// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/BuiltInFunctionEmulator.h" #include "compiler/translator/Compiler.h" #include "compiler/translator/DetectCallDepth.h" #include "compiler/translator/ForLoopUnroll.h" #include "compiler/translator/Initialize.h" #include "compiler/translator/InitializeParseContext.h" #include "compiler/translator/InitializeVariables.h" #include "compiler/translator/ParseContext.h" #include "compiler/translator/RegenerateStructNames.h" #include "compiler/translator/RenameFunction.h" #include "compiler/translator/ScalarizeVecAndMatConstructorArgs.h" #include "compiler/translator/UnfoldShortCircuitAST.h" #include "compiler/translator/ValidateLimitations.h" #include "compiler/translator/ValidateOutputs.h" #include "compiler/translator/VariablePacker.h" #include "compiler/translator/depgraph/DependencyGraph.h" #include "compiler/translator/depgraph/DependencyGraphOutput.h" #include "compiler/translator/timing/RestrictFragmentShaderTiming.h" #include "compiler/translator/timing/RestrictVertexShaderTiming.h" #include "third_party/compiler/ArrayBoundsClamper.h" #include "angle_gl.h" #include "common/utilities.h" bool IsWebGLBasedSpec(ShShaderSpec spec) { return spec == SH_WEBGL_SPEC || spec == SH_CSS_SHADERS_SPEC; } size_t GetGlobalMaxTokenSize(ShShaderSpec spec) { // WebGL defines a max token legnth of 256, while ES2 leaves max token // size undefined. ES3 defines a max size of 1024 characters. if (IsWebGLBasedSpec(spec)) { return 256; } else { return 1024; } } namespace { class TScopedPoolAllocator { public: TScopedPoolAllocator(TPoolAllocator* allocator) : mAllocator(allocator) { mAllocator->push(); SetGlobalPoolAllocator(mAllocator); } ~TScopedPoolAllocator() { SetGlobalPoolAllocator(NULL); mAllocator->pop(); } private: TPoolAllocator* mAllocator; }; class TScopedSymbolTableLevel { public: TScopedSymbolTableLevel(TSymbolTable* table) : mTable(table) { ASSERT(mTable->atBuiltInLevel()); mTable->push(); } ~TScopedSymbolTableLevel() { while (!mTable->atBuiltInLevel()) mTable->pop(); } private: TSymbolTable* mTable; }; } // namespace TShHandleBase::TShHandleBase() { allocator.push(); SetGlobalPoolAllocator(&allocator); } TShHandleBase::~TShHandleBase() { SetGlobalPoolAllocator(NULL); allocator.popAll(); } TCompiler::TCompiler(sh::GLenum type, ShShaderSpec spec, ShShaderOutput output) : shaderType(type), shaderSpec(spec), outputType(output), maxUniformVectors(0), maxExpressionComplexity(0), maxCallStackDepth(0), fragmentPrecisionHigh(false), clampingStrategy(SH_CLAMP_WITH_CLAMP_INTRINSIC), builtInFunctionEmulator(type) { } TCompiler::~TCompiler() { } bool TCompiler::Init(const ShBuiltInResources& resources) { shaderVersion = 100; maxUniformVectors = (shaderType == GL_VERTEX_SHADER) ? resources.MaxVertexUniformVectors : resources.MaxFragmentUniformVectors; maxExpressionComplexity = resources.MaxExpressionComplexity; maxCallStackDepth = resources.MaxCallStackDepth; SetGlobalPoolAllocator(&allocator); // Generate built-in symbol table. if (!InitBuiltInSymbolTable(resources)) return false; InitExtensionBehavior(resources, extensionBehavior); fragmentPrecisionHigh = resources.FragmentPrecisionHigh == 1; arrayBoundsClamper.SetClampingStrategy(resources.ArrayIndexClampingStrategy); clampingStrategy = resources.ArrayIndexClampingStrategy; hashFunction = resources.HashFunction; return true; } bool TCompiler::compile(const char* const shaderStrings[], size_t numStrings, int compileOptions) { TScopedPoolAllocator scopedAlloc(&allocator); clearResults(); if (numStrings == 0) return true; // If compiling for WebGL, validate loop and indexing as well. if (IsWebGLBasedSpec(shaderSpec)) compileOptions |= SH_VALIDATE_LOOP_INDEXING; // First string is path of source file if flag is set. The actual source follows. const char* sourcePath = NULL; size_t firstSource = 0; if (compileOptions & SH_SOURCE_PATH) { sourcePath = shaderStrings[0]; ++firstSource; } TIntermediate intermediate(infoSink); TParseContext