *> > &vertices = g.connections();
+
+ for (int i = 0; i < vertices.count(); ++i) {
+ AnchorData *ad = g.edgeData(vertices.at(i).first, vertices.at(i).second);
+ ad->updateChildrenSizes();
+ }
+}
+
+/*!
+ \internal
+
+ Create LP constraints for each anchor based on its minimum and maximum
+ sizes, as specified in its size hints
+*/
+QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints(
+ const QList<AnchorData *> &anchors)
+{
+ if (anchors.isEmpty())
+ return QList<QSimplexConstraint *>();
+
+ // Look for the layout edge. That can be either the first half in case the
+ // layout is split in two, or the whole layout anchor.
+ Orientation orient = Orientation(anchors.first()->orientation);
+ AnchorData *layoutEdge = 0;
+ if (layoutCentralVertex[orient]) {
+ layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutCentralVertex[orient]);
+ } else {
+ layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutLastVertex[orient]);
+ }
+
+ // If maxSize is less then "infinite", that means there are other anchors
+ // grouped together with this one. We can't ignore its maximum value so we
+ // set back the variable to NULL to prevent the continue condition from being
+ // satisfied in the loop below.
+ const qreal expectedMax = layoutCentralVertex[orient] ? QWIDGETSIZE_MAX / 2 : QWIDGETSIZE_MAX;
+ qreal actualMax;
+ if (layoutEdge->from == layoutFirstVertex[orient]) {
+ actualMax = layoutEdge->maxSize;
+ } else {
+ actualMax = -layoutEdge->minSize;
+ }
+ if (actualMax != expectedMax) {
+ layoutEdge = 0;
+ }
+
+ // For each variable, create constraints based on size hints
+ QList<QSimplexConstraint *> anchorConstraints;
+ bool unboundedProblem = true;
+ for (int i = 0; i < anchors.size(); ++i) {
+ AnchorData *ad = anchors.at(i);
+
+ // Anchors that have their size directly linked to another one don't need constraints
+ // For exammple, the second half of an item has exactly the same size as the first half
+ // thus constraining the latter is enough.
+ if (ad->dependency == AnchorData::Slave)
+ continue;
+
+ // To use negative variables inside simplex, we shift them so the minimum negative value is
+ // mapped to zero before solving. To make sure that it works, we need to guarantee that the
+ // variables are all inside a certain boundary.
+ qreal boundedMin = qBound(-g_offset, ad->minSize, g_offset);
+ qreal boundedMax = qBound(-g_offset, ad->maxSize, g_offset);
+
+ if ((boundedMin == boundedMax) || qFuzzyCompare(boundedMin, boundedMax)) {
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(ad, 1.0);
+ c->constant = boundedMin;
+ c->ratio = QSimplexConstraint::Equal;
+ anchorConstraints += c;
+ unboundedProblem = false;
+ } else {
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(ad, 1.0);
+ c->constant = boundedMin;
+ c->ratio = QSimplexConstraint::MoreOrEqual;
+ anchorConstraints += c;
+
+ // We avoid adding restrictions to the layout internal anchors. That's
+ // to prevent unnecessary fair distribution from happening due to this
+ // artificial restriction.
+ if (ad == layoutEdge)
+ continue;
+
+ c = new QSimplexConstraint;
+ c->variables.insert(ad, 1.0);
+ c->constant = boundedMax;
+ c->ratio = QSimplexConstraint::LessOrEqual;
+ anchorConstraints += c;
+ unboundedProblem = false;
+ }
+ }
+
+ // If no upper boundary restriction was added, add one to avoid unbounded problem
+ if (unboundedProblem) {
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(layoutEdge, 1.0);
+ // The maximum size that the layout can take
+ c->constant = g_offset;
+ c->ratio = QSimplexConstraint::LessOrEqual;
+ anchorConstraints += c;
+ }
+
+ return anchorConstraints;
+}
+
+/*!
