summaryrefslogtreecommitdiffstats
path: root/tests/baseline/shared/lookup3.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/baseline/shared/lookup3.cpp')
-rw-r--r--tests/baseline/shared/lookup3.cpp821
1 files changed, 821 insertions, 0 deletions
diff --git a/tests/baseline/shared/lookup3.cpp b/tests/baseline/shared/lookup3.cpp
new file mode 100644
index 0000000000..7964a184ae
--- /dev/null
+++ b/tests/baseline/shared/lookup3.cpp
@@ -0,0 +1,821 @@
+// Copyright (C) 2016 The Qt Company Ltd.
+// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only
+
+
+/*
+These functions are based on:
+
+-------------------------------------------------------------------------------
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+
+These are functions for producing 32-bit hashes for hash table lookup.
+hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
+are externally useful functions. Routines to test the hash are included
+if SELF_TEST is defined. You can use this free for any purpose. It's in
+the public domain. It has no warranty.
+
+You probably want to use hashlittle(). hashlittle() and hashbig()
+hash byte arrays. hashlittle() is is faster than hashbig() on
+little-endian machines. Intel and AMD are little-endian machines.
+On second thought, you probably want hashlittle2(), which is identical to
+hashlittle() except it returns two 32-bit hashes for the price of one.
+You could implement hashbig2() if you wanted but I haven't bothered here.
+
+If you want to find a hash of, say, exactly 7 integers, do
+ a = i1; b = i2; c = i3;
+ mix(a,b,c);
+ a += i4; b += i5; c += i6;
+ mix(a,b,c);
+ a += i7;
+ final(a,b,c);
+then use c as the hash value. If you have a variable length array of
+4-byte integers to hash, use hashword(). If you have a byte array (like
+a character string), use hashlittle(). If you have several byte arrays, or
+a mix of things, see the comments above hashlittle().
+
+Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
+then mix those integers. This is fast (you can do a lot more thorough
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
+-------------------------------------------------------------------------------
+*/
+
+#include <QtGlobal>
+
+#if Q_BYTE_ORDER == Q_BIG_ENDIAN
+# define HASH_LITTLE_ENDIAN 0
+# define HASH_BIG_ENDIAN 1
+#else
+# define HASH_LITTLE_ENDIAN 1
+# define HASH_BIG_ENDIAN 0
+#endif
+
+#define hashsize(n) ((quint32)1<<(n))
+#define hashmask(n) (hashsize(n)-1)
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+/*
+-------------------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+
+This is reversible, so any information in (a,b,c) before mix() is
+still in (a,b,c) after mix().
+
+If four pairs of (a,b,c) inputs are run through mix(), or through
+mix() in reverse, there are at least 32 bits of the output that
+are sometimes the same for one pair and different for another pair.
+This was tested for:
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+satisfy this are
+ 4 6 8 16 19 4
+ 9 15 3 18 27 15
+ 14 9 3 7 17 3
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
+for "differ" defined as + with a one-bit base and a two-bit delta. I
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
+the operations, constants, and arrangements of the variables.
+
+This does not achieve avalanche. There are input bits of (a,b,c)
+that fail to affect some output bits of (a,b,c), especially of a. The
+most thoroughly mixed value is c, but it doesn't really even achieve
+avalanche in c.
+
+This allows some parallelism. Read-after-writes are good at doubling
+the number of bits affected, so the goal of mixing pulls in the opposite
+direction as the goal of parallelism. I did what I could. Rotates
+seem to cost as much as shifts on every machine I could lay my hands
+on, and rotates are much kinder to the top and bottom bits, so I used
+rotates.
+-------------------------------------------------------------------------------
+*/
+#define mix(a,b,c) \
+{ \
+ a -= c; a ^= rot(c, 4); c += b; \
+ b -= a; b ^= rot(a, 6); a += c; \
+ c -= b; c ^= rot(b, 8); b += a; \
+ a -= c; a ^= rot(c,16); c += b; \
+ b -= a; b ^= rot(a,19); a += c; \
+ c -= b; c ^= rot(b, 4); b += a; \
+}
+
+/*
+-------------------------------------------------------------------------------
+final -- final mixing of 3 32-bit values (a,b,c) into c
+
+Pairs of (a,b,c) values differing in only a few bits will usually
+produce values of c that look totally different. This was tested for
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+These constants passed:
+ 14 11 25 16 4 14 24
+ 12 14 25 16 4 14 24
+and these came close:
+ 4 8 15 26 3 22 24
+ 10 8 15 26 3 22 24
+ 11 8 15 26 3 22 24
+-------------------------------------------------------------------------------
+*/
+#define final(a,b,c) \
+{ \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+}
+
+/*
+--------------------------------------------------------------------
+ This works on all machines. To be useful, it requires
+ -- that the key be an array of quint32's, and
+ -- that the length be the number of quint32's in the key
+
+ The function hashword() is identical to hashlittle() on little-endian
+ machines, and identical to hashbig() on big-endian machines,
+ except that the length has to be measured in quint32s rather than in
+ bytes. hashlittle() is more complicated than hashword() only because
+ hashlittle() has to dance around fitting the key bytes into registers.
