summaryrefslogtreecommitdiffstats
path: root/tests/benchmarks/corelib/tools/qstring/main.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/benchmarks/corelib/tools/qstring/main.cpp')
-rw-r--r--tests/benchmarks/corelib/tools/qstring/main.cpp2601
1 files changed, 2601 insertions, 0 deletions
diff --git a/tests/benchmarks/corelib/tools/qstring/main.cpp b/tests/benchmarks/corelib/tools/qstring/main.cpp
new file mode 100644
index 0000000000..96f2c30cf4
--- /dev/null
+++ b/tests/benchmarks/corelib/tools/qstring/main.cpp
@@ -0,0 +1,2601 @@
+/****************************************************************************
+**
+** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the test suite of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+#include <QStringList>
+#include <QFile>
+#include <QtTest/QtTest>
+
+#ifdef Q_OS_SYMBIAN
+// In Symbian OS test data is located in applications private dir
+// Application private dir is default serach path for files, so SRCDIR can be set to empty
+#define SRCDIR ""
+#endif
+
+#ifdef Q_OS_UNIX
+#include <sys/mman.h>
+#include <unistd.h>
+#endif
+
+#include <private/qsimd_p.h>
+
+#include "data.h"
+
+class tst_QString: public QObject
+{
+ Q_OBJECT
+public:
+ tst_QString();
+private slots:
+ void equals() const;
+ void equals_data() const;
+ void equals2_data() const;
+ void equals2() const;
+ void ucstrncmp_data() const;
+ void ucstrncmp() const;
+ void fromUtf8() const;
+ void fromLatin1_data() const;
+ void fromLatin1() const;
+ void fromLatin1Alternatives_data() const;
+ void fromLatin1Alternatives() const;
+ void fromUtf8Alternatives_data() const;
+ void fromUtf8Alternatives() const;
+};
+
+void tst_QString::equals() const
+{
+ QFETCH(QString, a);
+ QFETCH(QString, b);
+
+ QBENCHMARK {
+ a == b;
+ }
+}
+
+tst_QString::tst_QString()
+{
+}
+
+void tst_QString::equals_data() const
+{
+ static const struct {
+ ushort data[80];
+ int dummy; // just to ensure 4-byte alignment
+ } data = {
+ {
+ 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, // 16
+ 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, // 32
+ 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, // 48
+ 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, // 64
+ 64, 64, 64, 64, 96, 96, 96, 96,
+ 64, 64, 96, 96, 96, 96, 96, 96 // 80
+ }, 0
+ };
+ const QChar *ptr = reinterpret_cast<const QChar *>(data.data);
+
+ QTest::addColumn<QString>("a");
+ QTest::addColumn<QString>("b");
+ QString base = QString::fromRawData(ptr, 64);
+
+ QTest::newRow("different-length") << base << QString::fromRawData(ptr, 4);
+ QTest::newRow("same-string") << base << base;
+ QTest::newRow("same-data") << base << QString::fromRawData(ptr, 64);
+
+ // try to avoid crossing a cache line (that is, at ptr[64])
+ QTest::newRow("aligned-aligned-4n")
+ << QString::fromRawData(ptr, 60) << QString::fromRawData(ptr + 2, 60);
+ QTest::newRow("aligned-unaligned-4n")
+ << QString::fromRawData(ptr, 60) << QString::fromRawData(ptr + 1, 60);
+ QTest::newRow("unaligned-unaligned-4n")
+ << QString::fromRawData(ptr + 1, 60) << QString::fromRawData(ptr + 3, 60);
+
+ QTest::newRow("aligned-aligned-4n+1")
+ << QString::fromRawData(ptr, 61) << QString::fromRawData(ptr + 2, 61);
+ QTest::newRow("aligned-unaligned-4n+1")
+ << QString::fromRawData(ptr, 61) << QString::fromRawData(ptr + 1, 61);
+ QTest::newRow("unaligned-unaligned-4n+1")
+ << QString::fromRawData(ptr + 1, 61) << QString::fromRawData(ptr + 3, 61);
+
+ QTest::newRow("aligned-aligned-4n-1")
+ << QString::fromRawData(ptr, 59) << QString::fromRawData(ptr + 2, 59);
+ QTest::newRow("aligned-unaligned-4n-1")
+ << QString::fromRawData(ptr, 59) << QString::fromRawData(ptr + 1, 59);
+ QTest::newRow("unaligned-unaligned-4n-1")
+ << QString::fromRawData(ptr + 1, 59) << QString::fromRawData(ptr + 3, 59);
+
+ QTest::newRow("aligned-aligned-2n")
+ << QString::fromRawData(ptr, 58) << QString::fromRawData(ptr + 2, 58);
+ QTest::newRow("aligned-unaligned-2n")
+ << QString::fromRawData(ptr, 58) << QString::fromRawData(ptr + 1, 58);
+ QTest::newRow("unaligned-unaligned-2n")
+ << QString::fromRawData(ptr + 1, 58) << QString::fromRawData(ptr + 3, 58);
+}
+
+static bool equals2_memcmp_call(const ushort *p1, const ushort *p2, int len)
+{
+ return memcmp(p1, p2, len * 2) == 0;
+}
+
+static bool equals2_bytewise(const ushort *p1, const ushort *p2, int len)
+{
+ if (p1 == p2 || !len)
+ return true;
+ uchar *b1 = (uchar *)p1;
+ uchar *b2 = (uchar *)p2;
+ len *= 2;
+ while (len--)
+ if (*b1++ != *b2++)
+ return false;
+ return true;
+}
+
+static bool equals2_shortwise(const ushort *p1, const ushort *p2, int len)
+{
+ if (p1 == p2 || !len)
+ return true;
+// for (register int counter; counter < len; ++counter)
+// if (p1[counter] != p2[counter])
+// return false;
+ while (len--) {
+ if (p1[len] != p2[len])
+ return false;
+ }
+ return true;
+}
+
+static bool equals2_intwise(const ushort *p1, const ushort *p2, int length)
+{
+ if (p1 == p2 || !length)
+ return true;
+ register union {
+ const quint16 *w;
+ const quint32 *d;
+ quintptr value;
+ } sa, sb;
+ sa.w = p1;
+ sb.w = p2;
+
+ // check alignment
+ if ((sa.value & 2) == (sb.value & 2)) {
+ // both addresses have the same alignment
+ if (sa.value & 2) {
+ // both addresses are not aligned to 4-bytes boundaries
+ // compare the first character
+ if (*sa.w != *sb.w)
+ return false;
+ --length;
+ ++sa.w;
+ ++sb.w;
+
+ // now both addresses are 4-bytes aligned
+ }
+
+ // both addresses are 4-bytes aligned
+ // do a fast 32-bit comparison
+ register const quint32 *e = sa.d + (length >> 1);
+ for ( ; sa.d != e; ++sa.d, ++sb.d) {
+ if (*sa.d != *sb.d)
+ return false;
+ }
+
+ // do we have a tail?
+ return (length & 1) ? *sa.w == *sb.w : true;
+ } else {
+ // one of the addresses isn't 4-byte aligned but the other is
+ register const quint16 *e = sa.w + length;
+ for ( ; sa.w != e; ++sa.w, ++sb.w) {
+ if (*sa.w != *sb.w)
+ return false;
+ }
+ }
+ return true;
+}
+
+static inline bool equals2_short_tail(const ushort *p1, const ushort *p2, int len)
+{
+ if (len) {
+ if (*p1 != *p2)
+ return false;
+ if (--len) {
+ if (p1[1] != p2[1])
+ return false;
+ if (--len) {
+ if (p1[2] != p2[2])
+ return false;
+ if (--len) {
+ if (p1[3] != p2[3])
+ return false;
+ if (--len) {
+ if (p1[4] != p2[4])
+ return false;
+ if (--len) {
+ if (p1[5] != p2[5])
+ return false;
+ if (--len) {
+ if (p1[6] != p2[6])
+ return false;
+ return p1[7] == p2[7];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+//#pragma GCC optimize("no-unroll-loops")
+#ifdef __SSE2__
+static bool equals2_sse2_aligned(const ushort *p1, const ushort *p2, int len)
+{
+ if (len >= 8) {
+ qptrdiff counter = 0;
+ while (len > 8) {
+ __m128i q1 = _mm_load_si128((__m128i *)(p1 + counter));
+ __m128i q2 = _mm_load_si128((__m128i *)(p2 + counter));
+ __m128i cmp = _mm_cmpeq_epi16(q1, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != ushort(0xffff))
+ return false;
+
+ len -= 8;
+ counter += 8;
+ }
+ p1 += counter;
+ p2 += counter;
+ }
+
+ return equals2_short_tail(p1, p2, len);
+}
+
+static bool equals2_sse2(const ushort *p1, const ushort *p2, int len)
+{
+ if (p1 == p2 || !len)
+ return true;
+
+ if (len >= 8) {
+ qptrdiff counter = 0;
+ while (len >= 8) {
+ __m128i q1 = _mm_loadu_si128((__m128i *)(p1 + counter));
+ __m128i q2 = _mm_loadu_si128((__m128i *)(p2 + counter));
+ __m128i cmp = _mm_cmpeq_epi16(q1, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != 0xffff)
+ return false;
+
+ len -= 8;
+ counter += 8;
+ }
+ p1 += counter;
+ p2 += counter;
+ }
+
+ return equals2_short_tail(p1, p2, len);
+}
+
+//static bool equals2_sse2(const ushort *p1, const ushort *p2, int len)
+//{
+// register int val1 = quintptr(p1) & 0xf;
+// register int val2 = quintptr(p2) & 0xf;
+// if (false && val1 + val2 == 0)
+// return equals2_sse2_aligned(p1, p2, len);
+// else
+// return equals2_sse2_unaligned(p1, p2, len);
+//}
+
+static bool equals2_sse2_aligning(const ushort *p1, const ushort *p2, int len)
+{
+ if (len < 8)
+ return equals2_short_tail(p1, p2, len);
+
+ qptrdiff counter = 0;
+
+ // which one is easier to align, p1 or p2 ?
