// // Copyright (c) 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "angle_gl.h" #include "compiler/translator/BuiltInFunctionEmulator.h" #include "compiler/translator/BuiltInFunctionEmulatorHLSL.h" #include "compiler/translator/SymbolTable.h" void InitBuiltInFunctionEmulatorForHLSL(BuiltInFunctionEmulator *emu) { TType *float1 = new TType(EbtFloat); TType *float2 = new TType(EbtFloat, 2); TType *float3 = new TType(EbtFloat, 3); TType *float4 = new TType(EbtFloat, 4); emu->addEmulatedFunction(EOpMod, float1, float1, "float webgl_mod_emu(float x, float y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float2, float2, "float2 webgl_mod_emu(float2 x, float2 y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float2, float1, "float2 webgl_mod_emu(float2 x, float y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float3, float3, "float3 webgl_mod_emu(float3 x, float3 y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float3, float1, "float3 webgl_mod_emu(float3 x, float y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float4, float4, "float4 webgl_mod_emu(float4 x, float4 y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpMod, float4, float1, "float4 webgl_mod_emu(float4 x, float y)\n" "{\n" " return x - y * floor(x / y);\n" "}\n" "\n"); emu->addEmulatedFunction(EOpFaceForward, float1, float1, float1, "float webgl_faceforward_emu(float N, float I, float Nref)\n" "{\n" " if(dot(Nref, I) >= 0)\n" " {\n" " return -N;\n" " }\n" " else\n" " {\n" " return N;\n" " }\n" "}\n" "\n"); emu->addEmulatedFunction(EOpFaceForward, float2, float2, float2, "float2 webgl_faceforward_emu(float2 N, float2 I, float2 Nref)\n" "{\n" " if(dot(Nref, I) >= 0)\n" " {\n" " return -N;\n" " }\n" " else\n" " {\n" " return N;\n" " }\n" "}\n" "\n"); emu->addEmulatedFunction(EOpFaceForward, float3, float3, float3, "float3 webgl_faceforward_emu(float3 N, float3 I, float3 Nref)\n" "{\n" " if(dot(Nref, I) >= 0)\n" " {\n" " return -N;\n" " }\n" " else\n" " {\n" " return N;\n" " }\n" "}\n" "\n"); emu->addEmulatedFunction(EOpFaceForward, float4, float4, float4, "float4 webgl_faceforward_emu(float4 N, float4 I, float4 Nref)\n" "{\n" " if(dot(Nref, I) >= 0)\n" " {\n" " return -N;\n" " }\n" " else\n" " {\n" " return N;\n" " }\n" "}\n" "\n"); emu->addEmulatedFunction(EOpAtan, float1, float1, "float webgl_atan_emu(float y, float x)\n" "{\n" " if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN " return atan2(y, x);\n" "}\n"); emu->addEmulatedFunction(EOpAtan, float2, float2, "float2 webgl_atan_emu(float2 y, float2 x)\n" "{\n" " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n" " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n" " return float2(atan2(y[0], x[0]), atan2(y[1], x[1]));\n" "}\n"); emu->addEmulatedFunction(EOpAtan, float3, float3, "float3 webgl_atan_emu(float3 y, float3 x)\n" "{\n" " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n" " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n" " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n" " return float3(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]));\n" "}\n"); emu->addEmulatedFunction(EOpAtan, float4, float4, "float4 webgl_atan_emu(float4 y, float4 x)\n" "{\n" " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n" " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n" " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n" " if(x[3] == 0 && y[3] == 0) x[3] = 