+--------------------------------------------------------------------
+*/
+quint32 hashword(
+const quint32 *k, /* the key, an array of quint32 values */
+size_t length, /* the length of the key, in quint32s */
+quint32 initval) /* the previous hash, or an arbitrary value */
+{
+ quint32 a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((quint32)length)<<2) + initval;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 quint32's */
+ switch (length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ Q_FALLTHROUGH();
+ case 2 : b+=k[1];
+ Q_FALLTHROUGH();
+ case 1 : a+=k[0];
+ final(a,b,c);
+ Q_FALLTHROUGH();
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return c;
+}
+
+
+/*
+--------------------------------------------------------------------
+hashword2() -- same as hashword(), but take two seeds and return two
+32-bit values. pc and pb must both be nonnull, and *pc and *pb must
+both be initialized with seeds. If you pass in (*pb)==0, the output
+(*pc) will be the same as the return value from hashword().
+--------------------------------------------------------------------
+*/
+void hashword2 (
+const quint32 *k, /* the key, an array of quint32 values */
+size_t length, /* the length of the key, in quint32s */
+quint32 *pc, /* IN: seed OUT: primary hash value */
+quint32 *pb) /* IN: more seed OUT: secondary hash value */
+{
+ quint32 a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((quint32)(length<<2)) + *pc;
+ c += *pb;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 quint32's */
+ switch (length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ Q_FALLTHROUGH();
+ case 2 : b+=k[1];
+ Q_FALLTHROUGH();
+ case 1 : a+=k[0];
+ final(a,b,c);
+ Q_FALLTHROUGH();
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ *pc=c; *pb=b;
+}
+
+
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ length : the length of the key, counting by bytes
+ initval : can be any 4-byte value
+Returns a 32-bit value. Every bit of the key affects every bit of
+the return value. Two keys differing by one or two bits will have
+totally different hash values.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (quint8 **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
+code any way you wish, private, educational, or commercial. It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable. Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+
+quint32 hashlittle( const void *key, size_t length, quint32 initval)
+{
+ quint32 a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((quint32)length) + initval;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticeably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ const quint8 *k8 = (const quint8 *)k;
+ switch (length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((quint32)k8[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k8[9])<<8;
+ Q_FALLTHROUGH();
+ case 9 : c+=k8[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((quint32)k8[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k8[5])<<8;
+ Q_FALLTHROUGH();
+ case 5 : b+=k8[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((quint32)k8[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k8[1])<<8;
+ Q_FALLTHROUGH();
+ case 1 : a+=k8[0]; break;
+ case 0 : return c;
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
+ const quint8 *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((quint32)k[1])<<16);
+ b += k[2] + (((quint32)k[3])<<16);
+ c += k[4] + (((quint32)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const quint8 *)k;
+ switch (length)
+ {
+ case 12: c+=k[4]+(((quint32)k[5])<<16);
+ b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 11: c+=((quint32)k8[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=k[4];
+ b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 9 : c+=k8[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 7 : b+=((quint32)k8[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=k[2];
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 5 : b+=k8[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 3 : a+=((quint32)k8[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : return c; /* zero length requires no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const quint8 *k = (const quint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((quint32)k[1])<<8;
+ a += ((quint32)k[2])<<16;
+ a += ((quint32)k[3])<<24;
+ b += k[4];
+ b += ((quint32)k[5])<<8;
+ b += ((quint32)k[6])<<16;
+ b += ((quint32)k[7])<<24;
+ c += k[8];
+ c += ((quint32)k[9])<<8;
+ c += ((quint32)k[10])<<16;
+ c += ((quint32)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) /* all the case statements fall through */
+ {
+ case 12: c+=((quint32)k[11])<<24;
+ Q_FALLTHROUGH();
+ case 11: c+=((quint32)k[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k[9])<<8;
+ Q_FALLTHROUGH();
+ case 9 : c+=k[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=((quint32)k[7])<<24;
+ Q_FALLTHROUGH();
+ case 7 : b+=((quint32)k[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k[5])<<8;
+ Q_FALLTHROUGH();
+ case 5 : b+=k[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=((quint32)k[3])<<24;
+ Q_FALLTHROUGH();
+ case 3 : a+=((quint32)k[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k[1])<<8;
+ Q_FALLTHROUGH();
+ case 1 : a+=k[0];
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}
+
+
+/*
+ * hashlittle2: return 2 32-bit hash values
+ *
+ * This is identical to hashlittle(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ */
+void hashlittle2(
+ const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ quint32 *pc, /* IN: primary initval, OUT: primary hash */