+ register int val1 = quintptr(p1) & 0xf;
+ register int val2 = quintptr(p2) & 0xf;
+ if (val1 && val2) {
+#if 0
+ // we'll align the one which requires the least number of steps
+ if (val1 > val2) {
+ qSwap(p1, p2);
+ val1 = val2;
+ }
+
+ // val1 contains the number of bytes past the 16-aligned mark
+ // we must read 16-val1 bytes to align
+ val1 = 16 - val1;
+ if (val1 & 0x2) {
+ if (*p1 != *p2)
+ return false;
+ --len;
+ ++counter;
+ }
+ while (val1 & 12) {
+ if (*(uint*)p1 != *(uint*)p2)
+ return false;
+ --len;
+ counter += 2;
+ val1 -= 4;
+ }
+#else
+ // we'll align the one closest to the 16-byte mark
+ if (val1 > val2) {
+ qSwap(p1, p2);
+ val1 = val2;
+ }
+
+ // we're reading val1 bytes too many
+ __m128i q2 = _mm_loadu_si128((__m128i *)(p2 - val1/2));
+ __m128i cmp = _mm_cmpeq_epi16(*(__m128i *)(p1 - val1/2), q2);
+ if (short(_mm_movemask_epi8(cmp)) >> val1 != short(-1))
+ return false;
+
+ counter = 8 - val1/2;
+ len -= 8 - val1/2;
+#endif
+ } else if (!val2) {
+ // p2 is already aligned
+ qSwap(p1, p2);
+ }
+
+ // p1 is aligned
+
+ while (len >= 8) {
+ __m128i q1 = _mm_load_si128((__m128i *)(p1 + counter));
+ __m128i q2 = _mm_loadu_si128((__m128i *)(p2 + counter));
+ __m128i cmp = _mm_cmpeq_epi16(q1, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != ushort(0xffff))
+ return false;
+
+ len -= 8;
+ counter += 8;
+ }
+
+ // tail
+ return equals2_short_tail(p1 + counter, p2 + counter, len);
+}
+
+#ifdef __SSE3__
+static bool equals2_sse3(const ushort *p1, const ushort *p2, int len)
+{
+ if (p1 == p2 || !len)
+ return true;
+
+ if (len >= 8) {
+ qptrdiff counter = 0;
+ while (len >= 8) {
+ __m128i q1 = _mm_lddqu_si128((__m128i *)(p1 + counter));
+ __m128i q2 = _mm_lddqu_si128((__m128i *)(p2 + counter));
+ __m128i cmp = _mm_cmpeq_epi16(q1, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != 0xffff)
+ return false;
+
+ len -= 8;
+ counter += 8;
+ }
+ p1 += counter;
+ p2 += counter;
+ }
+
+ return equals2_short_tail(p1, p2, len);
+}
+
+#ifdef __SSSE3__
+template<int N> static inline bool equals2_ssse3_alignr(__m128i *m1, __m128i *m2, int len)
+{
+ __m128i lower = _mm_load_si128(m1);
+ while (len >= 8) {
+ __m128i upper = _mm_load_si128(m1 + 1);
+ __m128i correct;
+ correct = _mm_alignr_epi8(upper, lower, N);
+
+ __m128i q2 = _mm_lddqu_si128(m2);
+ __m128i cmp = _mm_cmpeq_epi16(correct, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != 0xffff)
+ return false;
+
+ len -= 8;
+ ++m2;
+ ++m1;
+ lower = upper;
+ }
+
+ // tail
+ return len == 0 || equals2_short_tail((const ushort *)m1 + N / 2, (const ushort*)m2, len);
+}
+
+static inline bool equals2_ssse3_aligned(__m128i *m1, __m128i *m2, int len)
+{
+ while (len >= 8) {
+ __m128i q2 = _mm_lddqu_si128(m2);
+ __m128i cmp = _mm_cmpeq_epi16(*m1, q2);
+ if (ushort(_mm_movemask_epi8(cmp)) != 0xffff)
+ return false;
+
+ len -= 8;
+ ++m1;
+ ++m2;
+ }
+ return len == 0 || equals2_short_tail((const ushort *)m1, (const ushort *)m2, len);
+}
+
+static bool equals2_ssse3(const ushort *p1, const ushort *p2, int len)
+{
+ // p1 & 0xf can be:
+ // 0, 2, 4, 6, 8, 10, 12, 14
+ // If it's 0, we're aligned
+ // If it's not, then we're interested in the 16 - (p1 & 0xf) bytes only
+
+ if (len >= 8) {
+ // find the last aligned position below the p1 memory
+ __m128i *m1 = (__m128i *)(quintptr(p1) & ~0xf);
+ __m128i *m2 = (__m128i *)p2;
+ qptrdiff diff = quintptr(p1) - quintptr(m1);
+
+ // diff contains the number of extra bytes
+ if (diff == 10)
+ return equals2_ssse3_alignr<10>(m1, m2, len);
+ else if (diff == 2)
+ return equals2_ssse3_alignr<2>(m1, m2, len);
+ if (diff < 8) {
+ if (diff < 4) {
+ return equals2_ssse3_aligned(m1, m2, len);
+ } else {
+ if (diff == 4)
+ return equals2_ssse3_alignr<4>(m1, m2, len);
+ else // diff == 6
+ return equals2_ssse3_alignr<6>(m1, m2, len);
+ }
+ } else {
+ if (diff < 12) {
+ return equals2_ssse3_alignr<8>(m1, m2, len);
+ } else {
+ if (diff == 12)
+ return equals2_ssse3_alignr<12>(m1, m2, len);
+ else // diff == 14
+ return equals2_ssse3_alignr<14>(m1, m2, len);
+ }
+ }
+ }
+
+ // tail
+ return equals2_short_tail(p1, p2, len);
+}
+
+template<int N> static inline bool equals2_ssse3_aligning_alignr(__m128i *m1, __m128i *m2, int len)
+{
+ __m128i lower = _mm_load_si128(m1);
+ while (len >= 8) {
+ __m128i upper = _mm_load_si128(m1 + 1);
+ __m128i correct;
+ correct = _mm_alignr_epi8(upper, lower, N);
+
+ __m128i cmp = _mm_cmpeq_epi16(correct, *m2);
+ if (ushort(_mm_movemask_epi8(cmp)) != 0xffff)
+ return false;
+
+ len -= 8;
+ ++m2;
+ ++m1;
+ lower = upper;
+ }
+
+ // tail
+ return len == 0 || equals2_short_tail((const ushort *)m1 + N / 2, (const ushort*)m2, len);
+}
+
+static bool equals2_ssse3_aligning(const ushort *p1, const ushort *p2, int len)
+{
+ if (len < 8)
+ return equals2_short_tail(p1, p2, len);
+ qptrdiff counter = 0;
+
+ // which one is easier to align, p1 or p2 ?
+ {
+ register int val1 = quintptr(p1) & 0xf;
+ register int val2 = quintptr(p2) & 0xf;
+ if (val1 && val2) {
+ // we'll align the one closest to the 16-byte mark
+ if (val1 < val2) {
+ qSwap(p1, p2);
+ val2 = val1;
+ }
+
+ // we're reading val1 bytes too many
+ __m128i q1 = _mm_lddqu_si128((__m128i *)(p1 - val2/2));
+ __m128i cmp = _mm_cmpeq_epi16(q1, *(__m128i *)(p2 - val2/2));
+ if (short(_mm_movemask_epi8(cmp)) >> val1 != short(-1))
+ return false;
+
+ counter = 8 - val2/2;
+ len -= 8 - val2/2;
+ } else if (!val1) {
+ // p1 is already aligned
+ qSwap(p1, p2);
+ }
+ }
+
+ // p2 is aligned now
+ // we want to use palignr in the mis-alignment of p1
+ __m128i *m1 = (__m128i *)(quintptr(p1 + counter) & ~0xf);
+ __m128i *m2 = (__m128i *)(p2 + counter);
+ register int val1 = quintptr(p1 + counter) - quintptr(m1);
+
+ // val1 contains the number of extra bytes
+ if (val1 == 8)
+ return equals2_ssse3_aligning_alignr<8>(m1, m2, len);
+ if (val1 == 0)
+ return equals2_sse2_aligned(p1 + counter, p2 + counter, len);
+ if (val1 < 8) {
+ if (val1 < 4) {
+ return equals2_ssse3_aligning_alignr<2>(m1, m2, len);
+ } else {
+ if (val1 == 4)
+ return equals2_ssse3_aligning_alignr<4>(m1, m2, len);
+ else // diff == 6
+ return equals2_ssse3_aligning_alignr<6>(m1, m2, len);
+ }
+ } else {
+ if (val1 < 12) {
+ return equals2_ssse3_aligning_alignr<10>(m1, m2, len);
+ } else {
+ if (val1 == 12)
+ return equals2_ssse3_aligning_alignr<12>(m1, m2, len);
+ else // diff == 14
+ return equals2_ssse3_aligning_alignr<14>(m1, m2, len);
+ }
+ }
+}
+
+#ifdef __SSE4_1__
+static bool equals2_sse4(const ushort *p1, const ushort *p2, int len)
+{
+ // We use the pcmpestrm instruction searching for differences (negative polarity)
+ // it will reset CF if it's all equal
+ // it will reset OF if the first char is equal
+ // it will set ZF & SF if the length is less than 8 (which means we've done the last operation)
+ // the three possible conditions are:
+ // difference found: CF = 1
+ // all equal, not finished: CF = ZF = SF = 0
+ // all equal, finished: CF = 0, ZF = SF = 1
+ // We use the JA instruction that jumps if ZF = 0 and CF = 0
+ if (p1 == p2 || !len)
+ return true;
+
+ // This function may read some bytes past the end of p1 or p2
+ // It is safe to do that, as long as those extra bytes (beyond p1+len and p2+len)
+ // are on the same page as the last valid byte.
+ // If len is a multiple of 8, we'll never load invalid bytes.
+ if (len & 7) {
+ // The last load would load (len & ~7) valid bytes and (8 - (len & ~7)) invalid bytes.
