/**************************************************************************** ** ** Copyright (C) 2017 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the documentation of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:FDL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Free Documentation License Usage ** Alternatively, this file may be used under the terms of the GNU Free ** Documentation License version 1.3 as published by the Free Software ** Foundation and appearing in the file included in the packaging of ** this file. Please review the following information to ensure ** the GNU Free Documentation License version 1.3 requirements ** will be met: https://www.gnu.org/licenses/fdl-1.3.html. ** $QT_END_LICENSE$ ** ****************************************************************************/ /*! \example hellovulkantriangle \meta installpath vulkan \ingroup examples-vulkan \title Hello Vulkan Triangle Example \brief Shows the basics of rendering with QVulkanWindow and the Vulkan API. The \e{Hello Vulkan Triangle Example} builds on \l hellovulkanwindow. This time a full graphics pipeline is created, including a vertex and fragment shader. This pipeline is then used to render a triangle. \image hellovulkantriangle.png The example also demonstrates multisample antialiasing. Based on the supported sample counts reported by QVulkanWindow::supportedSampleCounts() the example chooses between 8x, 4x, or no multisampling. Once configured via QVulkanWindow::setSamples(), QVulkanWindow takes care of the rest: the additional multisample color buffers are created automatically, and resolving into the swapchain buffers is performed at the end of the default render pass for each frame. \include examples-run.qdocinc */