+ \internal
+*/
+QList< QList<QSimplexConstraint *> >
+QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation)
+{
+ Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]);
+
+ AnchorData *edgeL1 = 0;
+ AnchorData *edgeL2 = 0;
+
+ // The layout may have a single anchor between Left and Right or two half anchors
+ // passing through the center
+ if (layoutCentralVertex[orientation]) {
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutCentralVertex[orientation]);
+ edgeL2 = graph[orientation].edgeData(layoutCentralVertex[orientation], layoutLastVertex[orientation]);
+ } else {
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutLastVertex[orientation]);
+ }
+
+ QLinkedList<QSimplexConstraint *> remainingConstraints;
+ for (int i = 0; i < constraints[orientation].count(); ++i) {
+ remainingConstraints += constraints[orientation].at(i);
+ }
+ for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) {
+ remainingConstraints += itemCenterConstraints[orientation].at(i);
+ }
+
+ QList<QSimplexConstraint *> trunkConstraints;
+ QSet<QSimplexVariable *> trunkVariables;
+
+ trunkVariables += edgeL1;
+ if (edgeL2)
+ trunkVariables += edgeL2;
+
+ bool dirty;
+ do {
+ dirty = false;
+
+ QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
+ while (it != remainingConstraints.end()) {
+ QSimplexConstraint *c = *it;
+ bool match = false;
+
+ // Check if this constraint have some overlap with current
+ // trunk variables...
+ foreach (QSimplexVariable *ad, trunkVariables) {
+ if (c->variables.contains(ad)) {
+ match = true;
+ break;
+ }
+ }
+
+ // If so, we add it to trunk, and erase it from the
+ // remaining constraints.
+ if (match) {
+ trunkConstraints += c;
+ trunkVariables += QSet<QSimplexVariable *>::fromList(c->variables.keys());
+ it = remainingConstraints.erase(it);
+ dirty = true;
+ } else {
+ // Note that we don't erase the constraint if it's not
+ // a match, since in a next iteration of a do-while we
+ // can pass on it again and it will be a match.
+ //
+ // For example: if trunk share a variable with
+ // remainingConstraints[1] and it shares with
+ // remainingConstraints[0], we need a second iteration
+ // of the do-while loop to match both.
+ ++it;
+ }
+ }
+ } while (dirty);
+
+ QList< QList<QSimplexConstraint *> > result;
+ result += trunkConstraints;
+
+ if (!remainingConstraints.isEmpty()) {
+ QList<QSimplexConstraint *> nonTrunkConstraints;
+ QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
+ while (it != remainingConstraints.end()) {
+ nonTrunkConstraints += *it;
+ ++it;
+ }
+ result += nonTrunkConstraints;
+ }
+
+ return result;
+}
+
+/*!
+ \internal
+
+ Use all visited Anchors on findPaths() so we can identify non-float Items.
+*/
+void QGraphicsAnchorLayoutPrivate::identifyFloatItems(const QSet<AnchorData *> &visited, Orientation orientation)
+{
+ QSet<QGraphicsLayoutItem *> nonFloating;
+
+ foreach (const AnchorData *ad, visited)
+ identifyNonFloatItems_helper(ad, &nonFloating);
+
+ QSet<QGraphicsLayoutItem *> allItems;
+ foreach (QGraphicsLayoutItem *item, items)
+ allItems.insert(item);
+ m_floatItems[orientation] = allItems - nonFloating;
+}
+
+
+/*!
+ \internal
+
+ Given an anchor, if it is an internal anchor and Normal we must mark it's item as non-float.
+ If the anchor is Sequential or Parallel, we must iterate on its children recursively until we reach
+ internal anchors (items).
+*/
+void QGraphicsAnchorLayoutPrivate::identifyNonFloatItems_helper(const AnchorData *ad, QSet<QGraphicsLayoutItem *> *nonFloatingItemsIdentifiedSoFar)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ switch(ad->type) {
+ case AnchorData::Normal:
+ if (ad->item && ad->item != q)
+ nonFloatingItemsIdentifiedSoFar->insert(ad->item);
+ break;
+ case AnchorData::Sequential:
+ foreach (const AnchorData *d, static_cast<const SequentialAnchorData *>(ad)->m_edges)
+ identifyNonFloatItems_helper(d, nonFloatingItemsIdentifiedSoFar);
+ break;
+ case AnchorData::Parallel:
+ identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->firstEdge, nonFloatingItemsIdentifiedSoFar);
+ identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->secondEdge, nonFloatingItemsIdentifiedSoFar);
+ break;
+ }
+}
+
+/*!