+ // So we can't do the last load if any of those bytes is in a different
+ // page. That is, if:
+ // pX + len is on a different page from pX + (len & ~7) + 8
+ //
+ // that is, if second-to-last load ended up less than 16 bytes from the page end:
+ // pX + (len & ~7) is the last ushort read in the second-to-last load
+ if (len < 8)
+ return equals2_short_tail(p1, p2, len);
+ if ((quintptr(p1 + (len & ~7)) & 0xfff) > 0xff0 ||
+ (quintptr(p2 + (len & ~7)) & 0xfff) > 0xff0) {
+
+ // yes, so we mustn't do the final 128-bit load
+ bool result;
+ asm (
+ "sub %[p1], %[p2]\n\t"
+ "sub $16, %[p1]\n\t"
+ "add $8, %[len]\n\t"
+
+ // main loop:
+ "0:\n\t"
+ "add $16, %[p1]\n\t"
+ "sub $8, %[len]\n\t"
+ "jz 1f\n\t"
+ "lddqu (%[p1]), %%xmm0\n\t"
+ "mov %[len], %%edx\n\t"
+ "pcmpestri %[mode], (%[p2],%[p1]), %%xmm0\n\t"
+
+ "jna 1f\n\t"
+ "add $16, %[p1]\n\t"
+ "sub $8, %[len]\n\t"
+ "jz 1f\n\t"
+ "lddqu (%[p1]), %%xmm0\n\t"
+ "mov %[len], %%edx\n\t"
+ "pcmpestri %[mode], (%[p2],%[p1]), %%xmm0\n\t"
+
+ "ja 0b\n\t"
+ "1:\n\t"
+ "setnc %[result]\n\t"
+ : [result] "=a" (result),
+ [p1] "+r" (p1),
+ [p2] "+r" (p2)
+ : [len] "0" (len & ~7),
+ [mode] "i" (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_NEGATIVE_POLARITY)
+ : "%edx", "%ecx", "%xmm0"
+ );
+ return result && equals2_short_tail(p1, (const ushort *)(quintptr(p1) + quintptr(p2)), len & 7);
+ }
+ }
+
+// const qptrdiff disp = p2 - p1;
+// p1 -= 8;
+// len += 8;
+// while (true) {
+// enum { Mode = _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_NEGATIVE_POLARITY };
+
+// p1 += 8;
+// len -= 8;
+// if (!len)
+// return true;
+
+// __m128i q1 = _mm_lddqu_si128((__m128i *)(p1 + disp));
+// __m128i *m2 = (__m128i *)p1;
+
+// bool cmp_a = _mm_cmpestra(q1, len, *m2, len, Mode);
+// if (cmp_a)
+// continue;
+// return !_mm_cmpestrc(q1, len, *m2, len, Mode);
+// }
+// return true;
+ bool result;
+ asm (
+ "sub %[p1], %[p2]\n\t"
+ "sub $16, %[p1]\n\t"
+ "add $8, %[len]\n\t"
+
+ "0:\n\t"
+ "add $16, %[p1]\n\t"
+ "sub $8, %[len]\n\t"
+ "jz 1f\n\t"
+ "lddqu (%[p2],%[p1]), %%xmm0\n\t"
+ "mov %[len], %%edx\n\t"
+ "pcmpestri %[mode], (%[p1]), %%xmm0\n\t"
+
+ "jna 1f\n\t"
+ "add $16, %[p1]\n\t"
+ "sub $8, %[len]\n\t"
+ "jz 1f\n\t"
+ "lddqu (%[p2],%[p1]), %%xmm0\n\t"
+ "mov %[len], %%edx\n\t"
+ "pcmpestri %[mode], (%[p1]), %%xmm0\n\t"
+
+ "ja 0b\n\t"
+
+ "1:\n\t"
+ "setnc %[result]\n\t"
+ : [result] "=a" (result)
+ : [len] "0" (len),
+ [p1] "r" (p1),
+ [p2] "r" (p2),
+ [mode] "i" (_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_NEGATIVE_POLARITY)
+ : "%edx", "%ecx", "%xmm0"
+ );
+ return result;
+}
+
+#endif
+#endif
+#endif
+#endif
+
+typedef bool (* FuncPtr)(const ushort *, const ushort *, int);
+static const FuncPtr func[] = {
+ equals2_memcmp_call, // 0
+ equals2_bytewise, // 1
+ equals2_shortwise, // 1
+ equals2_intwise, // 3
+#ifdef __SSE2__
+ equals2_sse2, // 4
+ equals2_sse2_aligning, // 5
+#ifdef __SSE3__
+ equals2_sse3, // 6
+#ifdef __SSSE3__
+ equals2_ssse3, // 7
+ equals2_ssse3, // 8
+#ifdef __SSE4_1__
+ equals2_sse4, // 9
+#endif
+#endif
+#endif
+#endif
+ 0
+};
+static const int functionCount = sizeof(func)/sizeof(func[0]) - 1;
+
+void tst_QString::equals2_data() const
+{
+ QTest::addColumn<int>("algorithm");
+ QTest::newRow("selftest") << -1;
+ QTest::newRow("memcmp_call") << 0;
+ QTest::newRow("bytewise") << 1;
+ QTest::newRow("shortwise") << 2;
+ QTest::newRow("intwise") << 3;
+#ifdef __SSE2__
+ QTest::newRow("sse2") << 4;
+ QTest::newRow("sse2_aligning") << 5;
+#ifdef __SSE3__
+ QTest::newRow("sse3") << 6;
+#ifdef __SSSE3__
+ QTest::newRow("ssse3") << 7;
+ QTest::newRow("ssse3_aligning") << 8;
+#ifdef __SSE4_1__
+ QTest::newRow("sse4.2") << 9;
+#endif
+#endif
+#endif
+#endif
+}
+
+static void __attribute__((noinline)) equals2_selftest()
+{
+#ifdef Q_OS_UNIX
+ const long pagesize = sysconf(_SC_PAGESIZE);
+ void *page1, *page3;
+ ushort *page2;
+ page1 = mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ page2 = (ushort *)mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, -1, 0);
+ page3 = mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+
+ Q_ASSERT(quintptr(page2) == quintptr(page1) + pagesize || quintptr(page2) == quintptr(page1) - pagesize);
+ Q_ASSERT(quintptr(page3) == quintptr(page2) + pagesize || quintptr(page3) == quintptr(page2) - pagesize);
+ munmap(page1, pagesize);
+ munmap(page3, pagesize);
+
+ // populate our page
+ for (uint i = 0; i < pagesize / sizeof(long long); ++i)
+ ((long long *)page2)[i] = Q_INT64_C(0x0041004100410041);
+
+ // the following should crash:
+ //page2[-1] = 0xdead;
+ //page2[pagesize / sizeof(ushort) + 1] = 0xbeef;
+
+ static const ushort needle[] = {
+ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41,
+ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41,
+ 0x41
+ };
+
+ for (int algo = 0; algo < functionCount; ++algo) {
+ // boundary condition test:
+ for (int i = 0; i < 8; ++i) {
+ (func[algo])(page2 + i, needle, sizeof needle / 2);
+ (func[algo])(page2 - i - 1 - sizeof(needle)/2 + pagesize/2, needle, sizeof needle/2);
+ }
+ }
+
+ munmap(page2, pagesize);
+#endif
+
+ for (int algo = 0; algo < functionCount; ++algo) {
+ for (int i = 0; i < stringCollectionCount; ++i) {
+ const ushort *p1 = stringCollectionData + stringCollection[i].offset1;
+ const ushort *p2 = stringCollectionData + stringCollection[i].offset2;
+ bool expected = memcmp(p1, p2, stringCollection[i].len * 2) == 0;
+
+ bool result = (func[algo])(p1, p2, stringCollection[i].len);
+ if (expected != result)
+ qWarning().nospace()
+ << "algo=" << algo
+ << " i=" << i
+ << " failed (" << result << "!=" << expected
+ << "); strings were "
+ << QByteArray((char*)p1, stringCollection[i].len).toHex()
+ << " and "
+ << QByteArray((char*)p2, stringCollection[i].len).toHex();
+ }
+ }
+}
+
+void tst_QString::equals2() const
+{
+ QFETCH(int, algorithm);
+ if (algorithm == -1) {
+ equals2_selftest();
+ return;
+ }
+
+ QBENCHMARK {
+ for (int i = 0; i < stringCollectionCount; ++i) {
+ const ushort *p1 = stringCollectionData + stringCollection[i].offset1;
+ const ushort *p2 = stringCollectionData + stringCollection[i].offset2;
+ bool result = (func[algorithm])(p1, p2, stringCollection[i].len);
+ Q_UNUSED(result);
+ }
+ }
+}
+
+static int ucstrncmp_shortwise(const ushort *a, const ushort *b, int l)
+{
+ while (l-- && *a == *b)
+ a++,b++;
+ if (l==-1)
+ return 0;
+ return *a - *b;
+}
+
+static int ucstrncmp_intwise(const ushort *a, const ushort *b, int len)
+{
+ // do both strings have the same alignment?
+ if ((quintptr(a) & 2) == (quintptr(b) & 2)) {
+ // are we aligned to 4 bytes?
+ if (quintptr(a) & 2) {
+ if (*a != *b)
+ return *a - *b;
+ ++a;
+ ++b;
+ --len;
+ }
+
+ const uint *p1 = (const uint *)a;
+ const uint *p2 = (const uint *)b;
+ quintptr counter = 0;
+ for ( ; len > 1 ; len -= 2, ++counter) {
+ if (p1[counter] != p2[counter]) {
+ // which ushort isn't equal?
+ int diff = a[2*counter] - b[2*counter];
+ return diff ? diff : a[2*counter + 1] - b[2*counter + 1];
+ }
+ }
+
+ return len ? a[2*counter] - b[2*counter] : 0;
+ } else {
+ while (len-- && *a == *b)
+ a++,b++;
+ if (len==-1)
+ return 0;
+ return *a - *b;
+ }
+}
+
+#ifdef __SSE2__
+static inline int ucstrncmp_short_tail(const ushort *p1, const ushort *p2, int len)
+{
+ if (len) {
+ if (*p1 != *p2)
+ return *p1 - *p2;
+ if (--len) {
+ if (p1[1] != p2[1])
+ return p1[1] - p2[1];
+ if (--len) {
+ if (p1[2] != p2[2])
+ return p1[2] - p2[2];
+ if (--len) {
+ if (p1[3] != p2[3])
+ return p1[3] - p2[3];
+ if (--len) {
+ if (p1[4] != p2[4])
+ return p1[4] - p2[4];
+ if (--len) {
+ if (p1[5] != p2[5])
+ return p1[5] - p2[5];
+ if (--len) {
+ if (p1[6] != p2[6])
+ return p1[6] - p2[6];
+ return p1[7] - p2[7];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static inline int bsf_nonzero(register long val)
+{
+ int result;
+# ifdef Q_CC_GNU
+ // returns the first non-zero bit on a non-zero reg
+ asm ("bsf %1, %0" : "=r" (result) : "r" (val));
+ return result;
+# elif defined(Q_CC_MSVC)
+ _BitScanForward(&result, val);
+ return result;
+# endif
+}
+
+static int ucstrncmp_sse2(const ushort *a, const ushort *b, int len)
+{
+ qptrdiff counter = 0;
+ while (len >= 8) {
+ __m128i m1 = _mm_loadu_si128((__m128i *)(a + counter));
+ __m128i m2 = _mm_loadu_si128((__m128i *)(b + counter));
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ }
+ return ucstrncmp_short_tail(a + counter, b + counter, len);
+}
+
+static int ucstrncmp_sse2_aligning(const ushort *a, const ushort *b, int len)
+{
+ if (len >= 8) {
+ __m128i m1 = _mm_loadu_si128((__m128i *)a);
+ __m128i m2 = _mm_loadu_si128((__m128i *)b);
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ int counter = bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+
