// // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // mathutil.h: Math and bit manipulation functions. #ifndef COMMON_MATHUTIL_H_ #define COMMON_MATHUTIL_H_ #include "common/debug.h" #include "common/platform.h" #include #include #include #include #include #include namespace gl { const unsigned int Float32One = 0x3F800000; const unsigned short Float16One = 0x3C00; struct Vector4 { Vector4() {} Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} float x; float y; float z; float w; }; inline bool isPow2(int x) { return (x & (x - 1)) == 0 && (x != 0); } inline int log2(int x) { int r = 0; while ((x >> r) > 1) r++; return r; } inline unsigned int ceilPow2(unsigned int x) { if (x != 0) x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } inline int clampToInt(unsigned int x) { return static_cast(std::min(x, static_cast(std::numeric_limits::max()))); } template inline DestT clampCast(SrcT value) { static const DestT destLo = std::numeric_limits::min(); static const DestT destHi = std::numeric_limits::max(); static const SrcT srcLo = static_cast(destLo); static const SrcT srcHi = static_cast(destHi); // When value is outside of or equal to the limits for DestT we use the DestT limit directly. // This avoids undefined behaviors due to loss of precision when converting from floats to // integers: // destHi for ints is 2147483647 but the closest float number is around 2147483648, so when // doing a conversion from float to int we run into an UB because the float is outside of the // range representable by the int. if (value <= srcLo) { return destLo; } else if (value >= srcHi) { return destHi; } else { return static_cast(value); } } template inline T clamp(T x, MIN min, MAX max) { // Since NaNs fail all comparison tests, a NaN value will default to min return x > min ? (x > max ? max : x) : min; } inline float clamp01(float x) { return clamp(x, 0.0f, 1.0f); } template inline unsigned int unorm(float x) { const unsigned int max = 0xFFFFFFFF >> (32 - n); if (x > 1) { return max; } else if (x < 0) { return 0; } else { return (unsigned int)(max * x + 0.5f); } } inline bool supportsSSE2() { #if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) static bool checked = false; static bool supports = false; if (checked) { return supports; } int info[4]; __cpuid(info, 0); if (info[0] >= 1) { __cpuid(info, 1); supports = (info[3] >> 26) & 1; } checked = true; return supports; #else UNIMPLEMENTED(); return false; #endif } template destType bitCast(const sourceType &source) { size_t copySize = std::min(sizeof(destType), sizeof(sourceType)); destType output; memcpy(&output, &source, copySize); return output; } inline unsigned short float32ToFloat16(float fp32) { unsigned int fp32i = bitCast(fp32); unsigned int sign = (fp32i & 0x80000000) >> 16; unsigned int abs = fp32i & 0x7FFFFFFF; if(abs > 0x47FFEFFF) // Infinity { return static_cast(sign | 0x7FFF); } else if(abs < 0x38800000) // Denormal { unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000; int e = 113 - (abs >> 23); if(e < 24) { abs = mantissa >> e; } else { abs = 0; } return static_cast(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13); } else { return static_cast(sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13); } } float float16ToFloat32(unsigned short h); unsigned int convertRGBFloatsTo999E5(float red, float green, float blue); void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue); inline unsigned short float32ToFloat11(float fp32) { const unsigned int float32MantissaMask = 0x7FFFFF; const unsigned int float32ExponentMask = 0x7F800000; const unsigned int float32SignMask = 0x80000000; const unsigned int float32ValueMask = ~float32SignMask; const unsigned int float32ExponentFirstBit = 23; const unsigned int float32ExponentBias = 127; const unsigned short float11Max = 0x7BF; const unsigned short float11MantissaMask = 0x3F; const unsigned short float11ExponentMask = 0x7C0; const unsigned short float11BitMask = 0x7FF; const unsigned int float11ExponentBias = 14; const unsigned int float32Maxfloat11 = 0x477E0000; const unsigned int float32Minfloat11 = 0x38800000; const unsigned int float32Bits = bitCast(fp32); const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; unsigned int float32Val = float32Bits & float32ValueMask; if ((float32Val & float32ExponentMask) == float32ExponentMask) { // INF or NAN if ((float32Val & float32MantissaMask) != 0) { return float11ExponentMask | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & float11MantissaMask); } else if (float32Sign) { // -INF is clamped to 0 since float11 is positive only return 0; } else { return float11ExponentMask; } } else if (float32Sign) { // float11 is positive only, so clamp to zero return 0; } else if (float32Val > float32Maxfloat11) { // The number is too large to be represented as a float11, set to max return float11Max; } else { if (float32Val < float32Minfloat11) { // The number is too small to be represented as a normalized float11 // Convert it to a denormalized value. const unsigned int shift = (float32ExponentBias - float11ExponentBias) - (float32Val >> float32ExponentFirstBit); float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; } else { // Rebias the exponent to represent the value as a normalized float11 float32Val += 0xC8000000; } return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; } } inline unsigned short float32ToFloat10(float fp32) { const unsigned int float32MantissaMask = 0x7FFFFF; const unsigned int float32ExponentMask = 0x7F800000; const unsigned int float32SignMask = 0x80000000; const unsigned int float32ValueMask = ~float32SignMask; const unsigned int float32ExponentFirstBit = 23; const unsigned int float32ExponentBias = 127; const unsigned short float10Max = 0x3DF; const unsigned short float10MantissaMask = 0x1F; const unsigned short float10ExponentMask = 0x3E0; const unsigned short float10BitMask = 0x3FF; const unsigned int float10ExponentBias = 14; const unsigned int float32Maxfloat10 = 0x477C0000; const unsigned int float32Minfloat10 = 0x38800000; const unsigned int float32Bits = bitCast(fp32); const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; unsigned int float32Val = float32Bits & float32ValueMask; if ((float32Val & float32ExponentMask) == float32ExponentMask) { // INF or NAN if ((float32Val & float32MantissaMask) != 0) { return float10ExponentMask | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & float10MantissaMask); } else if (float32Sign) { // -INF is clamped to 0 since float11 is positive only return 0; } else { return float10ExponentMask; } } else if (float32Sign) { // float10 is positive only, so clamp to zero return 0; } else if (float32Val > float32Maxfloat10) { // The number is too large to be represented as a float11, set to max return float10Max; } else { if (float32Val < float32Minfloat10) { // The number is too small to be represented as a normalized float11 // Convert it to a denormalized value. const unsigned int shift = (float32ExponentBias - float10ExponentBias) - (float32Val >> float32ExponentFirstBit); float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; } else { // Rebias the exponent to represent the value as a normalized float11 float32Val += 0xC8000000; } return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; } } inline float float11ToFloat32(unsigned short fp11) { unsigned short exponent = (fp11 >> 6) & 0x1F; unsigned short mantissa = fp11 & 0x3F; if (exponent == 0x1F) { // INF or NAN return bitCast(0x7f800000 | (mantissa << 17)); } else { if (exponent != 0) { // normalized } else if (mantissa != 0) { // The value is denormalized exponent = 1; do { exponent--; mantissa <<= 1; } while ((mantissa & 0x40) == 0); mantissa = mantissa & 0x3F; } else // The value is zero { exponent = static_cast(-112); } return bitCast(((exponent + 112) << 23) | (mantissa << 17)); } } inline float float10ToFloat32(unsigned short fp11) { unsigned short exponent = (fp11 >> 5) & 0x1F; unsigned short mantissa = fp11 & 0x1F; if (exponent == 0x1F) { // INF or NAN return bitCast(0x7f800000 | (mantissa << 17)); } else { if (exponent != 0) { // normalized } else if (mantissa != 0) { // The value is denormalized exponent = 1; do { exponent--; mantissa <<= 1; } while ((mantissa & 0x20) == 0); mantissa = mantissa & 0x1F; } else // The value is zero { exponent = static_cast(-112); } return bitCast(((exponent + 112) << 23) | (mantissa << 18)); } } template inline float normalizedToFloat(T input) { static_assert(std::numeric_limits::is_integer, "T must be an integer."); const float inverseMax = 1.0f / std::numeric_limits::max(); return input * inverseMax; } template inline float normalizedToFloat(T input) { static_assert(std::numeric_limits::is_integer, "T must be an integer."); static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount."); const float inverseMax = 1.0f / ((1 << inputBitCount) - 1); return input * inverseMax; } template inline T