1;\n" " return float4(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]), atan2(y[3], x[3]));\n" "}\n"); emu->addEmulatedFunction(EOpAsinh, float1, "float webgl_asinh_emu(in float x) {\n" " return log(x + sqrt(pow(x, 2.0) + 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAsinh, float2, "float2 webgl_asinh_emu(in float2 x) {\n" " return log(x + sqrt(pow(x, 2.0) + 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAsinh, float3, "float3 webgl_asinh_emu(in float3 x) {\n" " return log(x + sqrt(pow(x, 2.0) + 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAsinh, float4, "float4 webgl_asinh_emu(in float4 x) {\n" " return log(x + sqrt(pow(x, 2.0) + 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAcosh, float1, "float webgl_acosh_emu(in float x) {\n" " return log(x + sqrt(x + 1.0) * sqrt(x - 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAcosh, float2, "float2 webgl_acosh_emu(in float2 x) {\n" " return log(x + sqrt(x + 1.0) * sqrt(x - 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAcosh, float3, "float3 webgl_acosh_emu(in float3 x) {\n" " return log(x + sqrt(x + 1.0) * sqrt(x - 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAcosh, float4, "float4 webgl_acosh_emu(in float4 x) {\n" " return log(x + sqrt(x + 1.0) * sqrt(x - 1.0));\n" "}\n"); emu->addEmulatedFunction(EOpAtanh, float1, "float webgl_atanh_emu(in float x) {\n" " return 0.5 * log((1.0 + x) / (1.0 - x));\n" "}\n"); emu->addEmulatedFunction(EOpAtanh, float2, "float2 webgl_atanh_emu(in float2 x) {\n" " return 0.5 * log((1.0 + x) / (1.0 - x));\n" "}\n"); emu->addEmulatedFunction(EOpAtanh, float3, "float3 webgl_atanh_emu(in float3 x) {\n" " return 0.5 * log((1.0 + x) / (1.0 - x));\n" "}\n"); emu->addEmulatedFunction(EOpAtanh, float4, "float4 webgl_atanh_emu(in float4 x) {\n" " return 0.5 * log((1.0 + x) / (1.0 - x));\n" "}\n"); emu->addEmulatedFunction(EOpRoundEven, float1, "float webgl_roundEven_emu(in float x) {\n" " return (frac(x) == 0.5 && trunc(x) % 2.0 == 0.0) ? trunc(x) : round(x);\n" "}\n"); emu->addEmulatedFunction(EOpRoundEven, float2, "float2 webgl_roundEven_emu(in float2 x) {\n" " float2 v;\n" " v[0] = (frac(x[0]) == 0.5 && trunc(x[0]) % 2.0 == 0.0) ? trunc(x[0]) : round(x[0]);\n" " v[1] = (frac(x[1]) == 0.5 && trunc(x[1]) % 2.0 == 0.0) ? trunc(x[1]) : round(x[1]);\n" " return v;\n" "}\n"); emu->addEmulatedFunction(EOpRoundEven, float3, "float3 webgl_roundEven_emu(in float3 x) {\n" " float3 v;\n" " v[0] = (frac(x[0]) == 0.5 && trunc(x[0]) % 2.0 == 0.0) ? trunc(x[0]) : round(x[0]);\n" " v[1] = (frac(x[1]) == 0.5 && trunc(x[1]) % 2.0 == 0.0) ? trunc(x[1]) : round(x[1]);\n" " v[2] = (frac(x[2]) == 0.5 && trunc(x[2]) % 2.0 == 0.0) ? trunc(x[2]) : round(x[2]);\n" " return v;\n" "}\n"); emu->addEmulatedFunction(EOpRoundEven, float4, "float4 webgl_roundEven_emu(in float4 x) {\n" " float4 v;\n" " v[0] = (frac(x[0]) == 0.5 && trunc(x[0]) % 2.0 == 0.0) ? trunc(x[0]) : round(x[0]);\n" " v[1] = (frac(x[1]) == 0.5 && trunc(x[1]) % 2.0 == 0.0) ? trunc(x[1]) : round(x[1]);\n" " v[2] = (frac(x[2]) == 0.5 && trunc(x[2]) % 2.0 == 0.0) ? trunc(x[2]) : round(x[2]);\n" " v[3] = (frac(x[3]) == 0.5 && trunc(x[3]) % 2.0 == 0.0) ? trunc(x[3]) : round(x[3]);\n" " return v;\n" "}\n"); emu->addEmulatedFunction(EOpPackSnorm2x16, float2, "int webgl_toSnorm(in float x) {\n" " return int(round(clamp(x, -1.0, 1.0) * 32767.0));\n" "}\n" "\n" "uint webgl_packSnorm2x16_emu(in