+ // now align to do 16-byte loads
+ int diff = 8 - (quintptr(a) & 0xf)/2;
+ len -= diff;
+ a += diff;
+ b += diff;
+ }
+
+ qptrdiff counter = 0;
+ while (len >= 8) {
+ __m128i m1 = _mm_load_si128((__m128i *)(a + counter));
+ __m128i m2 = _mm_loadu_si128((__m128i *)(b + counter));
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ }
+ return ucstrncmp_short_tail(a + counter, b + counter, len);
+}
+
+static inline int ucstrncmp_sse2_aligned(const ushort *a, const ushort *b, int len)
+{
+ quintptr counter = 0;
+ while (len >= 8) {
+ __m128i m1 = _mm_load_si128((__m128i *)(a + counter));
+ __m128i m2 = _mm_load_si128((__m128i *)(b + counter));
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ }
+ return ucstrncmp_short_tail(a + counter, b + counter, len);
+}
+
+#ifdef __SSSE3__
+static inline int ucstrncmp_ssse3_alignr_aligned(const ushort *a, const ushort *b, int len)
+{
+ quintptr counter = 0;
+ while (len >= 8) {
+ __m128i m1 = _mm_load_si128((__m128i *)(a + counter));
+ __m128i m2 = _mm_lddqu_si128((__m128i *)(b + counter));
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ }
+ return ucstrncmp_short_tail(a + counter, b + counter, len);
+}
+
+
+typedef __m128i (* MMLoadFunction)(const __m128i *);
+template<int N, MMLoadFunction LoadFunction>
+static inline int ucstrncmp_ssse3_alignr(const ushort *a, const ushort *b, int len)
+{
+ qptrdiff counter = 0;
+ __m128i lower, upper;
+ upper = _mm_load_si128((__m128i *)a);
+
+ do {
+ lower = upper;
+ upper = _mm_load_si128((__m128i *)(a + counter) + 1);
+ __m128i merged = _mm_alignr_epi8(upper, lower, N);
+
+ __m128i m2 = LoadFunction((__m128i *)(b + counter));
+ __m128i cmp = _mm_cmpeq_epi16(merged, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter + N/2] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ } while (len >= 8);
+
+ return ucstrncmp_short_tail(a + counter + N/2, b + counter, len);
+}
+
+static int ucstrncmp_ssse3(const ushort *a, const ushort *b, int len)
+{
+ if (len >= 8) {
+ int val = quintptr(a) & 0xf;
+ a -= val/2;
+
+ if (val == 10)
+ return ucstrncmp_ssse3_alignr<10, _mm_lddqu_si128>(a, b, len);
+ else if (val == 2)
+ return ucstrncmp_ssse3_alignr<2, _mm_lddqu_si128>(a, b, len);
+ if (val < 8) {
+ if (val < 4)
+ return ucstrncmp_ssse3_alignr_aligned(a, b, len);
+ else if (val == 4)
+ return ucstrncmp_ssse3_alignr<4, _mm_lddqu_si128>(a, b, len);
+ else
+ return ucstrncmp_ssse3_alignr<6, _mm_lddqu_si128>(a, b, len);
+ } else {
+ if (val < 12)
+ return ucstrncmp_ssse3_alignr<8, _mm_lddqu_si128>(a, b, len);
+ else if (val == 12)
+ return ucstrncmp_ssse3_alignr<12, _mm_lddqu_si128>(a, b, len);
+ else
+ return ucstrncmp_ssse3_alignr<14, _mm_lddqu_si128>(a, b, len);
+ }
+ }
+ return ucstrncmp_short_tail(a, b, len);
+}
+
+static int ucstrncmp_ssse3_aligning(const ushort *a, const ushort *b, int len)
+{
+ if (len >= 8) {
+ __m128i m1 = _mm_loadu_si128((__m128i *)a);
+ __m128i m2 = _mm_loadu_si128((__m128i *)b);
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ int counter = bsf_nonzero(mask)/2;
+ return a[counter] - b[counter];
+ }
+
+
+ // now 'b' align to do 16-byte loads
+ int diff = 8 - (quintptr(b) & 0xf)/2;
+ len -= diff;
+ a += diff;
+ b += diff;
+ }
+
+ if (len < 8)
+ return ucstrncmp_short_tail(a, b, len);
+
+ // 'b' is aligned
+ int val = quintptr(a) & 0xf;
+ a -= val/2;
+
+ if (val == 8)
+ return ucstrncmp_ssse3_alignr<8, _mm_load_si128>(a, b, len);
+ else if (val == 0)
+ return ucstrncmp_sse2_aligned(a, b, len);
+ if (val < 8) {
+ if (val < 4)
+ return ucstrncmp_ssse3_alignr<2, _mm_load_si128>(a, b, len);
+ else if (val == 4)
+ return ucstrncmp_ssse3_alignr<4, _mm_load_si128>(a, b, len);
+ else
+ return ucstrncmp_ssse3_alignr<6, _mm_load_si128>(a, b, len);
+ } else {
+ if (val < 12)
+ return ucstrncmp_ssse3_alignr<10, _mm_load_si128>(a, b, len);
+ else if (val == 12)
+ return ucstrncmp_ssse3_alignr<12, _mm_load_si128>(a, b, len);
+ else
+ return ucstrncmp_ssse3_alignr<14, _mm_load_si128>(a, b, len);
+ }
+}
+
+static inline
+int ucstrncmp_ssse3_aligning2_aligned(const ushort *a, const ushort *b, int len, int garbage)
+{
+ // len >= 8
+ __m128i m1 = _mm_load_si128((const __m128i *)a);
+ __m128i m2 = _mm_load_si128((const __m128i *)b);
+ __m128i cmp = _mm_cmpeq_epi16(m1, m2);
+ int mask = short(_mm_movemask_epi8(cmp)); // force sign extension
+ mask >>= garbage;
+ if (~mask) {
+ // which ushort isn't equal?
+ uint counter = (garbage + bsf_nonzero(~mask));
+ return a[counter/2] - b[counter/2];
+ }
+
+ // the first 16-garbage bytes (8-garbage/2 ushorts) were equal
+ len -= 8 - garbage/2;
+ return ucstrncmp_sse2_aligned(a + 8, b + 8, len);
+}
+
+template<int N> static inline
+int ucstrncmp_ssse3_aligning2_alignr(const ushort *a, const ushort *b, int len, int garbage)
+{
+ // len >= 8
+ __m128i lower, upper, merged;
+ lower = _mm_load_si128((const __m128i*)a);
+ upper = _mm_load_si128((const __m128i*)(a + 8));
+ merged = _mm_alignr_epi8(upper, lower, N);
+
+ __m128i m2 = _mm_load_si128((const __m128i*)b);
+ __m128i cmp = _mm_cmpeq_epi16(merged, m2);
+ int mask = short(_mm_movemask_epi8(cmp)); // force sign extension
+ mask >>= garbage;
+ if (~mask) {
+ // which ushort isn't equal?
+ uint counter = (garbage + bsf_nonzero(~mask));
+ return a[counter/2 + N/2] - b[counter/2];
+ }
+
+ // the first 16-garbage bytes (8-garbage/2 ushorts) were equal
+ quintptr counter = 8;
+ len -= 8 - garbage/2;
+ while (len >= 8) {
+ lower = upper;
+ upper = _mm_load_si128((__m128i *)(a + counter) + 1);
+ merged = _mm_alignr_epi8(upper, lower, N);
+
+ m2 = _mm_load_si128((__m128i *)(b + counter));
+ cmp = _mm_cmpeq_epi16(merged, m2);
+ ushort mask = ~uint(_mm_movemask_epi8(cmp));
+ if (mask) {
+ // which ushort isn't equal?
+ counter += bsf_nonzero(mask)/2;
+ return a[counter + N/2] - b[counter];
+ }
+
+ counter += 8;
+ len -= 8;
+ }
+
+ return ucstrncmp_short_tail(a + counter + N/2, b + counter, len);
+}
+
+static inline int conditional_invert(int result, bool invert)
+{
+ if (invert)
+ return -result;
+ return result;
+}
+
+static int ucstrncmp_ssse3_aligning2(const ushort *a, const ushort *b, int len)
+{
+ // Different strategy from above: instead of doing two unaligned loads
+ // when trying to align, we'll only do aligned loads and round down the
+ // addresses of a and b. This means the first load will contain garbage
+ // in the beginning of the string, which we'll shift out of the way
+ // (after _mm_movemask_epi8)
+
+ if (len < 8)
+ return ucstrncmp_intwise(a, b, len);
+
+ // both a and b are misaligned
+ // we'll call the alignr function with the alignment *difference* between the two
+ int offset = (quintptr(a) & 0xf) - (quintptr(b) & 0xf);
+ if (offset >= 0) {
+ // from this point on, b has the shortest alignment
+ // and align(a) = align(b) + offset
+ // round down the alignment so align(b) == align(a) == 0
+ int garbage = (quintptr(b) & 0xf);
+ a = (const ushort*)(quintptr(a) & ~0xf);
+ b = (const ushort*)(quintptr(b) & ~0xf);
+
+ // now the first load of b will load 'garbage' extra bytes
+ // and the first load of a will load 'garbage + offset' extra bytes
+ if (offset == 8)
+ return ucstrncmp_ssse3_aligning2_alignr<8>(a, b, len, garbage);
+ if (offset == 0)
+ return ucstrncmp_ssse3_aligning2_aligned(a, b, len, garbage);
+ if (offset < 8) {
+ if (offset < 4)
+ return ucstrncmp_ssse3_aligning2_alignr<2>(a, b, len, garbage);
+ else if (offset == 4)
+ return ucstrncmp_ssse3_aligning2_alignr<4>(a, b, len, garbage);
+ else
+ return ucstrncmp_ssse3_aligning2_alignr<6>(a, b, len, garbage);
+ } else {
+ if (offset < 12)
+ return ucstrncmp_ssse3_aligning2_alignr<10>(a, b, len, garbage);
+ else if (offset == 12)
+ return ucstrncmp_ssse3_aligning2_alignr<12>(a, b, len, garbage);
+ else
+ return ucstrncmp_ssse3_aligning2_alignr<14>(a, b, len, garbage);
+ }
+ } else {
+ // same as above but inverted
+ int garbage = (quintptr(a) & 0xf);
+ a = (const ushort*)(quintptr(a) & ~0xf);
+ b = (const ushort*)(quintptr(b) & ~0xf);
+
+ offset = -offset;
+ if (offset == 8)
+ return -ucstrncmp_ssse3_aligning2_alignr<8>(b, a, len, garbage);
+ if (offset < 8) {
+ if (offset < 4)
+ return -ucstrncmp_ssse3_aligning2_alignr<2>(b, a, len, garbage);
+ else if (offset == 4)
+ return -ucstrncmp_ssse3_aligning2_alignr<4>(b, a, len, garbage);
+ else
+ return -ucstrncmp_ssse3_aligning2_alignr<6>(b, a, len, garbage);
+ } else {
+ if (offset < 12)
+ return -ucstrncmp_ssse3_aligning2_alignr<10>(b, a, len, garbage);
+ else if (offset == 12)
+ return -ucstrncmp_ssse3_aligning2_alignr<12>(b, a, len, garbage);
+ else
+ return -ucstrncmp_ssse3_aligning2_alignr<14>(b, a, len, garbage);
+ }
+ }
+}
+
+#endif
+#endif
+