+ \internal
+
+ Use the current vertices distance to calculate and set the geometry of
+ each item.
+*/
+void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ AnchorVertex *firstH, *secondH, *firstV, *secondV;
+
+ qreal top;
+ qreal left;
+ qreal right;
+
+ q->getContentsMargins(&left, &top, &right, 0);
+ const Qt::LayoutDirection visualDir = visualDirection();
+ if (visualDir == Qt::RightToLeft)
+ qSwap(left, right);
+
+ left += geom.left();
+ top += geom.top();
+ right = geom.right() - right;
+
+ foreach (QGraphicsLayoutItem *item, items) {
+ QRectF newGeom;
+ QSizeF itemPreferredSize = item->effectiveSizeHint(Qt::PreferredSize);
+ if (m_floatItems[Horizontal].contains(item)) {
+ newGeom.setLeft(0);
+ newGeom.setRight(itemPreferredSize.width());
+ } else {
+ firstH = internalVertex(item, Qt::AnchorLeft);
+ secondH = internalVertex(item, Qt::AnchorRight);
+
+ if (visualDir == Qt::LeftToRight) {
+ newGeom.setLeft(left + firstH->distance);
+ newGeom.setRight(left + secondH->distance);
+ } else {
+ newGeom.setLeft(right - secondH->distance);
+ newGeom.setRight(right - firstH->distance);
+ }
+ }
+
+ if (m_floatItems[Vertical].contains(item)) {
+ newGeom.setTop(0);
+ newGeom.setBottom(itemPreferredSize.height());
+ } else {
+ firstV = internalVertex(item, Qt::AnchorTop);
+ secondV = internalVertex(item, Qt::AnchorBottom);
+
+ newGeom.setTop(top + firstV->distance);
+ newGeom.setBottom(top + secondV->distance);
+ }
+
+ item->setGeometry(newGeom);
+ }
+}
+
+/*!
+ \internal
+
+ Calculate the position of each vertex based on the paths to each of
+ them as well as the current edges sizes.
+*/
+void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
+ QGraphicsAnchorLayoutPrivate::Orientation orientation)
+{
+ QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
+ QSet<AnchorVertex *> visited;
+
+ // Get root vertex
+ AnchorVertex *root = layoutFirstVertex[orientation];
+
+ root->distance = 0;
+ visited.insert(root);
+
+ // Add initial edges to the queue
+ foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
+ queue.enqueue(qMakePair(root, v));
+ }
+
+ // Do initial calculation required by "interpolateEdge()"
+ setupEdgesInterpolation(orientation);
+
+ // Traverse the graph and calculate vertex positions
+ while (!queue.isEmpty()) {
+ QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
+ AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
+
+ if (visited.contains(pair.second))
+ continue;
+
+ visited.insert(pair.second);
+ interpolateEdge(pair.first, edge);
+
+ QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(pair.second);
+ for (int i = 0; i < adjacents.count(); ++i) {
+ if (!visited.contains(adjacents.at(i)))
+ queue.enqueue(qMakePair(pair.second, adjacents.at(i)));
+ }
+ }
+}
+
+/*!
+ \internal
+
+ Calculate interpolation parameters based on current Layout Size.
+ Must be called once before calling "interpolateEdgeSize()" for
+ the edges.
+*/
+void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
+ Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ qreal current;
+ current = (orientation == Horizontal) ? q->contentsRect().width() : q->contentsRect().height();
+
+ QPair<Interval, qreal> result;
+ result = getFactor(current,
+ sizeHints[orientation][Qt::MinimumSize],
+ sizeHints[orientation][Qt::PreferredSize],
+ sizeHints[orientation][Qt::PreferredSize],
+ sizeHints[orientation][Qt::PreferredSize],
+ sizeHints[orientation][Qt::MaximumSize]);
+
+ interpolationInterval[orientation] = result.first;
+ interpolationProgress[orientation] = result.second;
+}
+
+/*!
+ \internal
+
+ Calculate the current Edge size based on the current Layout size and the
+ size the edge is supposed to have when the layout is at its:
+
+ - minimum size,
+ - preferred size,
+ - maximum size.