float2 v) {\n" " int x = webgl_toSnorm(v.x);\n" " int y = webgl_toSnorm(v.y);\n" " return (asuint(y) << 16) | (asuint(x) & 0xffffu);\n" "}\n"); emu->addEmulatedFunction(EOpPackUnorm2x16, float2, "uint webgl_toUnorm(in float x) {\n" " return uint(round(clamp(x, 0.0, 1.0) * 65535.0));\n" "}\n" "\n" "uint webgl_packUnorm2x16_emu(in float2 v) {\n" " uint x = webgl_toUnorm(v.x);\n" " uint y = webgl_toUnorm(v.y);\n" " return (y << 16) | x;\n" "}\n"); emu->addEmulatedFunction(EOpPackHalf2x16, float2, "uint webgl_packHalf2x16_emu(in float2 v) {\n" " uint x = f32tof16(v.x);\n" " uint y = f32tof16(v.y);\n" " return (y << 16) | x;\n" "}\n"); TType *uint1 = new TType(EbtUInt); emu->addEmulatedFunction(EOpUnpackSnorm2x16, uint1, "float webgl_fromSnorm(in uint x) {\n" " int xi = asint(x & 0x7fffu) - asint(x & 0x8000u);\n" " return clamp(float(xi) / 32767.0, -1.0, 1.0);\n" "}\n" "\n" "float2 webgl_unpackSnorm2x16_emu(in uint u) {\n" " uint y = (u >> 16);\n" " uint x = u;\n" " return float2(webgl_fromSnorm(x), webgl_fromSnorm(y));\n" "}\n"); emu->addEmulatedFunction(EOpUnpackUnorm2x16, uint1, "float webgl_fromUnorm(in uint x) {\n" " return float(x) / 65535.0;\n" "}\n" "\n" "float2 webgl_unpackUnorm2x16_emu(in uint u) {\n" " uint y = (u >> 16);\n" " uint x = u & 0xffffu;\n" " return float2(webgl_fromUnorm(x), webgl_fromUnorm(y));\n" "}\n"); emu->addEmulatedFunction(EOpUnpackHalf2x16, uint1, "float2 webgl_unpackHalf2x16_emu(in uint u) {\n" " uint y = (u >> 16);\n" " uint x = u & 0xffffu;\n" " return float2(f16tof32(x), f16tof32(y));\n" "}\n"); // The matrix resulting from outer product needs to be transposed // (matrices are stored as transposed to simplify element access in HLSL). // So the function should return transpose(c * r) where c is a column vector // and r is a row vector. This can be simplified by using the following // formula: // transpose(c * r) = transpose(r) * transpose(c) // transpose(r) and transpose(c) are in a sense free, since to get the // transpose of r, we simply can build a column matrix out of the original // vector instead of a row matrix. emu->addEmulatedFunction(EOpOuterProduct, float2, float2, "float2x2 webgl_outerProduct_emu(in float2 c, in float2 r) {\n" " return mul(float2x1(r), float1x2(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float3, float3, "float3x3 webgl_outerProduct_emu(in float3 c, in float3 r) {\n" " return mul(float3x1(r), float1x3(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float4, float4, "float4x4 webgl_outerProduct_emu(in float4 c, in float4 r) {\n" " return mul(float4x1(r), float1x4(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float3, float2, "float2x3 webgl_outerProduct_emu(in float3 c, in float2 r) {\n" " return mul(float2x1(r), float1x3(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float2, float3, "float3x2 webgl_outerProduct_emu(in float2 c, in float3 r) {\n" " return mul(float3x1(r), float1x2(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float4, float2, "float2x4 webgl_outerProduct_emu(in float4 c, in float2 r) {\n" " return mul(float2x1(r), float1x4(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float2, float4, "float4x2 webgl_outerProduct_emu(in float2 c, in float4 r) {\n" " return mul(float4x1(r), float1x2(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float4, float3, "float3x4 webgl_outerProduct_emu(in float4 c, in float3 