+typedef int (* UcstrncmpFunction)(const ushort *, const ushort *, int);
+Q_DECLARE_METATYPE(UcstrncmpFunction)
+
+void tst_QString::ucstrncmp_data() const
+{
+ QTest::addColumn<UcstrncmpFunction>("function");
+ QTest::newRow("selftest") << UcstrncmpFunction(0);
+ QTest::newRow("shortwise") << &ucstrncmp_shortwise;
+ QTest::newRow("intwise") << &ucstrncmp_intwise;
+#ifdef __SSE2__
+ QTest::newRow("sse2") << &ucstrncmp_sse2;
+ QTest::newRow("sse2_aligning") << &ucstrncmp_sse2_aligning;
+#ifdef __SSSE3__
+ QTest::newRow("ssse3") << &ucstrncmp_ssse3;
+ QTest::newRow("ssse3_aligning") << &ucstrncmp_ssse3_aligning;
+ QTest::newRow("ssse3_aligning2") << &ucstrncmp_ssse3_aligning2;
+#endif
+#endif
+}
+
+void tst_QString::ucstrncmp() const
+{
+ QFETCH(UcstrncmpFunction, function);
+ if (!function) {
+ static const UcstrncmpFunction func[] = {
+ &ucstrncmp_shortwise,
+ &ucstrncmp_intwise,
+#ifdef __SSE2__
+ &ucstrncmp_sse2,
+ &ucstrncmp_sse2_aligning,
+#ifdef __SSSE3__
+ &ucstrncmp_ssse3,
+ &ucstrncmp_ssse3_aligning,
+ &ucstrncmp_ssse3_aligning2
+#endif
+#endif
+ };
+ static const int functionCount = sizeof func / sizeof func[0];
+
+#ifdef Q_OS_UNIX
+ const long pagesize = sysconf(_SC_PAGESIZE);
+ void *page1, *page3;
+ ushort *page2;
+ page1 = mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ page2 = (ushort *)mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, -1, 0);
+ page3 = mmap(0, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+
+ Q_ASSERT(quintptr(page2) == quintptr(page1) + pagesize || quintptr(page2) == quintptr(page1) - pagesize);
+ Q_ASSERT(quintptr(page3) == quintptr(page2) + pagesize || quintptr(page3) == quintptr(page2) - pagesize);
+ munmap(page1, pagesize);
+ munmap(page3, pagesize);
+
+ // populate our page
+ for (uint i = 0; i < pagesize / sizeof(long long); ++i)
+ ((long long *)page2)[i] = Q_INT64_C(0x0041004100410041);
+
+ // the following should crash:
+ //page2[-1] = 0xdead;
+ //page2[pagesize / sizeof(ushort) + 1] = 0xbeef;
+
+ static const ushort needle[] = {
+ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41,
+ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41,
+ 0x41
+ };
+
+ for (int algo = 0; algo < functionCount; ++algo) {
+ // boundary condition test:
+ for (int i = 0; i < 8; ++i) {
+ (func[algo])(page2 + i, needle, sizeof needle / 2);
+ (func[algo])(page2 - i - 1 - sizeof(needle)/2 + pagesize/2, needle, sizeof needle/2);
+ }
+ }
+
+ munmap(page2, pagesize);
+#endif
+
+ for (int algo = 0; algo < functionCount; ++algo) {
+ for (int i = 0; i < stringCollectionCount; ++i) {
+ const ushort *p1 = stringCollectionData + stringCollection[i].offset1;
+ const ushort *p2 = stringCollectionData + stringCollection[i].offset2;
+ int expected = ucstrncmp_shortwise(p1, p2, stringCollection[i].len);
+ expected = qBound(-1, expected, 1);
+
+ int result = (func[algo])(p1, p2, stringCollection[i].len);
+ result = qBound(-1, result, 1);
+ if (expected != result)
+ qWarning().nospace()
+ << "algo=" << algo
+ << " i=" << i
+ << " failed (" << result << "!=" << expected
+ << "); strings were "
+ << QByteArray((char*)p1, stringCollection[i].len).toHex()
+ << " and "
+ << QByteArray((char*)p2, stringCollection[i].len).toHex();
+ }
+ }
+ return;
+ }
+
+ QBENCHMARK {
+ for (int i = 0; i < stringCollectionCount; ++i) {
+ const ushort *p1 = stringCollectionData + stringCollection[i].offset1;
+ const ushort *p2 = stringCollectionData + stringCollection[i].offset2;
+ (function)(p1, p2, stringCollection[i].len);
+ }
+ }
+}
+
+void tst_QString::fromUtf8() const
+{
+ QFile file(SRCDIR "utf-8.txt");
+ if (!file.open(QFile::ReadOnly)) {
+ qFatal("Cannot open input file");
+ return;
+ }
+ QByteArray data = file.readAll();
+ const char *d = data.constData();
+ int size = data.size();
+
+ QBENCHMARK {
+ QString::fromUtf8(d, size);
+ }
+}
+
+void tst_QString::fromLatin1_data() const
+{
+ QTest::addColumn<QByteArray>("latin1");
+
+ // make all the strings have the same length
+ QTest::newRow("ascii-only") << QByteArray("HelloWorld");
+ QTest::newRow("ascii+control") << QByteArray("Hello\1\r\n\x7f\t");
+ QTest::newRow("ascii+nul") << QByteArray("a\0zbc\0defg", 10);
+ QTest::newRow("non-ascii") << QByteArray("\x80\xc0\xff\x81\xc1\xfe\x90\xd0\xef\xa0");
+}
+
+void tst_QString::fromLatin1() const
+{
+ QFETCH(QByteArray, latin1);
+
+ while (latin1.length() < 128) {
+ latin1 += latin1;
+ }
+
+ QByteArray copy1 = latin1, copy2 = latin1, copy3 = latin1;
+ copy1.chop(1);
+ copy2.detach();
+ copy3 += latin1; // longer length
+ copy2.clear();
+
+ QBENCHMARK {
+ QString s1 = QString::fromLatin1(latin1);
+ QString s2 = QString::fromLatin1(latin1);
+ QString s3 = QString::fromLatin1(copy1);
+ QString s4 = QString::fromLatin1(copy3);
+ s3 = QString::fromLatin1(copy3);
+ }
+}
+
+typedef void (* FromLatin1Function)(ushort *, const char *, int);
+Q_DECLARE_METATYPE(FromLatin1Function)
+
+void fromLatin1_regular(ushort *dst, const char *str, int size)
+{
+ // from qstring.cpp:
+ while (size--)
+ *dst++ = (uchar)*str++;
+}
+
+#ifdef __SSE2__
+void fromLatin1_sse2_qt47(ushort *dst, const char *str, int size)
+{
+ if (size >= 16) {
+ int chunkCount = size >> 4; // divided by 16
+ const __m128i nullMask = _mm_set1_epi32(0);
+ for (int i = 0; i < chunkCount; ++i) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)str); // load
+ str += 16;
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)dst, firstHalf); // store
+ dst += 8;
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_storeu_si128((__m128i*)dst, secondHalf); // store
+ dst += 8;
+ }
+ size = size % 16;
+ }
+ while (size--)
+ *dst++ = (uchar)*str++;
+}
+
+static inline void fromLatin1_epilog(ushort *dst, const char *str, int size)
+{
+ if (!size) return;
+ dst[0] = (uchar)str[0];
+ if (!--size) return;
+ dst[1] = (uchar)str[1];
+ if (!--size) return;
+ dst[2] = (uchar)str[2];
+ if (!--size) return;
+ dst[3] = (uchar)str[3];
+ if (!--size) return;
+ dst[4] = (uchar)str[4];
+ if (!--size) return;
+ dst[5] = (uchar)str[5];
+ if (!--size) return;
+ dst[6] = (uchar)str[6];
+ if (!--size) return;
+ dst[7] = (uchar)str[7];
+ if (!--size) return;
+ dst[8] = (uchar)str[8];
+ if (!--size) return;
+ dst[9] = (uchar)str[9];
+ if (!--size) return;
+ dst[10] = (uchar)str[10];
+ if (!--size) return;
+ dst[11] = (uchar)str[11];
+ if (!--size) return;
+ dst[12] = (uchar)str[12];
+ if (!--size) return;
+ dst[13] = (uchar)str[13];
+ if (!--size) return;
+ dst[14] = (uchar)str[14];
+ if (!--size) return;
+ dst[15] = (uchar)str[15];
+}
+
+void fromLatin1_sse2_improved(ushort *dst, const char *str, int size)
+{
+ const __m128i nullMask = _mm_set1_epi32(0);
+ qptrdiff counter = 0;
+ size -= 16;
+ while (size >= counter) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)(str + counter)); // load
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ counter += 16;
+ }
+ size += 16;
+ fromLatin1_epilog(dst + counter, str + counter, size - counter);
+}
+
+void fromLatin1_sse2_improved2(ushort *dst, const char *str, int size)
+{
+ const __m128i nullMask = _mm_set1_epi32(0);
+ qptrdiff counter = 0;
+ size -= 32;
+ while (size >= counter) {
+ const __m128i chunk1 = _mm_loadu_si128((__m128i*)(str + counter)); // load
+ const __m128i chunk2 = _mm_loadu_si128((__m128i*)(str + counter + 16)); // load
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf1 = _mm_unpacklo_epi8(chunk1, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf1); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf1 = _mm_unpackhi_epi8(chunk1, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf1); // store
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf2 = _mm_unpacklo_epi8(chunk2, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 16), firstHalf2); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf2 = _mm_unpackhi_epi8(chunk2, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 24), secondHalf2); // store
+
+ counter += 32;
+ }
+ size += 16;
+ if (size >= counter) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)(str + counter)); // load
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ counter += 16;
+ }
+ size += 16;
+ fromLatin1_epilog(dst + counter, str + counter, size - counter);
+}
+
+void fromLatin1_prolog_unrolled(ushort *dst, const char *str, int size)
+{
+ // QString's data pointer is most often ending in 0x2 or 0xa
+ // that means the two most common values for size are (8-1)=7 and (8-5)=3
+ if (size == 7)
+ goto copy_7;
+ if (size == 3)
+ goto copy_3;
+
+ if (size == 6)
+ goto copy_6;
+ if (size == 5)
+ goto copy_5;
+ if (size == 4)
+ goto copy_4;
+ if (size == 2)
+ goto copy_2;
+ if (size == 1)
+ goto copy_1;
+ return;
+
+copy_7:
+ dst[6] = (uchar)str[6];
+copy_6:
+ dst[5] = (uchar)str[5];