floatToNormalized(float input) { return static_cast(std::numeric_limits::max() * input + 0.5f); } template inline T floatToNormalized(float input) { static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount."); return static_cast(((1 << outputBitCount) - 1) * input + 0.5f); } template inline T getShiftedData(T input) { static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), "T must have at least as many bits as inputBitCount + inputBitStart."); const T mask = (1 << inputBitCount) - 1; return (input >> inputBitStart) & mask; } template inline T shiftData(T input) { static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), "T must have at least as many bits as inputBitCount + inputBitStart."); const T mask = (1 << inputBitCount) - 1; return (input & mask) << inputBitStart; } inline unsigned char average(unsigned char a, unsigned char b) { return ((a ^ b) >> 1) + (a & b); } inline signed char average(signed char a, signed char b) { return ((short)a + (short)b) / 2; } inline unsigned short average(unsigned short a, unsigned short b) { return ((a ^ b) >> 1) + (a & b); } inline signed short average(signed short a, signed short b) { return ((int)a + (int)b) / 2; } inline unsigned int average(unsigned int a, unsigned int b) { return ((a ^ b) >> 1) + (a & b); } inline int average(int a, int b) { long long average = (static_cast(a) + static_cast(b)) / 2ll; return static_cast(average); } inline float average(float a, float b) { return (a + b) * 0.5f; } inline unsigned short averageHalfFloat(unsigned short a, unsigned short b) { return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f); } inline unsigned int averageFloat11(unsigned int a, unsigned int b) { return float32ToFloat11((float11ToFloat32(static_cast(a)) + float11ToFloat32(static_cast(b))) * 0.5f); } inline unsigned int averageFloat10(unsigned int a, unsigned int b) { return float32ToFloat10((float10ToFloat32(static_cast(a)) + float10ToFloat32(static_cast(b))) * 0.5f); } template struct Range { Range() {} Range(T lo, T hi) : start(lo), end(hi) { ASSERT(lo <= hi); } T start; T end; T length() const { return end - start; } bool intersects(Range other) { if (start <= other.start) { return other.start < end; } else { return start < other.end; } } void extend(T value) { start = value > start ? value : start; end = value < end ? value : end; } bool empty() const { return end <= start; } }; typedef Range RangeI; typedef Range RangeUI; struct IndexRange { IndexRange() : IndexRange(0, 0, 0) {} IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_) : start(start_), end(end_), vertexIndexCount(vertexIndexCount_) { ASSERT(start <= end); } // Number of vertices in the range. size_t vertexCount() const { return (end - start) + 1; } // Inclusive range of indices that are not primitive restart size_t start; size_t end; // Number of non-primitive restart indices size_t vertexIndexCount; }; // First, both normalized floating-point values are converted into 16-bit integer values. // Then, the results are packed into the returned 32-bit unsigned integer. // The first float value will be written to the least significant bits of the output; // the last float value will be written to the most significant bits. // The conversion of each value to fixed point is done as follows : // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0) inline uint32_t packSnorm2x16(float f1, float f2) { int16_t leastSignificantBits = static_cast(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f)); int16_t mostSignificantBits = static_cast(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f)); return static_cast(mostSignificantBits) << 16 | (static_cast(leastSignificantBits) & 0xFFFF); } // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each // component is converted to a normalized floating-point value to generate the returned two float values. // The first float value will be extracted from the least significant bits of the input; // the last float value will be extracted from the most-significant bits. // The conversion for unpacked fixed-point value to floating point is done as follows: // unpackSnorm2x16 : clamp(f / 32767.0, -1, +1) inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2) { int16_t leastSignificantBits = static_cast(u & 0xFFFF); int16_t mostSignificantBits = static_cast(u >> 16); *f1 = clamp(static_cast(leastSignificantBits) / 32767.0f, -1.0f, 1.0f); *f2 = clamp(static_cast(mostSignificantBits) / 32767.0f, -1.0f, 1.0f); } // First, both