parseContext(symbolTable, extensionBehavior, intermediate, shaderType, shaderSpec, compileOptions, true, sourcePath, infoSink); parseContext.fragmentPrecisionHigh = fragmentPrecisionHigh; SetGlobalParseContext(&parseContext); // We preserve symbols at the built-in level from compile-to-compile. // Start pushing the user-defined symbols at global level. TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable); // Parse shader. bool success = (PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) && (parseContext.treeRoot != NULL); shaderVersion = parseContext.getShaderVersion(); if (success) { TIntermNode* root = parseContext.treeRoot; success = intermediate.postProcess(root); // Disallow expressions deemed too complex. if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY)) success = limitExpressionComplexity(root); if (success) success = detectCallDepth(root, infoSink, (compileOptions & SH_LIMIT_CALL_STACK_DEPTH) != 0); if (success && shaderVersion == 300 && shaderType == GL_FRAGMENT_SHADER) success = validateOutputs(root); if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING)) success = validateLimitations(root); if (success && (compileOptions & SH_TIMING_RESTRICTIONS)) success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0); if (success && shaderSpec == SH_CSS_SHADERS_SPEC) rewriteCSSShader(root); // Unroll for-loop markup needs to happen after validateLimitations pass. if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kIntegerIndex); root->traverse(&marker); } if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_SAMPLER_ARRAY_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kSamplerArrayIndex); root->traverse(&marker); if (marker.samplerArrayIndexIsFloatLoopIndex()) { infoSink.info.prefix(EPrefixError); infoSink.info << "sampler array index is float loop index"; success = false; } } // Built-in function emulation needs to happen after validateLimitations pass. if (success && (compileOptions & SH_EMULATE_BUILT_IN_FUNCTIONS)) builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root); // Clamping uniform array bounds needs to happen after validateLimitations pass. if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS)) arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root); if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION)) initializeGLPosition(root); if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT)) { UnfoldShortCircuitAST unfoldShortCircuit; root->traverse(&unfoldShortCircuit); unfoldShortCircuit.updateTree(); } if (success && (compileOptions & SH_VARIABLES)) { collectVariables(root); if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS) { success = enforcePackingRestrictions(); if (!success) { infoSink.info.prefix(EPrefixError); infoSink.info << "too many uniforms"; } } if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE)) initializeVaryingsWithoutStaticUse(root); } if (success && (compileOptions & SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS)) { ScalarizeVecAndMatConstructorArgs scalarizer( shaderType, fragmentPrecisionHigh); root->traverse(&scalarizer); } if (success && (compileOptions & SH_REGENERATE_STRUCT_NAMES)) { RegenerateStructNames gen(symbolTable, shaderVersion); root->traverse(&gen); } if (success && (compileOptions & SH_INTERMEDIATE_TREE)) intermediate.outputTree(root); if (success && (compileOptions & SH_OBJECT_CODE)) translate(root); } // Cleanup memory. intermediate.remove(parseContext.treeRoot); SetGlobalParseContext(NULL); return success; } bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources &resources) { compileResources = resources; setResourceString(); assert(symbolTable.isEmpty()); symbolTable.push(); // COMMON_BUILTINS symbolTable.push(); // ESSL1_BUILTINS symbolTable.push(); // ESSL3_BUILTINS TPublicType integer; integer.type = EbtInt; integer.primarySize = 1; integer.secondarySize = 1; integer.array = false; TPublicType floatingPoint; floatingPoint.type = EbtFloat; floatingPoint.primarySize = 1; floatingPoint.secondarySize = 1; floatingPoint.array = false; TPublicType sampler; sampler.primarySize = 1; sampler.secondarySize = 1; sampler.array = false; switch(shaderType) { case GL_FRAGMENT_SHADER: symbolTable.setDefaultPrecision(integer, EbpMedium); break; case GL_VERTEX_SHADER: symbolTable.setDefaultPrecision(integer, EbpHigh); symbolTable.setDefaultPrecision(floatingPoint, EbpHigh); break; default: assert(false && "Language not supported"); } // We set defaults for all the sampler types, even those that are // only available if an extension exists. for (int samplerType = EbtGuardSamplerBegin + 1; samplerType < EbtGuardSamplerEnd; ++samplerType) { sampler.type = static_cast(samplerType); symbolTable.setDefaultPrecision(sampler, EbpLow); } InsertBuiltInFunctions(shaderType, shaderSpec, resources, symbolTable); IdentifyBuiltIns(shaderType, shaderSpec, resources, symbolTable); return true; } void TCompiler::setResourceString() { std::ostringstream strstream; strstream << ":MaxVertexAttribs:" << compileResources.MaxVertexAttribs << ":MaxVertexUniformVectors:" << compileResources.MaxVertexUniformVectors << ":MaxVaryingVectors:" << compileResources.MaxVaryingVectors << ":MaxVertexTextureImageUnits:" << compileResources.MaxVertexTextureImageUnits << ":MaxCombinedTextureImageUnits:" << compileResources.MaxCombinedTextureImageUnits << ":MaxTextureImageUnits:" << compileResources.MaxTextureImageUnits << ":MaxFragmentUniformVectors:" << compileResources.MaxFragmentUniformVectors << ":MaxDrawBuffers:" << compileResources.MaxDrawBuffers << ":OES_standard_derivatives:" << compileResources.OES_standard_derivatives << ":OES_EGL_image_external:" << compileResources.OES_EGL_image_external << ":ARB_texture_rectangle:" << compileResources.ARB_texture_rectangle << ":EXT_draw_buffers:" << compileResources.EXT_draw_buffers << ":FragmentPrecisionHigh:" << compileResources.FragmentPrecisionHigh << ":MaxExpressionComplexity:" << compileResources.MaxExpressionComplexity << ":MaxCallStackDepth:" << compileResources.MaxCallStackDepth << ":EXT_frag_depth:" << compileResources.EXT_frag_depth << ":EXT_shader_texture_lod:" << compileResources.EXT_shader_texture_lod << ":MaxVertexOutputVectors:" << compileResources.MaxVertexOutputVectors << ":MaxFragmentInputVectors:" << compileResources.MaxFragmentInputVectors << ":MinProgramTexelOffset:" << compileResources.MinProgramTexelOffset << ":MaxProgramTexelOffset:" << compileResources.MaxProgramTexelOffset; builtInResourcesString = strstream.str(); } void TCompiler::clearResults() { arrayBoundsClamper.Cleanup(); infoSink.info.erase(); infoSink.obj.erase(); infoSink.debug.erase(); attributes.clear(); outputVariables.clear(); uniforms.clear(); expandedUniforms.clear(); varyings.clear(); expandedVaryings.clear(); interfaceBlocks.clear(); builtInFunctionEmulator.Cleanup(); nameMap.clear(); } bool TCompiler::detectCallDepth(TIntermNode* root, TInfoSink& infoSink, bool limitCallStackDepth) { DetectCallDepth detect(infoSink, limitCallStackDepth, maxCallStackDepth); root->traverse(&detect); switch (detect.detectCallDepth()) { case DetectCallDepth::kErrorNone: return true; case DetectCallDepth::kErrorMissingMain: infoSink.info.prefix(EPrefixError); infoSink.info << "Missing main()"; return false; case DetectCallDepth::kErrorRecursion: infoSink.info.prefix(EPrefixError); infoSink.info << "Function recursion detected"; return false; case DetectCallDepth::kErrorMaxDepthExceeded: infoSink.info.prefix(EPrefixError); infoSink.info << "Function call stack too deep"; return false; default: UNREACHABLE(); return false; } } bool TCompiler::validateOutputs(TIntermNode* root) { ValidateOutputs validateOutputs(infoSink.info, compileResources.MaxDrawBuffers); root->traverse(&validateOutputs); return (validateOutputs.numErrors() == 0); } void TCompiler::rewriteCSSShader(TIntermNode* root) { RenameFunction renamer("main(", "css_main("); root->traverse(&renamer); } bool