+copy_5:
+ dst[4] = (uchar)str[4];
+copy_4:
+ dst[3] = (uchar)str[3];
+copy_3:
+ dst[2] = (uchar)str[2];
+copy_2:
+ dst[1] = (uchar)str[1];
+copy_1:
+ dst[0] = (uchar)str[0];
+}
+
+void fromLatin1_prolog_sse2_overcommit(ushort *dst, const char *str, int)
+{
+ // do one iteration of conversion
+ const __m128i chunk = _mm_loadu_si128((__m128i*)str); // load
+
+ // unpack only the first 8 bytes, padding with zeros
+ const __m128i nullMask = _mm_set1_epi32(0);
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)dst, firstHalf); // store
+}
+
+template<FromLatin1Function prologFunction>
+void fromLatin1_sse2_withprolog(ushort *dst, const char *str, int size)
+{
+ // same as the improved code, but we attempt to align at the prolog
+ // therefore, we issue aligned stores
+
+ if (size >= 16) {
+ uint misalignment = uint(quintptr(dst) & 0xf);
+ uint prologCount = (16 - misalignment) / 2;
+
+ prologFunction(dst, str, prologCount);
+
+ size -= prologCount;
+ dst += prologCount;
+ str += prologCount;
+ }
+
+ const __m128i nullMask = _mm_set1_epi32(0);
+ qptrdiff counter = 0;
+ size -= 16;
+ while (size >= counter) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)(str + counter)); // load
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_store_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_store_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ counter += 16;
+ }
+ size += 16;
+ fromLatin1_epilog(dst + counter, str + counter, size - counter);
+}
+
+#ifdef __SSE4_1__
+void fromLatin1_sse4_pmovzxbw(ushort *dst, const char *str, int size)
+{
+ qptrdiff counter = 0;
+ size -= 16;
+ while (size >= counter) {
+ __m128i chunk = _mm_loadu_si128((__m128i*)(str + counter)); // load
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_cvtepu8_epi16(chunk);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ // unpack the last 8 bytes, padding with zeros
+ chunk = _mm_srli_si128(chunk, 8);
+ const __m128i secondHalf = _mm_cvtepu8_epi16(chunk);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ counter += 16;
+ }
+ size += 16;
+ fromLatin1_epilog(dst + counter, str + counter, size - counter);
+}
+
+void fromLatin1_prolog_sse4_overcommit(ushort *dst, const char *str, int)
+{
+ // load 8 bytes and zero-extend them to 16
+ const __m128i chunk = _mm_cvtepu8_epi16(*(__m128i*)str); // load
+ _mm_storeu_si128((__m128i*)dst, chunk); // store
+}
+#endif
+#endif
+
+#ifdef __ARM_NEON__
+static inline void fromLatin1_epilog(ushort *dst, const char *str, int size)
+{
+ if (!size) return;
+ dst[0] = (uchar)str[0];
+ if (!--size) return;
+ dst[1] = (uchar)str[1];
+ if (!--size) return;
+ dst[2] = (uchar)str[2];
+ if (!--size) return;
+ dst[3] = (uchar)str[3];
+ if (!--size) return;
+ dst[4] = (uchar)str[4];
+ if (!--size) return;
+ dst[5] = (uchar)str[5];
+ if (!--size) return;
+ dst[6] = (uchar)str[6];
+ if (!--size) return;
+ dst[7] = (uchar)str[7];
+ if (!--size) return;
+}
+
+void fromLatin1_neon_improved(ushort *dst, const char *str, int len)
+{
+ while (len >= 8) {
+ // load 8 bytes into one doubleword Neon register
+ const uint8x8_t chunk = vld1_u8((uint8_t *)str);
+ str += 8;
+
+ // expand 8 bytes into 16 bytes in a quadword register
+ const uint16x8_t expanded = vmovl_u8(chunk);
+ vst1q_u16(dst, expanded); // store
+ dst += 8;
+
+ len -= 8;
+ }
+ fromLatin1_epilog(dst, str, len);
+}
+
+void fromLatin1_neon_improved2(ushort *dst, const char *str, int len)
+{
+ while (len >= 16) {
+ // load 16 bytes into one quadword Neon register
+ const uint8x16_t chunk = vld1q_u8((uint8_t *)str);
+ str += 16;
+
+ // expand each doubleword of the quadword register into a quadword
+ const uint16x8_t expanded_low = vmovl_u8(vget_low_u8(chunk));
+ vst1q_u16(dst, expanded_low); // store
+ dst += 8;
+ const uint16x8_t expanded_high = vmovl_u8(vget_high_u8(chunk));
+ vst1q_u16(dst, expanded_high); // store
+ dst += 8;
+
+ len -= 16;
+ }
+
+ if (len >= 8) {
+ // load 8 bytes into one doubleword Neon register
+ const uint8x8_t chunk = vld1_u8((uint8_t *)str);
+ str += 8;
+
+ // expand 8 bytes into 16 bytes in a quadword register
+ const uint16x8_t expanded = vmovl_u8(chunk);
+ vst1q_u16(dst, expanded); // store
+ dst += 8;
+
+ len -= 8;
+ }
+ fromLatin1_epilog(dst, str, len);
+}
+
+void fromLatin1_neon_handwritten(ushort *dst, const char *str, int len)
+{
+ // same as above, but handwritten Neon
+ while (len >= 8) {
+ uint16x8_t chunk;
+ asm (
+ "vld1.8 %[chunk], [%[str]]!\n"
+ "vmovl.u8 %q[chunk], %[chunk]\n"
+ "vst1.16 %h[chunk], [%[dst]]!\n"
+ : [dst] "+r" (dst),
+ [str] "+r" (str),
+ [chunk] "=w" (chunk));
+ len -= 8;
+ }
+
+ fromLatin1_epilog(dst, str, len);
+}
+
+void fromLatin1_neon_handwritten2(ushort *dst, const char *str, int len)
+{
+ // same as above, but handwritten Neon
+ while (len >= 16) {
+ uint16x8_t chunk1, chunk2;
+ asm (
+ "vld1.8 %h[chunk1], [%[str]]!\n"
+ "vmovl.u8 %q[chunk2], %f[chunk1]\n"
+ "vmovl.u8 %q[chunk1], %e[chunk1]\n"
+ "vst1.16 %h[chunk1], [%[dst]]!\n"
+ "vst1.16 %h[chunk2], [%[dst]]!\n"
+ : [dst] "+r" (dst),
+ [str] "+r" (str),
+ [chunk1] "=w" (chunk1),
+ [chunk2] "=w" (chunk2));
+ len -= 16;
+ }
+
+ if (len >= 8) {
+ uint16x8_t chunk;
+ asm (
+ "vld1.8 %[chunk], [%[str]]!\n"
+ "vmovl.u8 %q[chunk], %[chunk]\n"
+ "vst1.16 %h[chunk], [%[dst]]!\n"
+ : [dst] "+r" (dst),
+ [str] "+r" (str),
+ [chunk] "=w" (chunk));
+ len -= 8;
+ }
+
+ fromLatin1_epilog(dst, str, len);
+}
+#endif
+
+void tst_QString::fromLatin1Alternatives_data() const
+{
+ QTest::addColumn<FromLatin1Function>("function");
+ QTest::newRow("empty") << FromLatin1Function(0);
+ QTest::newRow("regular") << &fromLatin1_regular;
+#ifdef __SSE2__
+ QTest::newRow("sse2-qt4.7") << &fromLatin1_sse2_qt47;
+ QTest::newRow("sse2-improved") << &fromLatin1_sse2_improved;
+ QTest::newRow("sse2-improved2") << &fromLatin1_sse2_improved2;
+ QTest::newRow("sse2-with-prolog-regular") << &fromLatin1_sse2_withprolog<&fromLatin1_regular>;
+ QTest::newRow("sse2-with-prolog-unrolled") << &fromLatin1_sse2_withprolog<&fromLatin1_prolog_unrolled>;
+ QTest::newRow("sse2-with-prolog-sse2-overcommit") << &fromLatin1_sse2_withprolog<&fromLatin1_prolog_sse2_overcommit>;
+#ifdef __SSE4_1__
+ QTest::newRow("sse2-with-prolog-sse4-overcommit") << &fromLatin1_sse2_withprolog<&fromLatin1_prolog_sse4_overcommit>;
+ QTest::newRow("sse4-pmovzxbw") << &fromLatin1_sse4_pmovzxbw;
+#endif
+#endif
+#ifdef __ARM_NEON__
+ QTest::newRow("neon-improved") << &fromLatin1_neon_improved;
+ QTest::newRow("neon-improved2") << &fromLatin1_neon_improved2;
+ QTest::newRow("neon-handwritten") << &fromLatin1_neon_handwritten;
+ QTest::newRow("neon-handwritten2") << &fromLatin1_neon_handwritten2;
+#endif
+}
+
+extern StringData fromLatin1Data;
+static void fromLatin1Alternatives_internal(FromLatin1Function function, QString &dst, bool doVerify)
+{
+ struct Entry
+ {
+ int len;
+ int offset1, offset2;
+ int align1, align2;
+ };
+ const Entry *entries = reinterpret_cast<const Entry *>(fromLatin1Data.entries);
+
+ for (int i = 0; i < fromLatin1Data.entryCount; ++i) {
+ int len = entries[i].len;
+ const char *src = fromLatin1Data.charData + entries[i].offset1;
+
+ if (!function)
+ continue;
+ if (!doVerify) {
+ (function)(&dst.data()->unicode(), src, len);
+ } else {
+ dst.fill(QChar('x'), dst.length());
+
+ (function)(&dst.data()->unicode() + 8, src, len);
+
+ QString zeroes(8, QChar('x'));
+ QString final = dst.mid(8, len);
+ QCOMPARE(final, QString::fromLatin1(src, len));
+ QCOMPARE(dst.left(8), zeroes);
+ QCOMPARE(dst.mid(len + 8, 8), zeroes);
+ }
+ }
+}
+
+void tst_QString::fromLatin1Alternatives() const
+{
+ QFETCH(FromLatin1Function, function);
+
+ QString dst(fromLatin1Data.maxLength + 16, QChar('x'));
+ fromLatin1Alternatives_internal(function, dst, true);
+
+ QBENCHMARK {
+ fromLatin1Alternatives_internal(function, dst, false);
+ }
+}
+
+typedef int (* FromUtf8Function)(ushort *, const char *, int);
+Q_DECLARE_METATYPE(FromUtf8Function)
+
+extern QTextCodec::ConverterState *state;
+QTextCodec::ConverterState *state = 0; // just because the code in qutfcodec.cpp uses a state
+
+int fromUtf8_latin1_regular(ushort *dst, const char *chars, int len)
+{
+ fromLatin1_regular(dst, chars, len);
+ return len;
+}
+
+#ifdef __SSE2__
+int fromUtf8_latin1_qt47(ushort *dst, const char *chars, int len)
+{
+ fromLatin1_sse2_qt47(dst, chars, len);
+ return len;
+}
+
+int fromUtf8_latin1_sse2_improved(ushort *dst, const char *chars, int len)
+{
+ fromLatin1_sse2_improved(dst, chars, len);
+ return len;
+}
+#endif
+
+static inline bool isUnicodeNonCharacter(uint ucs4)
+{
+ // Unicode has a couple of "non-characters" that one can use internally,
+ // but are not allowed to be used for text interchange.