r) {\n" " return mul(float3x1(r), float1x4(c));\n" "}\n"); emu->addEmulatedFunction(EOpOuterProduct, float3, float4, "float4x3 webgl_outerProduct_emu(in float3 c, in float4 r) {\n" " return mul(float4x1(r), float1x3(c));\n" "}\n"); TType *mat2 = new TType(EbtFloat, 2, 2); TType *mat3 = new TType(EbtFloat, 3, 3); TType *mat4 = new TType(EbtFloat, 4, 4); // Remember here that the parameter matrix is actually the transpose // of the matrix that we're trying to invert, and the resulting matrix // should also be the transpose of the inverse. // When accessing the parameter matrix with m[a][b] it can be thought of so // that a is the column and b is the row of the matrix that we're inverting. // We calculate the inverse as the adjugate matrix divided by the // determinant of the matrix being inverted. However, as the result needs // to be transposed, we actually use of the transpose of the adjugate matrix // which happens to be the cofactor matrix. That's stored in "cof". // We don't need to care about divide-by-zero since results are undefined // for singular or poorly-conditioned matrices. emu->addEmulatedFunction(EOpInverse, mat2, "float2x2 webgl_inverse_emu(in float2x2 m) {\n" " float2x2 cof = { m[1][1], -m[0][1], -m[1][0], m[0][0] };\n" " return cof / determinant(transpose(m));\n" "}\n"); // cofAB is the cofactor for column A and row B. emu->addEmulatedFunction(EOpInverse, mat3, "float3x3 webgl_inverse_emu(in float3x3 m) {\n" " float cof00 = m[1][1] * m[2][2] - m[2][1] * m[1][2];\n" " float cof01 = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]);\n" " float cof02 = m[1][0] * m[2][1] - m[2][0] * m[1][1];\n" " float cof10 = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]);\n" " float cof11 = m[0][0] * m[2][2] - m[2][0] * m[0][2];\n" " float cof12 = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]);\n" " float cof20 = m[0][1] * m[1][2] - m[1][1] * m[0][2];\n" " float cof21 = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]);\n" " float cof22 = m[0][0] * m[1][1] - m[1][0] * m[0][1];\n" " float3x3 cof = { cof00, cof10, cof20, cof01, cof11, cof21, cof02, cof12, cof22 };\n" " return cof / determinant(transpose(m));\n" "}\n"); emu->addEmulatedFunction(EOpInverse, mat4, "float4x4 webgl_inverse_emu(in float4x4 m) {\n" " float cof00 = m[1][1] * m[2][2] * m[3][3] + m[2][1] * m[3][2] * m[1][3] + m[3][1] * m[1][2] * m[2][3]" " - m[1][1] * m[3][2] * m[2][3] - m[2][1] * m[1][2] * m[3][3] - m[3][1] * m[2][2] * m[1][3];\n" " float cof01 = -(m[1][0] * m[2][2] * m[3][3] + m[2][0] * m[3][2] * m[1][3] + m[3][0] * m[1][2] * m[2][3]" " - m[1][0] * m[3][2] * m[2][3] - m[2][0] * m[1][2] * m[3][3] - m[3][0] * m[2][2] * m[1][3]);\n" " float cof02 = m[1][0] * m[2][1] * m[3][3] + m[2][0] * m[3][1] * m[1][3] + m[3][0] * m[1][1] * m[2][3]" " - m[1][0] * m[3][1] * m[2][3] - m[2][0] * m[1][1] * m[3][3] - m[3][0] * m[2][1] * m[1][3];\n" " float cof03 = -(m[1][0] * m[2][1] * m[3][2] + m[2][0] * m[3][1] * m[1][2] + m[3][0] * m[1][1] * m[2][2]" " - m[1][0] * m[3][1] * m[2][2] - m[2][0] * m[1][1] * m[3][2] - m[3][0] * m[2][1] * m[1][2]);\n" " float cof10 = -(m[0][1] * m[2][2] * m[3][3] + m[2][1] * m[3][2] * m[0][3] + m[3][1] * m[0][2] * m[2][3]" " - m[0][1] * m[3][2] * m[2][3] - m[2][1] * m[0][2] * m[3][3] - m[3][1] * m[2][2] * m[0][3]);\n" " float cof11 = m[0][0] * m[2][2] * m[3][3] + m[2][0] * m[3][2] * m[0][3] + m[3][0] * m[0][2] * m[2][3]" " - m[0][0] * m[3][2] * m[2][3] - m[2][0] * m[0][2] * m[3][3] - m[3][0] * m[2][2] * m[0][3];\n" " float