normalized floating-point values are converted into 16-bit integer values. // Then, the results are packed into the returned 32-bit unsigned integer. // The first float value will be written to the least significant bits of the output; // the last float value will be written to the most significant bits. // The conversion of each value to fixed point is done as follows: // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0) inline uint32_t packUnorm2x16(float f1, float f2) { uint16_t leastSignificantBits = static_cast(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f)); uint16_t mostSignificantBits = static_cast(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f)); return static_cast(mostSignificantBits) << 16 | static_cast(leastSignificantBits); } // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each // component is converted to a normalized floating-point value to generate the returned two float values. // The first float value will be extracted from the least significant bits of the input; // the last float value will be extracted from the most-significant bits. // The conversion for unpacked fixed-point value to floating point is done as follows: // unpackUnorm2x16 : f / 65535.0 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2) { uint16_t leastSignificantBits = static_cast(u & 0xFFFF); uint16_t mostSignificantBits = static_cast(u >> 16); *f1 = static_cast(leastSignificantBits) / 65535.0f; *f2 = static_cast(mostSignificantBits) / 65535.0f; } // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit // floating-point representation found in the OpenGL ES Specification, and then packing these // two 16-bit integers into a 32-bit unsigned integer. // f1: The 16 least-significant bits of the result; // f2: The 16 most-significant bits. inline uint32_t packHalf2x16(float f1, float f2) { uint16_t leastSignificantBits = static_cast(float32ToFloat16(f1)); uint16_t mostSignificantBits = static_cast(float32ToFloat16(f2)); return static_cast(mostSignificantBits) << 16 | static_cast(leastSignificantBits); } // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values, // interpreting those values as 16-bit floating-point numbers according to the OpenGL ES Specification, // and converting them to 32-bit floating-point values. // The first float value is obtained from the 16 least-significant bits of u; // the second component is obtained from the 16 most-significant bits of u. inline void unpackHalf2x16(uint32_t u, float *f1, float *f2) { uint16_t leastSignificantBits = static_cast(u & 0xFFFF); uint16_t mostSignificantBits = static_cast(u >> 16); *f1 = float16ToFloat32(leastSignificantBits); *f2 = float16ToFloat32(mostSignificantBits); } // Returns whether the argument is Not a Number. // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - non-zero. inline bool isNaN(float f) { // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu return ((bitCast(f) & 0x7f800000u) == 0x7f800000u) && (bitCast(f) & 0x7fffffu); } // Returns whether the argument is infinity. // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - zero. inline bool isInf(float f) { // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu return ((bitCast(f) & 0x7f800000u) == 0x7f800000u) && !(bitCast(f) & 0x7fffffu); } } namespace rx { template T roundUp(const T value, const T alignment) { return value + alignment - 1 - (value - 1) % alignment; } inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor) { unsigned int divided = value / divisor; return (divided + ((value % divisor == 0) ? 0 : 1)); } template inline bool IsUnsignedAdditionSafe(T lhs, T rhs) { static_assert(!std::numeric_limits::is_signed, "T must be unsigned."); return (rhs <= std::numeric_limits::max() - lhs); } template inline bool IsUnsignedMultiplicationSafe(T lhs, T rhs) { static_assert(!std::numeric_limits::is_signed, "T must be unsigned."); return (lhs == T(0) || rhs == T(0) || (rhs <= std::numeric_limits::max() / lhs)); } template inline bool IsIntegerCastSafe(BigIntT bigValue) { return (static_cast(static_cast(bigValue)) == bigValue); } #if defined(_MSC_VER) #define ANGLE_ROTL(x,y) _rotl(x,y) #define ANGLE_ROTR16(x,y) _rotr16(x,y) #else inline uint32_t RotL(uint32_t x, int8_t r) { return (x << r) | (x >> (32 - r)); } inline uint16_t RotR16(uint16_t x, int8_t r) { return (x >> r) | (x << (16 - r)); } #define ANGLE_ROTL(x,y) RotL(x,y) #define ANGLE_ROTR16(x,y) RotR16(x,y) #endif // namespace rx } #endif // COMMON_MATHUTIL_H_