+ //
+ // Those are the last two entries each Unicode Plane (U+FFFE, U+FFFF,
+ // U+1FFFE, U+1FFFF, etc.) as well as the entries between U+FDD0 and
+ // U+FDEF (inclusive)
+
+ return (ucs4 & 0xfffe) == 0xfffe
+ || (ucs4 - 0xfdd0U) < 16;
+}
+
+int fromUtf8_qt47(ushort *dst, const char *chars, int len)
+{
+ // this is almost the code found in Qt 4.7's qutfcodec.cpp QUtf8Codec::convertToUnicode
+ // That function returns a QString, this one returns the number of characters converted
+ // That's to avoid doing malloc() inside the benchmark test
+ // Any differences between this code and the original are just because of that, I promise
+
+ bool headerdone = false;
+ ushort replacement = QChar::ReplacementCharacter;
+ int need = 0;
+ int error = -1;
+ uint uc = 0;
+ uint min_uc = 0;
+ if (state) {
+ if (state->flags & QTextCodec::IgnoreHeader)
+ headerdone = true;
+ if (state->flags & QTextCodec::ConvertInvalidToNull)
+ replacement = QChar::Null;
+ need = state->remainingChars;
+ if (need) {
+ uc = state->state_data[0];
+ min_uc = state->state_data[1];
+ }
+ }
+ if (!headerdone && len > 3
+ && (uchar)chars[0] == 0xef && (uchar)chars[1] == 0xbb && (uchar)chars[2] == 0xbf) {
+ // starts with a byte order mark
+ chars += 3;
+ len -= 3;
+ headerdone = true;
+ }
+
+ // QString result(need + len + 1, Qt::Uninitialized); // worst case
+ // ushort *qch = (ushort *)result.unicode();
+ ushort *qch = dst;
+ uchar ch;
+ int invalid = 0;
+
+ for (int i = 0; i < len; ++i) {
+ ch = chars[i];
+ if (need) {
+ if ((ch&0xc0) == 0x80) {
+ uc = (uc << 6) | (ch & 0x3f);
+ --need;
+ if (!need) {
+ // utf-8 bom composes into 0xfeff code point
+ bool nonCharacter;
+ if (!headerdone && uc == 0xfeff) {
+ // don't do anything, just skip the BOM
+ } else if (!(nonCharacter = isUnicodeNonCharacter(uc)) && uc > 0xffff && uc < 0x110000) {
+ // surrogate pair
+ //Q_ASSERT((qch - (ushort*)result.unicode()) + 2 < result.length());
+ *qch++ = QChar::highSurrogate(uc);
+ *qch++ = QChar::lowSurrogate(uc);
+ } else if ((uc < min_uc) || (uc >= 0xd800 && uc <= 0xdfff) || nonCharacter || uc >= 0x110000) {
+ // error: overlong sequence, UTF16 surrogate or non-character
+ *qch++ = replacement;
+ ++invalid;
+ } else {
+ *qch++ = uc;
+ }
+ headerdone = true;
+ }
+ } else {
+ // error
+ i = error;
+ *qch++ = replacement;
+ ++invalid;
+ need = 0;
+ headerdone = true;
+ }
+ } else {
+ if (ch < 128) {
+ *qch++ = ushort(ch);
+ headerdone = true;
+ } else if ((ch & 0xe0) == 0xc0) {
+ uc = ch & 0x1f;
+ need = 1;
+ error = i;
+ min_uc = 0x80;
+ headerdone = true;
+ } else if ((ch & 0xf0) == 0xe0) {
+ uc = ch & 0x0f;
+ need = 2;
+ error = i;
+ min_uc = 0x800;
+ } else if ((ch&0xf8) == 0xf0) {
+ uc = ch & 0x07;
+ need = 3;
+ error = i;
+ min_uc = 0x10000;
+ headerdone = true;
+ } else {
+ // error
+ *qch++ = replacement;
+ ++invalid;
+ headerdone = true;
+ }
+ }
+ }
+ if (!state && need > 0) {
+ // unterminated UTF sequence
+ for (int i = error; i < len; ++i) {
+ *qch++ = replacement;
+ ++invalid;
+ }
+ }
+ //result.truncate(qch - (ushort *)result.unicode());
+ if (state) {
+ state->invalidChars += invalid;
+ state->remainingChars = need;
+ if (headerdone)
+ state->flags |= QTextCodec::IgnoreHeader;
+ state->state_data[0] = need ? uc : 0;
+ state->state_data[1] = need ? min_uc : 0;
+ }
+ //return result;
+ return qch - dst;
+}
+
+int fromUtf8_qt47_stateless(ushort *dst, const char *chars, int len)
+{
+ // This is the same code as above, but for stateless UTF-8 conversion
+ // no other improvements
+ bool headerdone = false;
+ const ushort replacement = QChar::ReplacementCharacter;
+ int need = 0;
+ int error = -1;
+ uint uc = 0;
+ uint min_uc = 0;
+
+ if (len > 3
+ && (uchar)chars[0] == 0xef && (uchar)chars[1] == 0xbb && (uchar)chars[2] == 0xbf) {
+ // starts with a byte order mark
+ chars += 3;
+ len -= 3;
+ }
+
+ // QString result(need + len + 1, Qt::Uninitialized); // worst case
+ // ushort *qch = (ushort *)result.unicode();
+ ushort *qch = dst;
+ uchar ch;
+ int invalid = 0;
+
+ for (int i = 0; i < len; ++i) {
+ ch = chars[i];
+ if (need) {
+ if ((ch&0xc0) == 0x80) {
+ uc = (uc << 6) | (ch & 0x3f);
+ --need;
+ if (!need) {
+ // utf-8 bom composes into 0xfeff code point
+ bool nonCharacter;
+ if (!headerdone && uc == 0xfeff) {
+ // don't do anything, just skip the BOM
+ } else if (!(nonCharacter = isUnicodeNonCharacter(uc)) && uc > 0xffff && uc < 0x110000) {
+ // surrogate pair
+ //Q_ASSERT((qch - (ushort*)result.unicode()) + 2 < result.length());
+ *qch++ = QChar::highSurrogate(uc);
+ *qch++ = QChar::lowSurrogate(uc);
+ } else if ((uc < min_uc) || (uc >= 0xd800 && uc <= 0xdfff) || nonCharacter || uc >= 0x110000) {
+ // error: overlong sequence, UTF16 surrogate or non-character
+ *qch++ = replacement;
+ ++invalid;
+ } else {
+ *qch++ = uc;
+ }
+ headerdone = true;
+ }
+ } else {
+ // error
+ i = error;
+ *qch++ = replacement;
+ ++invalid;
+ need = 0;
+ headerdone = true;
+ }
+ } else {
+ if (ch < 128) {
+ *qch++ = ushort(ch);
+ headerdone = true;
+ } else if ((ch & 0xe0) == 0xc0) {
+ uc = ch & 0x1f;
+ need = 1;
+ error = i;
+ min_uc = 0x80;
+ headerdone = true;
+ } else if ((ch & 0xf0) == 0xe0) {
+ uc = ch & 0x0f;
+ need = 2;
+ error = i;
+ min_uc = 0x800;
+ } else if ((ch&0xf8) == 0xf0) {
+ uc = ch & 0x07;
+ need = 3;
+ error = i;
+ min_uc = 0x10000;
+ headerdone = true;
+ } else {
+ // error
+ *qch++ = replacement;
+ ++invalid;
+ headerdone = true;
+ }
+ }
+ }
+ if (need > 0) {
+ // unterminated UTF sequence
+ for (int i = error; i < len; ++i) {
+ *qch++ = replacement;
+ ++invalid;
+ }
+ }
+ //result.truncate(qch - (ushort *)result.unicode());
+ //return result;
+ return qch - dst;
+}
+
+template <bool trusted>
+static inline void extract_utf8_multibyte(ushort *&dst, const char *&chars, qptrdiff &counter, int &len)
+{
+ uchar ch = chars[counter];
+
+ // is it a leading or a continuation one?
+ if (!trusted && (ch & 0xc0) == 0x80) {
+ // continuation character found without the leading
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ if ((ch & 0xe0) == 0xc0) {
+ // two-byte UTF-8 sequence
+ if (!trusted && counter + 1 == len) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ uchar ch2 = chars[counter + 1];
+ if (!trusted)
+ if ((ch2 & 0xc0) != 0x80) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ ushort ucs = (ch & 0x1f);
+ ucs <<= 6;
+ ucs |= (ch2 & 0x3f);
+
+ // dst[counter] will correspond to chars[counter..counter+1], so adjust
+ ++chars;
+ --len;
+ if (trusted || ucs >= 0x80)
+ dst[counter] = ucs;
+ else
+ dst[counter] = QChar::ReplacementCharacter;
+ ++counter;
+ return;
+ }
+
+ if ((ch & 0xf0) == 0xe0) {
+ // three-byte UTF-8 sequence
+ if (!trusted && counter + 2 >= len) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ uchar ch2 = chars[counter + 1];
+ uchar ch3 = chars[counter + 2];
+ if (!trusted)
+ if ((ch2 & 0xc0) != 0x80 || (ch3 & 0xc0) != 0x80) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ ushort ucs = (ch & 0x1f) << 12 | (ch2 & 0x3f) << 6 | (ch3 & 0x3f);
+
+ // dst[counter] will correspond to chars[counter..counter+2], so adjust
+ chars += 2;
+ len -= 2;
+ if (!trusted &&
+ (ucs < 0x800 || isUnicodeNonCharacter(ucs) || (ucs >= 0xd800 && ucs <= 0xdfff)))
+ dst[counter] = QChar::ReplacementCharacter;
+ else
+ dst[counter] = ucs;
+ ++counter;
+ return;
+ }
+
+ if ((ch & 0xf8) == 0xf0) {
+ // four-byte UTF-8 sequence
+ // will require an UTF-16 surrogate pair
+ if (!trusted && counter + 3 >= len) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ uchar ch2 = chars[counter + 1];
+ uchar ch3 = chars[counter + 2];
+ uchar ch4 = chars[counter + 3];
+ if (!trusted)
+ if ((ch2 & 0xc0) != 0x80 || (ch3 & 0xc0) != 0x80 || (ch4 & 0xc0) != 0x80) {
+ dst[counter++] = QChar::ReplacementCharacter;
+ return;
+ }
+
+ uint ucs = (ch & 0x1f) << 18 | (ch2 & 0x3f) << 12
+ | (ch3 & 0x3f) << 6 | (ch4 & 0x3f);
+
+ // dst[counter] will correspond to chars[counter..counter+2], so adjust
+ chars += 3;
+ len -= 3;
+ if (trusted || (ucs >= 0x10000 && ucs < 0x110000 && !isUnicodeNonCharacter(ucs))) {
+ dst[counter + 0] = QChar::highSurrogate(ucs);
+ dst[counter + 1] = QChar::lowSurrogate(ucs);
+ counter += 2;
+ } else {
+ dst[counter++] = QChar::ReplacementCharacter;
+ }
+ return;
+ }
+
+ ++counter;
+}
+
+int fromUtf8_optimised_for_ascii(ushort *qch, const char *chars, int len)
+{
+ if (len > 3
+ && (uchar)chars[0] == 0xef && (uchar)chars[1] == 0xbb && (uchar)chars[2] == 0xbf) {
+ // starts with a byte order mark
+ chars += 3;
+ len -= 3;
+ }
+
+ qptrdiff counter = 0;
+ ushort *dst = qch;
+ while (counter < len) {
+ uchar ch = chars[counter];
+ if ((ch & 0x80) == 0) {
+ dst[counter] = ch;
+ ++counter;
+ continue;
+ }
+
+ // UTF-8 character found
+ extract_utf8_multibyte<false>(dst, chars, counter, len);
+ }
+ return dst + counter - qch;
+}
+
+#ifdef __SSE2__
+int fromUtf8_sse2_optimised_for_ascii(ushort *qch, const char *chars, int len)
+{
+ if (len > 3
+ && (uchar)chars[0] == 0xef && (uchar)chars[1] == 0xbb && (uchar)chars[2] == 0xbf) {
+ // starts with a byte order mark
+ chars += 3;
+ len -= 3;
+ }
+
+ qptrdiff counter = 0;
+ ushort *dst = qch;
+
+ len -= 16;
+ const __m128i nullMask = _mm_set1_epi32(0);
+ while (counter < len) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)(chars + counter)); // load
+ ushort highbytes = _mm_movemask_epi8(chunk);
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ if (!uchar(highbytes)) {
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ if (!highbytes) {
+ counter += 16;
+ continue;
+ }
+ }
+
+ // UTF-8 character found
+ // which one?