+ quint32 *pb) /* IN: secondary initval, OUT: secondary hash */
+{
+ quint32 a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((quint32)length) + *pc;
+ c += *pb;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticeably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ const quint8 *k8 = (const quint8 *)k;
+ switch (length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((quint32)k8[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k8[9])<<8;
+ Q_FALLTHROUGH();
+ case 9 : c+=k8[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((quint32)k8[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k8[5])<<8;
+ Q_FALLTHROUGH();
+ case 5 : b+=k8[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((quint32)k8[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k8[1])<<8;
+ Q_FALLTHROUGH();
+ case 1 : a+=k8[0]; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
+ const quint8 *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((quint32)k[1])<<16);
+ b += k[2] + (((quint32)k[3])<<16);
+ c += k[4] + (((quint32)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const quint8 *)k;
+ switch (length)
+ {
+ case 12: c+=k[4]+(((quint32)k[5])<<16);
+ b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 11: c+=((quint32)k8[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=k[4];
+ b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 9 : c+=k8[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=k[2]+(((quint32)k[3])<<16);
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 7 : b+=((quint32)k8[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=k[2];
+ a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 5 : b+=k8[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=k[0]+(((quint32)k[1])<<16);
+ break;
+ case 3 : a+=((quint32)k8[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const quint8 *k = (const quint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((quint32)k[1])<<8;
+ a += ((quint32)k[2])<<16;
+ a += ((quint32)k[3])<<24;
+ b += k[4];
+ b += ((quint32)k[5])<<8;
+ b += ((quint32)k[6])<<16;
+ b += ((quint32)k[7])<<24;
+ c += k[8];
+ c += ((quint32)k[9])<<8;
+ c += ((quint32)k[10])<<16;
+ c += ((quint32)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) /* all the case statements fall through */
+ {
+ case 12: c+=((quint32)k[11])<<24;
+ Q_FALLTHROUGH();
+ case 11: c+=((quint32)k[10])<<16;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k[9])<<8;
+ Q_FALLTHROUGH();
+ case 9 : c+=k[8];
+ Q_FALLTHROUGH();
+ case 8 : b+=((quint32)k[7])<<24;
+ Q_FALLTHROUGH();
+ case 7 : b+=((quint32)k[6])<<16;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k[5])<<8;
+ Q_FALLTHROUGH();
+ case 5 : b+=k[4];
+ Q_FALLTHROUGH();
+ case 4 : a+=((quint32)k[3])<<24;
+ Q_FALLTHROUGH();
+ case 3 : a+=((quint32)k[2])<<16;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k[1])<<8;
+ Q_FALLTHROUGH();
+ case 1 : a+=k[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+ }
+
+ final(a,b,c);
+ *pc=c; *pb=b;
+}
+
+
+
+/*
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ */
+quint32 hashbig( const void *key, size_t length, quint32 initval)
+{
+ quint32 a,b,c;
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((quint32)length) + initval;
+
+ u.ptr = key;
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
+ const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticeably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff00; break;
+ case 2 : a+=k[0]&0xffff0000; break;
+ case 1 : a+=k[0]&0xff000000; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ const quint8 *k8 = (const quint8 *)k;
+ switch (length) /* all the case statements fall through */
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((quint32)k8[10])<<8;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k8[9])<<16;
+ Q_FALLTHROUGH();
+ case 9 : c+=((quint32)k8[8])<<24;
+ Q_FALLTHROUGH();
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((quint32)k8[6])<<8;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k8[5])<<16;
+ Q_FALLTHROUGH();
+ case 5 : b+=((quint32)k8[4])<<24;
+ Q_FALLTHROUGH();
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((quint32)k8[2])<<8;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k8[1])<<16;
+ Q_FALLTHROUGH();
+ case 1 : a+=((quint32)k8[0])<<24; break;
+ case 0 : return c;
+ }
+
+#endif /* !VALGRIND */
+
+ } else { /* need to read the key one byte at a time */
+ const quint8 *k = (const quint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += ((quint32)k[0])<<24;
+ a += ((quint32)k[1])<<16;
+ a += ((quint32)k[2])<<8;
+ a += ((quint32)k[3]);
+ b += ((quint32)k[4])<<24;
+ b += ((quint32)k[5])<<16;
+ b += ((quint32)k[6])<<8;
+ b += ((quint32)k[7]);
+ c += ((quint32)k[8])<<24;
+ c += ((quint32)k[9])<<16;
+ c += ((quint32)k[10])<<8;
+ c += ((quint32)k[11]);
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) /* all the case statements fall through */
+ {
+ case 12: c+=k[11];
+ Q_FALLTHROUGH();
+ case 11: c+=((quint32)k[10])<<8;
+ Q_FALLTHROUGH();
+ case 10: c+=((quint32)k[9])<<16;
+ Q_FALLTHROUGH();
+ case 9 : c+=((quint32)k[8])<<24;
+ Q_FALLTHROUGH();
+ case 8 : b+=k[7];
+ Q_FALLTHROUGH();
+ case 7 : b+=((quint32)k[6])<<8;
+ Q_FALLTHROUGH();
+ case 6 : b+=((quint32)k[5])<<16;
+ Q_FALLTHROUGH();
+ case 5 : b+=((quint32)k[4])<<24;
+ Q_FALLTHROUGH();
+ case 4 : a+=k[3];
+ Q_FALLTHROUGH();
+ case 3 : a+=((quint32)k[2])<<8;
+ Q_FALLTHROUGH();
+ case 2 : a+=((quint32)k[1])<<16;
+ Q_FALLTHROUGH();
+ case 1 : a+=((quint32)k[0])<<24;
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}