// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/BuiltInFunctionEmulator.h" #include "compiler/DetectRecursion.h" #include "compiler/ForLoopUnroll.h" #include "compiler/Initialize.h" #include "compiler/InitializeParseContext.h" #include "compiler/MapLongVariableNames.h" #include "compiler/ParseHelper.h" #include "compiler/RenameFunction.h" #include "compiler/ShHandle.h" #include "compiler/ValidateLimitations.h" #include "compiler/VariablePacker.h" #include "compiler/depgraph/DependencyGraph.h" #include "compiler/depgraph/DependencyGraphOutput.h" #include "compiler/timing/RestrictFragmentShaderTiming.h" #include "compiler/timing/RestrictVertexShaderTiming.h" bool isWebGLBasedSpec(ShShaderSpec spec) { return spec == SH_WEBGL_SPEC || spec == SH_CSS_SHADERS_SPEC; } namespace { bool InitializeSymbolTable( const TBuiltInStrings& builtInStrings, ShShaderType type, ShShaderSpec spec, const ShBuiltInResources& resources, TInfoSink& infoSink, TSymbolTable& symbolTable) { TIntermediate intermediate(infoSink); TExtensionBehavior extBehavior; InitExtensionBehavior(resources, extBehavior); // The builtins deliberately don't specify precisions for the function // arguments and return types. For that reason we don't try to check them. TParseContext parseContext(symbolTable, extBehavior, intermediate, type, spec, 0, false, NULL, infoSink); GlobalParseContext = &parseContext; assert(symbolTable.isEmpty()); // // Parse the built-ins. This should only happen once per // language symbol table. // // Push the symbol table to give it an initial scope. This // push should not have a corresponding pop, so that built-ins // are preserved, and the test for an empty table fails. // symbolTable.push(); for (TBuiltInStrings::const_iterator i = builtInStrings.begin(); i != builtInStrings.end(); ++i) { const char* builtInShaders = i->c_str(); int builtInLengths = static_cast(i->size()); if (builtInLengths <= 0) continue; if (PaParseStrings(1, &builtInShaders, &builtInLengths, &parseContext) != 0) { infoSink.info.message(EPrefixInternalError, "Unable to parse built-ins"); return false; } } IdentifyBuiltIns(type, spec, resources, symbolTable); return true; } class TScopedPoolAllocator { public: TScopedPoolAllocator(TPoolAllocator* allocator, bool pushPop) : mAllocator(allocator), mPushPopAllocator(pushPop) { if (mPushPopAllocator) mAllocator->push(); SetGlobalPoolAllocator(mAllocator); } ~TScopedPoolAllocator() { SetGlobalPoolAllocator(NULL); if (mPushPopAllocator) mAllocator->pop(); } private: TPoolAllocator* mAllocator; bool mPushPopAllocator; }; } // namespace TShHandleBase::TShHandleBase() { allocator.push(); SetGlobalPoolAllocator(&allocator); } TShHandleBase::~TShHandleBase() { SetGlobalPoolAllocator(NULL); allocator.popAll(); } TCompiler::TCompiler(ShShaderType type, ShShaderSpec spec) : shaderType(type), shaderSpec(spec), builtInFunctionEmulator(type) { longNameMap = LongNameMap::GetInstance(); } TCompiler::~TCompiler() { ASSERT(longNameMap); longNameMap->Release(); } bool TCompiler::Init(const ShBuiltInResources& resources) { maxUniformVectors = (shaderType == SH_VERTEX_SHADER) ? resources.MaxVertexUniformVectors : resources.MaxFragmentUniformVectors; TScopedPoolAllocator scopedAlloc(&allocator, false); // Generate built-in symbol table. if (!InitBuiltInSymbolTable(resources)) return false; InitExtensionBehavior(resources, extensionBehavior); return true; } bool TCompiler::compile(const char* const shaderStrings[], const int numStrings, int compileOptions) { TScopedPoolAllocator scopedAlloc(&allocator, true); clearResults(); if (numStrings == 0) return true; // If compiling for WebGL, validate loop and indexing as well. if (isWebGLBasedSpec(shaderSpec)) compileOptions |= SH_VALIDATE_LOOP_INDEXING; // First string is path of source file if flag is set. The actual source follows. const char* sourcePath = NULL; int firstSource = 0; if (compileOptions & SH_SOURCE_PATH) { sourcePath = shaderStrings[0]; ++firstSource; } TIntermediate intermediate(infoSink); TParseContext parseContext(symbolTable, extensionBehavior, intermediate, shaderType, shaderSpec, compileOptions, true, sourcePath, infoSink); GlobalParseContext = &parseContext; // We preserve symbols at the built-in level from compile-to-compile. // Start pushing the user-defined symbols at global level. symbolTable.push(); if (!symbolTable.atGlobalLevel()) infoSink.info.message(EPrefixInternalError, "Wrong symbol table level"); // Parse shader. bool success = (PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) && (parseContext.treeRoot != NULL); if (success) { TIntermNode* root = parseContext.treeRoot; success = intermediate.postProcess(root); if (success) success = detectRecursion(root); if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING)) success = validateLimitations(root); if (success && (compileOptions & SH_TIMING_RESTRICTIONS)) success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0); if (success && shaderSpec == SH_CSS_SHADERS_SPEC) rewriteCSSShader(root); // Unroll for-loop markup needs to happen after validateLimitations pass. if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX)) ForLoopUnroll::MarkForLoopsWithIntegerIndicesForUnrolling(root); // Built-in function emulation needs to happen after validateLimitations pass. if (success && (compileOptions & SH_EMULATE_BUILT_IN_FUNCTIONS)) builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root); // Call mapLongVariableNames() before collectAttribsUniforms() so in // collectAttribsUniforms() we already have the mapped symbol names and // we could composite mapped and original variable names. if (success && (compileOptions & SH_MAP_LONG_VARIABLE_NAMES)) mapLongVariableNames(root); if (success && (compileOptions & SH_ATTRIBUTES_UNIFORMS)) { collectAttribsUniforms(root); if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS) { success = enforcePackingRestrictions(); if (!success) { infoSink.info.message(EPrefixError, "too many uniforms"); } } } if (success && (compileOptions & SH_INTERMEDIATE_TREE)) intermediate.outputTree(root); if (success && (compileOptions & SH_OBJECT_CODE)) translate(root); } // Cleanup memory. intermediate.remove(parseContext.treeRoot); // Ensure symbol table is returned to the built-in level, // throwing away all but the built-ins. while (!symbolTable.atBuiltInLevel()) symbolTable.pop(); return success; } bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources& resources) { TBuiltIns builtIns; builtIns.initialize(shaderType, shaderSpec, resources); return InitializeSymbolTable(builtIns.getBuiltInStrings(), shaderType, shaderSpec, resources, infoSink, symbolTable); } void TCompiler::clearResults() { infoSink.info.erase(); infoSink.obj.erase(); infoSink.debug.erase(); attribs.clear(); uniforms.clear(); builtInFunctionEmulator.Cleanup(); } bool TCompiler::detectRecursion(TIntermNode* root) { DetectRecursion detect; root->traverse(&detect); switch (detect.detectRecursion()) { case DetectRecursion::kErrorNone: return true; case DetectRecursion::kErrorMissingMain: infoSink.info.message(EPrefixError, "Missing main()"); return false; case DetectRecursion::kErrorRecursion: infoSink.info.message(EPrefixError, "Function recursion detected"); return false; default: UNREACHABLE(); return false; } } void TCompiler::rewriteCSSShader(TIntermNode* root) { RenameFunction renamer("main(", "css_main("); root->traverse(&renamer); } bool TCompiler::validateLimitations(TIntermNode* root) { ValidateLimitations validate(shaderType, infoSink.info); root->traverse(&validate); return validate.numErrors() == 0; } bool TCompiler::enforceTimingRestrictions(TIntermNode* root, bool outputGraph) { if (shaderSpec != SH_WEBGL_SPEC) { infoSink.info << "Timing restrictions must be enforced under the WebGL spec."; return false; } if (shaderType == SH_FRAGMENT_SHADER) { TDependencyGraph graph(root); // Output any errors first. bool success = enforceFragmentShaderTimingRestrictions(graph); // Then, output the dependency graph. if (outputGraph) { TDependencyGraphOutput output(infoSink.info); output.outputAllSpanningTrees(graph); } return success; } else { return enforceVertexShaderTimingRestrictions(root); } } bool TCompiler::enforceFragmentShaderTimingRestrictions(const TDependencyGraph& graph) { RestrictFragmentShaderTiming restrictor(infoSink.info); restrictor.enforceRestrictions(graph); return restrictor.numErrors() == 0; } bool TCompiler::enforceVertexShaderTimingRestrictions(TIntermNode* root) { RestrictVertexShaderTiming restrictor(infoSink.info); restrictor.enforceRestrictions(root); return restrictor.numErrors() == 0; } void TCompiler::collectAttribsUniforms(TIntermNode* root) { CollectAttribsUniforms collect(attribs, uniforms); root->traverse(&collect); } bool TCompiler::enforcePackingRestrictions() { VariablePacker packer; return packer.CheckVariablesWithinPackingLimits(maxUniformVectors, uniforms); } void TCompiler::mapLongVariableNames(TIntermNode* root) { ASSERT(longNameMap); MapLongVariableNames map(longNameMap); root->traverse(&map); } int TCompiler::getMappedNameMaxLength() const { return MAX_SHORTENED_IDENTIFIER_SIZE + 1; } const TExtensionBehavior& TCompiler::getExtensionBehavior() const { return extensionBehavior; } const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const { return builtInFunctionEmulator; }