// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/VersionGLSL.h" static const int GLSL_VERSION_110 = 110; static const int GLSL_VERSION_120 = 120; // We need to scan for the following: // 1. "invariant" keyword: This can occur in both - vertex and fragment shaders // but only at the global scope. // 2. "gl_PointCoord" built-in variable: This can only occur in fragment shader // but inside any scope. // 3. Call to a matrix constructor with another matrix as argument. // (These constructors were reserved in GLSL version 1.10.) // 4. Arrays as "out" function parameters. // GLSL spec section 6.1.1: "When calling a function, expressions that do // not evaluate to l-values cannot be passed to parameters declared as // out or inout." // GLSL 1.1 section 5.8: "Other binary or unary expressions, // non-dereferenced arrays, function names, swizzles with repeated fields, // and constants cannot be l-values." // GLSL 1.2 relaxed the restriction on arrays, section 5.8: "Variables that // are built-in types, entire structures or arrays... are all l-values." // // TODO(alokp): The following two cases of invariant decalaration get lost // during parsing - they do not get carried over to the intermediate tree. // Handle these cases: // 1. When a pragma is used to force all output variables to be invariant: // - #pragma STDGL invariant(all) // 2. When a previously decalared or built-in variable is marked invariant: // - invariant gl_Position; // - varying vec3 color; invariant color; // TVersionGLSL::TVersionGLSL(ShShaderType type) : mShaderType(type), mVersion(GLSL_VERSION_110) { } void TVersionGLSL::visitSymbol(TIntermSymbol* node) { if (node->getSymbol() == "gl_PointCoord") updateVersion(GLSL_VERSION_120); } void TVersionGLSL::visitConstantUnion(TIntermConstantUnion*) { } bool TVersionGLSL::visitBinary(Visit, TIntermBinary*) { return true; } bool TVersionGLSL::visitUnary(Visit, TIntermUnary*) { return true; } bool TVersionGLSL::visitSelection(Visit, TIntermSelection*) { return true; } bool TVersionGLSL::visitAggregate(Visit, TIntermAggregate* node) { bool visitChildren = true; switch (node->getOp()) { case EOpSequence: // We need to visit sequence children to get to global or inner scope. visitChildren = true; break; case EOpDeclaration: { const TIntermSequence& sequence = node->getSequence(); TQualifier qualifier = sequence.front()->getAsTyped()->getQualifier(); if ((qualifier == EvqInvariantVaryingIn) || (qualifier == EvqInvariantVaryingOut)) { updateVersion(GLSL_VERSION_120); } break; } case EOpParameters: { const TIntermSequence& params = node->getSequence(); for (TIntermSequence::const_iterator iter = params.begin(); iter != params.end(); ++iter) { const TIntermTyped* param = (*iter)->getAsTyped(); if (param->isArray()) { TQualifier qualifier = param->getQualifier(); if ((qualifier == EvqOut) || (qualifier == EvqInOut)) { updateVersion(GLSL_VERSION_120); break; } } } // Fully processed. No need to visit children. visitChildren = false; break; } case EOpConstructMat2: case EOpConstructMat3: case EOpConstructMat4: { const TIntermSequence& sequence = node->getSequence(); if (sequence.size() == 1) { TIntermTyped* typed = sequence.front()->getAsTyped(); if (typed && typed->isMatrix()) { updateVersion(GLSL_VERSION_120); } } break; } default: break; } return visitChildren; } bool TVersionGLSL::visitLoop(Visit, TIntermLoop*) { return true; } bool TVersionGLSL::visitBranch(Visit, TIntermBranch*) { return true; } void TVersionGLSL::updateVersion(int version) { mVersion = std::max(version, mVersion); }