cof12 = -(m[0][0] * m[2][1] * m[3][3] + m[2][0] * m[3][1] * m[0][3] + m[3][0] * m[0][1] * m[2][3]" " - m[0][0] * m[3][1] * m[2][3] - m[2][0] * m[0][1] * m[3][3] - m[3][0] * m[2][1] * m[0][3]);\n" " float cof13 = m[0][0] * m[2][1] * m[3][2] + m[2][0] * m[3][1] * m[0][2] + m[3][0] * m[0][1] * m[2][2]" " - m[0][0] * m[3][1] * m[2][2] - m[2][0] * m[0][1] * m[3][2] - m[3][0] * m[2][1] * m[0][2];\n" " float cof20 = m[0][1] * m[1][2] * m[3][3] + m[1][1] * m[3][2] * m[0][3] + m[3][1] * m[0][2] * m[1][3]" " - m[0][1] * m[3][2] * m[1][3] - m[1][1] * m[0][2] * m[3][3] - m[3][1] * m[1][2] * m[0][3];\n" " float cof21 = -(m[0][0] * m[1][2] * m[3][3] + m[1][0] * m[3][2] * m[0][3] + m[3][0] * m[0][2] * m[1][3]" " - m[0][0] * m[3][2] * m[1][3] - m[1][0] * m[0][2] * m[3][3] - m[3][0] * m[1][2] * m[0][3]);\n" " float cof22 = m[0][0] * m[1][1] * m[3][3] + m[1][0] * m[3][1] * m[0][3] + m[3][0] * m[0][1] * m[1][3]" " - m[0][0] * m[3][1] * m[1][3] - m[1][0] * m[0][1] * m[3][3] - m[3][0] * m[1][1] * m[0][3];\n" " float cof23 = -(m[0][0] * m[1][1] * m[3][2] + m[1][0] * m[3][1] * m[0][2] + m[3][0] * m[0][1] * m[1][2]" " - m[0][0] * m[3][1] * m[1][2] - m[1][0] * m[0][1] * m[3][2] - m[3][0] * m[1][1] * m[0][2]);\n" " float cof30 = -(m[0][1] * m[1][2] * m[2][3] + m[1][1] * m[2][2] * m[0][3] + m[2][1] * m[0][2] * m[1][3]" " - m[0][1] * m[2][2] * m[1][3] - m[1][1] * m[0][2] * m[2][3] - m[2][1] * m[1][2] * m[0][3]);\n" " float cof31 = m[0][0] * m[1][2] * m[2][3] + m[1][0] * m[2][2] * m[0][3] + m[2][0] * m[0][2] * m[1][3]" " - m[0][0] * m[2][2] * m[1][3] - m[1][0] * m[0][2] * m[2][3] - m[2][0] * m[1][2] * m[0][3];\n" " float cof32 = -(m[0][0] * m[1][1] * m[2][3] + m[1][0] * m[2][1] * m[0][3] + m[2][0] * m[0][1] * m[1][3]" " - m[0][0] * m[2][1] * m[1][3] - m[1][0] * m[0][1] * m[2][3] - m[2][0] * m[1][1] * m[0][3]);\n" " float cof33 = m[0][0] * m[1][1] * m[2][2] + m[1][0] * m[2][1] * m[0][2] + m[2][0] * m[0][1] * m[1][2]" " - m[0][0] * m[2][1] * m[1][2] - m[1][0] * m[0][1] * m[2][2] - m[2][0] * m[1][1] * m[0][2];\n" " float4x4 cof = { cof00, cof10, cof20, cof30, cof01, cof11, cof21, cof31," " cof02, cof12, cof22, cof32, cof03, cof13, cof23, cof33 };\n" " return cof / determinant(transpose(m));\n" "}\n"); TType *bool1 = new TType(EbtBool); TType *bool2 = new TType(EbtBool, 2); TType *bool3 = new TType(EbtBool, 3); TType *bool4 = new TType(EbtBool, 4); // Emulate ESSL3 variant of mix that takes last argument as boolean vector. // genType mix (genType x, genType y, genBType a): Selects which vector each returned component comes from. // For a component of 'a' that is false, the corresponding component of 'x' is returned.For a component of 'a' that is true, // the corresponding component of 'y' is returned. emu->addEmulatedFunction(EOpMix, float1, float1, bool1, "float webgl_mix_emu(float x, float y, bool a)\n" "{\n" " return a ? y : x;\n" "}\n"); emu->addEmulatedFunction(EOpMix, float2, float2, bool2, "float2 webgl_mix_emu(float2 x, float2 y, bool2 a)\n" "{\n" " return a ? y : x;\n" "}\n"); emu->addEmulatedFunction(EOpMix, float3, float3, bool3, "float3 webgl_mix_emu(float3 x, float3 y, bool3 a)\n" "{\n" " return a ? y : x;\n" "}\n"); emu->addEmulatedFunction(EOpMix, float4, float4, bool4, "float4 webgl_mix_emu(float4 x, float4 y, bool4 a)\n" "{\n" " return a ? y : x;\n" "}\n"); }