+
+ These three key values are calculated in advance using linear
+ programming (more expensive) or the simplification algorithm, then
+ subsequential resizes of the parent layout require a simple
+ interpolation.
+*/
+void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge)
+{
+ const Orientation orientation = Orientation(edge->orientation);
+ const QPair<Interval, qreal> factor(interpolationInterval[orientation],
+ interpolationProgress[orientation]);
+
+ qreal edgeDistance = interpolate(factor, edge->sizeAtMinimum, edge->sizeAtPreferred,
+ edge->sizeAtPreferred, edge->sizeAtPreferred,
+ edge->sizeAtMaximum);
+
+ Q_ASSERT(edge->from == base || edge->to == base);
+
+ // Calculate the distance for the vertex opposite to the base
+ if (edge->from == base) {
+ edge->to->distance = base->distance + edgeDistance;
+ } else {
+ edge->from->distance = base->distance - edgeDistance;
+ }
+}
+
+bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *> &constraints,
+ GraphPath path, qreal *min, qreal *max)
+{
+ QSimplex simplex;
+ bool feasible = simplex.setConstraints(constraints);
+ if (feasible) {
+ // Obtain the objective constraint
+ QSimplexConstraint objective;
+ QSet<AnchorData *>::const_iterator iter;
+ for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter)
+ objective.variables.insert(*iter, 1.0);
+
+ for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter)
+ objective.variables.insert(*iter, -1.0);
+
+ const qreal objectiveOffset = (path.positives.count() - path.negatives.count()) * g_offset;
+ simplex.setObjective(&objective);
+
+ // Calculate minimum values
+ *min = simplex.solveMin() - objectiveOffset;
+
+ // Save sizeAtMinimum results
+ QList<AnchorData *> variables = getVariables(constraints);
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
+ ad->sizeAtMinimum = ad->result - g_offset;
+ }
+
+ // Calculate maximum values
+ *max = simplex.solveMax() - objectiveOffset;
+
+ // Save sizeAtMaximum results
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
+ ad->sizeAtMaximum = ad->result - g_offset;
+ }
+ }
+ return feasible;
+}
+
+enum slackType { Grower = -1, Shrinker = 1 };
+static QPair<QSimplexVariable *, QSimplexConstraint *> createSlack(QSimplexConstraint *sizeConstraint,
+ qreal interval, slackType type)
+{
+ QSimplexVariable *slack = new QSimplexVariable;
+ sizeConstraint->variables.insert(slack, type);
+
+ QSimplexConstraint *limit = new QSimplexConstraint;
+ limit->variables.insert(slack, 1.0);
+ limit->ratio = QSimplexConstraint::LessOrEqual;
+ limit->constant = interval;
+
+ return qMakePair(slack, limit);
+}
+
+bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint *> &constraints,
+ const QList<AnchorData *> &variables)
+{
+ QList<QSimplexConstraint *> preferredConstraints;
+ QList<QSimplexVariable *> preferredVariables;
+ QSimplexConstraint objective;
+
+ // Fill the objective coefficients for this variable. In the
+ // end the objective function will be
+ //
+ // z = n * (A_shrinker_hard + A_grower_hard + B_shrinker_hard + B_grower_hard + ...) +
+ // (A_shrinker_soft + A_grower_soft + B_shrinker_soft + B_grower_soft + ...)
+ //
+ // where n is the number of variables that have
+ // slacks. Note that here we use the number of variables
+ // as coefficient, this is to mark the "shrinker slack
+ // variable" less likely to get value than the "grower
+ // slack variable".
+
+ // This will fill the values for the structural constraints
+ // and we now fill the values for the slack constraints (one per variable),
+ // which have this form (the constant A_pref was set when creating the slacks):
+ //
+ // A + A_shrinker_hard + A_shrinker_soft - A_grower_hard - A_grower_soft = A_pref
+ //
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = variables.at(i);
+
+ // The layout original structure anchors are not relevant in preferred size calculation
+ if (ad->isLayoutAnchor)
+ continue;
+
+ // By default, all variables are equal to their preferred size. If they have room to
+ // grow or shrink, such flexibility will be added by the additional variables below.