+ counter += bsf_nonzero(highbytes);
+ len += 16;
+ extract_utf8_multibyte<false>(dst, chars, counter, len);
+ len -= 16;
+ }
+ len += 16;
+
+ while (counter < len) {
+ uchar ch = chars[counter];
+ if ((ch & 0x80) == 0) {
+ dst[counter] = ch;
+ ++counter;
+ continue;
+ }
+
+ // UTF-8 character found
+ extract_utf8_multibyte<false>(dst, chars, counter, len);
+ }
+ return dst + counter - qch;
+}
+
+int fromUtf8_sse2_trusted_no_bom(ushort *qch, const char *chars, int len)
+{
+ qptrdiff counter = 0;
+ ushort *dst = qch;
+
+ len -= 16;
+ const __m128i nullMask = _mm_set1_epi32(0);
+ while (counter < len) {
+ const __m128i chunk = _mm_loadu_si128((__m128i*)(chars + counter)); // load
+ ushort highbytes = _mm_movemask_epi8(chunk);
+
+ // unpack the first 8 bytes, padding with zeros
+ const __m128i firstHalf = _mm_unpacklo_epi8(chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter), firstHalf); // store
+
+ if (!uchar(highbytes)) {
+ // unpack the last 8 bytes, padding with zeros
+ const __m128i secondHalf = _mm_unpackhi_epi8 (chunk, nullMask);
+ _mm_storeu_si128((__m128i*)(dst + counter + 8), secondHalf); // store
+
+ if (!highbytes) {
+ counter += 16;
+ continue;
+ }
+ }
+
+ // UTF-8 character found
+ // which one?
+ counter += bsf_nonzero(highbytes);
+ len += 16;
+ extract_utf8_multibyte<true>(dst, chars, counter, len);
+ len -= 16;
+ }
+ len += 16;
+
+ while (counter < len) {
+ uchar ch = chars[counter];
+ if ((ch & 0x80) == 0) {
+ dst[counter] = ch;
+ ++counter;
+ continue;
+ }
+
+ // UTF-8 character found
+ extract_utf8_multibyte<true>(dst, chars, counter, len);
+ }
+ return dst + counter - qch;
+}
+#endif
+
+#ifdef __ARM_NEON__
+int fromUtf8_latin1_neon(ushort *dst, const char *chars, int len)
+{
+ fromLatin1_neon_improved(dst, chars, len);
+ return len;
+}
+
+int fromUtf8_neon(ushort *qch, const char *chars, int len)
+{
+ if (len > 3
+ && (uchar)chars[0] == 0xef && (uchar)chars[1] == 0xbb && (uchar)chars[2] == 0xbf) {
+ // starts with a byte order mark
+ chars += 3;
+ len -= 3;
+ }
+
+ ushort *dst = qch;
+ const uint8x8_t highBit = vdup_n_u8(0x80);
+ while (len >= 8) {
+ // load 8 bytes into one doubleword Neon register
+ const uint8x8_t chunk = vld1_u8((uint8_t *)chars);
+ const uint16x8_t expanded = vmovl_u8(chunk);
+ vst1q_u16(dst, expanded);
+
+ uint8x8_t highBits = vtst_u8(chunk, highBit);
+ // we need to find the lowest byte set
+ int mask_low = vget_lane_u32(vreinterpret_u32_u8(highBits), 0);
+ int mask_high = vget_lane_u32(vreinterpret_u32_u8(highBits), 1);
+
+ if (__builtin_expect(mask_low == 0 && mask_high == 0, 1)) {
+ chars += 8;
+ dst += 8;
+ len -= 8;
+ } else {
+ // UTF-8 character found
+ // which one?
+ qptrdiff pos;
+ asm ("rbit %0, %1\n"
+ "clz %1, %1\n"
+ : "=r" (pos)
+ : "r" (mask_low ? mask_low : mask_high));
+ // now mask_low contains the number of leading zeroes
+ // or the value 32 (0x20) if no zeroes were found
+ // the number of leading zeroes is 8*pos
+ pos /= 8;
+
+ extract_utf8_multibyte<false>(dst, chars, pos, len);
+ chars += pos;
+ dst += pos;
+ len -= pos;
+ }
+ }
+
+ qptrdiff counter = 0;
+ while (counter < len) {
+ uchar ch = chars[counter];
+ if ((ch & 0x80) == 0) {
+ dst[counter] = ch;
+ ++counter;
+ continue;
+ }
+ // UTF-8 character found
+ extract_utf8_multibyte<false>(dst, chars, counter, len);
+ }
+ return dst + counter - qch;
+}
+
+int fromUtf8_neon_trusted(ushort *qch, const char *chars, int len)
+{
+ ushort *dst = qch;
+ const uint8x8_t highBit = vdup_n_u8(0x80);
+ while (len >= 8) {
+ // load 8 bytes into one doubleword Neon register
+ const uint8x8_t chunk = vld1_u8((uint8_t *)chars);
+ const uint16x8_t expanded = vmovl_u8(chunk);
+ vst1q_u16(dst, expanded);
+
+ uint8x8_t highBits = vtst_u8(chunk, highBit);
+ // we need to find the lowest byte set
+ int mask_low = vget_lane_u32(vreinterpret_u32_u8(highBits), 0);
+ int mask_high = vget_lane_u32(vreinterpret_u32_u8(highBits), 1);
+
+ if (__builtin_expect(mask_low == 0 && mask_high == 0, 1)) {
+ chars += 8;
+ dst += 8;
+ len -= 8;
+ } else {
+ // UTF-8 character found
+ // which one?
+ qptrdiff pos;
+ asm ("rbit %0, %1\n"
+ "clz %1, %1\n"
+ : "=r" (pos)
+ : "r" (mask_low ? mask_low : mask_high));
+ // now mask_low contains the number of leading zeroes
+ // or the value 32 (0x20) if no zeroes were found
+ // the number of leading zeroes is 8*pos
+ pos /= 8;
+
+ extract_utf8_multibyte<true>(dst, chars, pos, len);
+ chars += pos;
+ dst += pos;
+ len -= pos;
+ }
+ }
+
+ qptrdiff counter = 0;
+ while (counter < len) {
+ uchar ch = chars[counter];
+ if ((ch & 0x80) == 0) {
+ dst[counter] = ch;
+ ++counter;
+ continue;
+ }
+
+ // UTF-8 character found
+ extract_utf8_multibyte<true>(dst, chars, counter, len);
+ }
+ return dst + counter - qch;
+}
+#endif
+
+void tst_QString::fromUtf8Alternatives_data() const
+{
+ QTest::addColumn<FromUtf8Function>("function");
+ QTest::newRow("empty") << FromUtf8Function(0);
+ QTest::newRow("qt-4.7") << &fromUtf8_qt47;
+ QTest::newRow("qt-4.7-stateless") << &fromUtf8_qt47_stateless;
+ QTest::newRow("optimized-for-ascii") << &fromUtf8_optimised_for_ascii;
+#ifdef __SSE2__
+ QTest::newRow("sse2-optimized-for-ascii") << &fromUtf8_sse2_optimised_for_ascii;
+ QTest::newRow("sse2-trusted-no-bom") << &fromUtf8_sse2_trusted_no_bom;
+#endif
+#ifdef __ARM_NEON__
+ QTest::newRow("neon") << &fromUtf8_neon;
+ QTest::newRow("neon-trusted-no-bom") << &fromUtf8_neon_trusted;
+#endif
+
+ QTest::newRow("latin1-generic") << &fromUtf8_latin1_regular;
+#ifdef __SSE2__
+ QTest::newRow("latin1-sse2-qt4.7") << &fromUtf8_latin1_qt47;
+ QTest::newRow("latin1-sse2-improved") << &fromUtf8_latin1_sse2_improved;
+#endif
+#ifdef __ARM_NEON__
+ QTest::newRow("latin1-neon-improved") << &fromUtf8_latin1_neon;
+#endif
+}
+
+extern StringData fromUtf8Data;
+static void fromUtf8Alternatives_internal(FromUtf8Function function, QString &dst, bool doVerify)
+{
+ if (!doVerify) {
+ // NOTE: this only works because the Latin1 data is ASCII-only
+ fromLatin1Alternatives_internal(reinterpret_cast<FromLatin1Function>(function), dst, doVerify);
+ } else {
+ if (strncmp(QTest::currentDataTag(), "latin1-", 7) == 0)
+ return;
+ }
+
+ struct Entry
+ {
+ int len;
+ int offset1, offset2;
+ int align1, align2;
+ };
+ const Entry *entries = reinterpret_cast<const Entry *>(fromUtf8Data.entries);
+
+ for (int i = 0; i < fromUtf8Data.entryCount; ++i) {
+ int len = entries[i].len;
+ const char *src = fromUtf8Data.charData + entries[i].offset1;
+
+ if (!function)
+ continue;
+ if (!doVerify) {
+ (function)(&dst.data()->unicode(), src, len);
+ } else {
+ dst.fill(QChar('x'), dst.length());
+
+ int utf8len = (function)(&dst.data()->unicode() + 8, src, len);
+
+ QString expected = QString::fromUtf8(src, len);
+ QString final = dst.mid(8, expected.length());
+ if (final != expected || utf8len != expected.length())
+ qDebug() << i << entries[i].offset1 << utf8len << final << expected.length() << expected;
+
+ QCOMPARE(final, expected);
+ QCOMPARE(utf8len, expected.length());
+
+ QString zeroes(8, QChar('x'));
+ QCOMPARE(dst.left(8), zeroes);
+ QCOMPARE(dst.mid(len + 8, 8), zeroes);
+ }
+ }
+}
+
+void tst_QString::fromUtf8Alternatives() const
+{
+ QFETCH(FromUtf8Function, function);
+
+ QString dst(fromUtf8Data.maxLength + 16, QChar('x'));
+ fromUtf8Alternatives_internal(function, dst, true);
+
+ QBENCHMARK {
+ fromUtf8Alternatives_internal(function, dst, false);
+ }
+}
+
+QTEST_MAIN(tst_QString)
+
+#include "main.moc"