TCompiler::validateLimitations(TIntermNode* root) { ValidateLimitations validate(shaderType, infoSink.info); root->traverse(&validate); return validate.numErrors() == 0; } bool TCompiler::enforceTimingRestrictions(TIntermNode* root, bool outputGraph) { if (shaderSpec != SH_WEBGL_SPEC) { infoSink.info << "Timing restrictions must be enforced under the WebGL spec."; return false; } if (shaderType == GL_FRAGMENT_SHADER) { TDependencyGraph graph(root); // Output any errors first. bool success = enforceFragmentShaderTimingRestrictions(graph); // Then, output the dependency graph. if (outputGraph) { TDependencyGraphOutput output(infoSink.info); output.outputAllSpanningTrees(graph); } return success; } else { return enforceVertexShaderTimingRestrictions(root); } } bool TCompiler::limitExpressionComplexity(TIntermNode* root) { TMaxDepthTraverser traverser(maxExpressionComplexity+1); root->traverse(&traverser); if (traverser.getMaxDepth() > maxExpressionComplexity) { infoSink.info << "Expression too complex."; return false; } TDependencyGraph graph(root); for (TFunctionCallVector::const_iterator iter = graph.beginUserDefinedFunctionCalls(); iter != graph.endUserDefinedFunctionCalls(); ++iter) { TGraphFunctionCall* samplerSymbol = *iter; TDependencyGraphTraverser graphTraverser; samplerSymbol->traverse(&graphTraverser); } return true; } bool TCompiler::enforceFragmentShaderTimingRestrictions(const TDependencyGraph& graph) { RestrictFragmentShaderTiming restrictor(infoSink.info); restrictor.enforceRestrictions(graph); return restrictor.numErrors() == 0; } bool TCompiler::enforceVertexShaderTimingRestrictions(TIntermNode* root) { RestrictVertexShaderTiming restrictor(infoSink.info); restrictor.enforceRestrictions(root); return restrictor.numErrors() == 0; } void TCompiler::collectVariables(TIntermNode* root) { sh::CollectVariables collect(&attributes, &outputVariables, &uniforms, &varyings, &interfaceBlocks, hashFunction); root->traverse(&collect); // For backwards compatiblity with ShGetVariableInfo, expand struct // uniforms and varyings into separate variables for each field. sh::ExpandVariables(uniforms, &expandedUniforms); sh::ExpandVariables(varyings, &expandedVaryings); } bool TCompiler::enforcePackingRestrictions() { VariablePacker packer; return packer.CheckVariablesWithinPackingLimits(maxUniformVectors, expandedUniforms); } void TCompiler::initializeGLPosition(TIntermNode* root) { InitializeVariables::InitVariableInfoList variables; InitializeVariables::InitVariableInfo var( "gl_Position", TType(EbtFloat, EbpUndefined, EvqPosition, 4)); variables.push_back(var); InitializeVariables initializer(variables); root->traverse(&initializer); } void TCompiler::initializeVaryingsWithoutStaticUse(TIntermNode* root) { InitializeVariables::InitVariableInfoList variables; for (size_t ii = 0; ii < varyings.size(); ++ii) { const sh::Varying& varying = varyings[ii]; if (varying.staticUse) continue; unsigned char primarySize = static_cast(gl::VariableColumnCount(varying.type)); unsigned char secondarySize = static_cast(gl::VariableRowCount(varying.type)); TType type(EbtFloat, EbpUndefined, EvqVaryingOut, primarySize, secondarySize, varying.isArray()); TString name = varying.name.c_str(); if (varying.isArray()) { type.setArraySize(varying.arraySize); name = name.substr(0, name.find_first_of('[')); } InitializeVariables::InitVariableInfo var(name, type); variables.push_back(var); } InitializeVariables initializer(variables); root->traverse(&initializer); } const TExtensionBehavior& TCompiler::getExtensionBehavior() const { return extensionBehavior; } const ShBuiltInResources& TCompiler::getResources() const { return compileResources; } const ArrayBoundsClamper& TCompiler::getArrayBoundsClamper() const { return arrayBoundsClamper; } ShArrayIndexClampingStrategy TCompiler::getArrayIndexClampingStrategy() const { return clampingStrategy; } const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const { return builtInFunctionEmulator; }