+ QSimplexConstraint *sizeConstraint = new QSimplexConstraint;
+ preferredConstraints += sizeConstraint;
+ sizeConstraint->variables.insert(ad, 1.0);
+ sizeConstraint->constant = ad->prefSize + g_offset;
+
+ // Can easily shrink
+ QPair<QSimplexVariable *, QSimplexConstraint *> slack;
+ const qreal softShrinkInterval = ad->prefSize - ad->minPrefSize;
+ if (softShrinkInterval) {
+ slack = createSlack(sizeConstraint, softShrinkInterval, Shrinker);
+ preferredVariables += slack.first;
+ preferredConstraints += slack.second;
+
+ // Add to objective with ratio == 1 (soft)
+ objective.variables.insert(slack.first, 1.0);
+ }
+
+ // Can easily grow
+ const qreal softGrowInterval = ad->maxPrefSize - ad->prefSize;
+ if (softGrowInterval) {
+ slack = createSlack(sizeConstraint, softGrowInterval, Grower);
+ preferredVariables += slack.first;
+ preferredConstraints += slack.second;
+
+ // Add to objective with ratio == 1 (soft)
+ objective.variables.insert(slack.first, 1.0);
+ }
+
+ // Can shrink if really necessary
+ const qreal hardShrinkInterval = ad->minPrefSize - ad->minSize;
+ if (hardShrinkInterval) {
+ slack = createSlack(sizeConstraint, hardShrinkInterval, Shrinker);
+ preferredVariables += slack.first;
+ preferredConstraints += slack.second;
+
+ // Add to objective with ratio == N (hard)
+ objective.variables.insert(slack.first, variables.size());
+ }
+
+ // Can grow if really necessary
+ const qreal hardGrowInterval = ad->maxSize - ad->maxPrefSize;
+ if (hardGrowInterval) {
+ slack = createSlack(sizeConstraint, hardGrowInterval, Grower);
+ preferredVariables += slack.first;
+ preferredConstraints += slack.second;
+
+ // Add to objective with ratio == N (hard)
+ objective.variables.insert(slack.first, variables.size());
+ }
+ }
+
+ QSimplex *simplex = new QSimplex;
+ bool feasible = simplex->setConstraints(constraints + preferredConstraints);
+ if (feasible) {
+ simplex->setObjective(&objective);
+
+ // Calculate minimum values
+ simplex->solveMin();
+
+ // Save sizeAtPreferred results
+ for (int i = 0; i < variables.size(); ++i) {
+ AnchorData *ad = variables.at(i);
+ ad->sizeAtPreferred = ad->result - g_offset;
+ }
+
+ // Make sure we delete the simplex solver -before- we delete the
+ // constraints used by it.
+ delete simplex;
+ }
+ // Delete constraints and variables we created.
+ qDeleteAll(preferredConstraints);
+ qDeleteAll(preferredVariables);
+
+ return feasible;
+}
+
+/*!
+ \internal
+ Returns true if there are no arrangement that satisfies all constraints.
+ Otherwise returns false.
+
+ \sa addAnchor()
+*/
+bool QGraphicsAnchorLayoutPrivate::hasConflicts() const
+{
+ QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate*>(this);
+ that->calculateGraphs();
+
+ bool floatConflict = !m_floatItems[0].isEmpty() || !m_floatItems[1].isEmpty();
+
+ return graphHasConflicts[0] || graphHasConflicts[1] || floatConflict;
+}
+
+#ifdef QT_DEBUG
+void QGraphicsAnchorLayoutPrivate::dumpGraph(const QString &name)
+{
+ QFile file(QString::fromAscii("anchorlayout.%1.dot").arg(name));
+ if (!file.open(QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate))
+ qWarning("Could not write to %s", file.fileName().toLocal8Bit().constData());
+
+ QString str = QString::fromAscii("digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}");
+ QString dotContents = graph[0].serializeToDot();
+ dotContents += graph[1].serializeToDot();
+ file.write(str.arg(dotContents).toLocal8Bit());
+
+ file.close();
+}
+#endif
+
+QT_END_NAMESPACE
+#endif //QT_NO_GRAPHICSVIEW