// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/ParseContext.h" #include #include #include "compiler/preprocessor/SourceLocation.h" #include "compiler/translator/Cache.h" #include "compiler/translator/glslang.h" #include "compiler/translator/ValidateSwitch.h" #include "compiler/translator/ValidateGlobalInitializer.h" #include "compiler/translator/util.h" /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// // // Look at a '.' field selector string and change it into offsets // for a vector. // bool TParseContext::parseVectorFields(const TString &compString, int vecSize, TVectorFields &fields, const TSourceLoc &line) { fields.num = (int)compString.size(); if (fields.num > 4) { error(line, "illegal vector field selection", compString.c_str()); return false; } enum { exyzw, ergba, estpq } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString.c_str()); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(line, "vector field selection out of range", compString.c_str()); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i - 1]) { error(line, "illegal - vector component fields not from the same set", compString.c_str()); return false; } } } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Track whether errors have occurred. // void TParseContext::recover() { } // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, srcLoc, reason, token, extraInfo); } void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING, srcLoc, reason, token, extraInfo); } void TParseContext::outOfRangeError(bool isError, const TSourceLoc &loc, const char *reason, const char *token, const char *extraInfo) { if (isError) { error(loc, reason, token, extraInfo); recover(); } else { warning(loc, reason, token, extraInfo); } } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", op, extraInfo.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand << " (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand type", op, extraInfo.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc &line, const char *op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand types ", op, extraInfo.c_str()); } bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type) { if (!mChecksPrecisionErrors) return false; if (precision == EbpUndefined) { switch (type) { case EbtFloat: error(line, "No precision specified for (float)", ""); return true; case EbtInt: case EbtUInt: UNREACHABLE(); // there's always a predeclared qualifier error(line, "No precision specified (int)", ""); return true; default: if (IsSampler(type)) { error(line, "No precision specified (sampler)", ""); return true; } } } return false; } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if the was an error. // bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char *op, TIntermTyped *node) { TIntermSymbol *symNode = node->getAsSymbolNode(); TIntermBinary *binaryNode = node->getAsBinaryNode(); if (binaryNode) { bool errorReturn; switch (binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: return lValueErrorCheck(line, op, binaryNode->getLeft()); case EOpVectorSwizzle: errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); if (!errorReturn) { int offset[4] = {0, 0, 0, 0}; TIntermTyped *rightNode = binaryNode->getRight(); TIntermAggregate *aggrNode = rightNode->getAsAggregate(); for (TIntermSequence::iterator p = aggrNode->getSequence()->begin(); p != aggrNode->getSequence()->end(); p++) { int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0); offset[value]++; if (offset[value] > 1) { error(line, " l-value of swizzle cannot have duplicate components", op); return true; } } } return errorReturn; default: break; } error(line, " l-value required", op); return true; } const char *symbol = 0; if (symNode != 0) symbol = symNode->getSymbol().c_str(); const char *message = 0; switch (node->getQualifier()) { case EvqConst: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqFragmentIn: message = "can't modify an input"; break; case EvqVertexIn: message = "can't modify an input"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqVaryingIn: message = "can't modify a varying"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; default: // // Type that can't be written to? // if (node->getBasicType() == EbtVoid) { message = "can't modify void"; } if (IsSampler(node->getBasicType())) { message = "can't modify a sampler"; } } if (message == 0 && binaryNode == 0 && symNode == 0) { error(line, " l-value required", op); return true; } // // Everything else is okay, no error. // if (message == 0) return false; // // If we get here, we have an error and a message. // if (symNode) { std::stringstream extraInfoStream; extraInfoStream << "\"" << symbol << "\" (" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } else { std::stringstream extraInfoStream; extraInfoStream << "(" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } return true; } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // // Returns true if the was an error. // bool TParseContext::constErrorCheck(TIntermTyped *node) { if (node->getQualifier() == EvqConst) return false; error(node->getLine(), "constant expression required", ""); return true; } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // // Returns true if the was an error. // bool TParseContext::integerErrorCheck(TIntermTyped *node, const char *token) { if (node->isScalarInt()) return false; error(node->getLine(), "integer expression required", token); return true; } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // // Returns true if the was an error. // bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char *token) { if (global) return false; error(line, "only allowed at global scope", token); return true; } // // For now, keep it simple: if it starts "gl_", it's reserved, independent // of scope. Except, if the symbol table is at the built-in push-level, // which is when we are parsing built-ins. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a // webgl shader. // // Returns true if there was an error. // bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString &identifier) { static const char *reservedErrMsg = "reserved built-in name"; if (!symbolTable.atBuiltInLevel()) { if (identifier.compare(0, 3, "gl_") == 0) { error(line, reservedErrMsg, "gl_"); return true; } if (IsWebGLBasedSpec(mShaderSpec)) { if (identifier.compare(0, 6, "webgl_") == 0) { error(line, reservedErrMsg, "webgl_"); return true; } if (identifier.compare(0, 7, "_webgl_") == 0) { error(line, reservedErrMsg, "_webgl_"); return true; } if (mShaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) { error(line, reservedErrMsg, "css_"); return true; } } if (identifier.find("__") != TString::npos) { error(line, "identifiers containing two consecutive underscores (__) are reserved as " "possible future keywords", identifier.c_str()); return true; } } return false; } // // Make sure there is enough data provided to the constructor to build // something of the type of the constructor. Also returns the type of // the constructor. // // Returns true if there was an error in construction. // bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode *argumentsNode, TFunction &function, TOperator op, TType *type) { *type = function.getReturnType(); bool constructingMatrix = false; switch (op) { case EOpConstructMat2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4: constructingMatrix = true; break; default: break; } // // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument, so 'overfull' will become true. // size_t size = 0; bool constType = true; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (size_t i = 0; i < function.getParamCount(); ++i) { const TConstParameter ¶m = function.getParam(i); size += param.type->getObjectSize(); if (constructingMatrix && param.type->isMatrix()) matrixInMatrix = true; if (full) overFull = true; if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) full = true; if (param.type->getQualifier() != EvqConst) constType = false; if (param.type->isArray()) arrayArg = true; } if (constType) type->setQualifier(EvqConst); if (type->isArray()) { if (type->isUnsizedArray()) { type->setArraySize(static_cast(function.getParamCount())); } else if (static_cast(type->getArraySize()) != function.getParamCount()) { error(line, "array constructor needs one argument per array element", "constructor"); return true; } } if (arrayArg && op != EOpConstructStruct) { error(line, "constructing from a non-dereferenced array", "constructor"); return true; } if (matrixInMatrix && !type->isArray()) { if (function.getParamCount() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor"); return true; } } if (overFull) { error(line, "too many arguments", "constructor"); return true; } if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); return true; } if (!type->isMatrix() || !matrixInMatrix) { if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || (op == EOpConstructStruct && size < type->getObjectSize())) { error(line, "not enough data provided for construction", "constructor"); return true; } } if (argumentsNode == nullptr) { error(line, "constructor does not have any arguments", "constructor"); return true; } TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate(); for (TIntermNode *&argNode : *argumentsAgg->getSequence()) { TIntermTyped *argTyped = argNode->getAsTyped(); ASSERT(argTyped != nullptr); if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType())) { error(line, "cannot convert a sampler", "constructor"); return true; } if (argTyped->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor"); return true; } } return false; } // This function checks to see if a void variable has been declared and raise an error message for // such a case // // returns true in case of an error // bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString &identifier, const TBasicType &type) { if (type == EbtVoid) { error(line, "illegal use of type 'void'", identifier.c_str()); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped *type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { error(line, "boolean expression expected", ""); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType &pType) { if (pType.type != EbtBool || pType.isAggregate()) { error(line, "boolean expression expected", ""); return true; } return false; } bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType &pType, const char *reason) { if (pType.type == EbtStruct) { if (containsSampler(*pType.userDef)) { error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); return true; } return false; } else if (IsSampler(pType.type)) { error(line, reason, getBasicString(pType.type)); return true; } return false; } bool TParseContext::locationDeclaratorListCheck(const TSourceLoc &line, const TPublicType &pType) { if (pType.layoutQualifier.location != -1) { error(line, "location must only be specified for a single input or output variable", "location"); return true; } return false; } bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType &type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { error(line, "samplers cannot be output parameters", type.getBasicString()); return true; } return false; } bool TParseContext::containsSampler(const TType &type) { if (IsSampler(type.getBasicType())) return true; if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) { const TFieldList &fields = type.getStruct()->fields(); for (unsigned int i = 0; i < fields.size(); ++i) { if (containsSampler(*fields[i]->type())) return true; } } return false; } // // Do size checking for an array type's size. // // Returns true if there was an error. // bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped *expr, int &size) { TIntermConstantUnion *constant = expr->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't // fold as array size. if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) { error(line, "array size must be a constant integer expression", ""); size = 1; return true; } unsigned int unsignedSize = 0; if (constant->getBasicType() == EbtUInt) { unsignedSize = constant->getUConst(0); size = static_cast(unsignedSize); } else { size = constant->getIConst(0); if (size < 0) { error(line, "array size must be non-negative", ""); size = 1; return true; } unsignedSize = static_cast(size); } if (size == 0) { error(line, "array size must be greater than zero", ""); size = 1; return true; } // The size of arrays is restricted here to prevent issues further down the // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to // 4096 registers so this should be reasonable even for aggressively optimizable code. const unsigned int sizeLimit = 65536; if (unsignedSize > sizeLimit) { error(line, "array size too large", ""); size = 1; return true; } return false; } // // See if this qualifier can be an array. // // Returns true if there is an error. // bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, const TPublicType &type) { if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConst && mShaderVersion < 300)) { error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str()); return true; } return false; } // // See if this type can be an array. // // Returns true if there is an error. // bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, const TPublicType &type) { // // Can the type be an array? // if (type.array) { error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str()); return true; } // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section // 4.3.4). if (mShaderVersion >= 300 && type.type == EbtStruct && sh::IsVarying(type.qualifier)) { error(line, "cannot declare arrays of structs of this qualifier", TType(type).getCompleteString().c_str()); return true; } return false; } // // Enforce non-initializer type/qualifier rules. // // Returns true if there was an error. // bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString &identifier, TPublicType *type) { ASSERT(type != nullptr); if (type->qualifier == EvqConst) { // Make the qualifier make sense. type->qualifier = EvqTemporary; // Generate informative error messages for ESSL1. // In ESSL3 arrays and structures containing arrays can be constant. if (mShaderVersion < 300 && type->isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be " "initialized", identifier.c_str()); } else { error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); } return true; } if (type->isUnsizedArray()) { error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); return true; } return false; } // Do some simple checks that are shared between all variable declarations, // and update the symbol table. // // Returns true if declaring the variable succeeded. // bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type, TVariable **variable) { ASSERT((*variable) == nullptr); bool needsReservedErrorCheck = true; // gl_LastFragData may be redeclared with a new precision qualifier if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) { const TVariable *maxDrawBuffers = static_cast( symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); if (type.getArraySize() == maxDrawBuffers->getConstPointer()->getIConst()) { if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) { needsReservedErrorCheck = extensionErrorCheck(line, builtInSymbol->getExtension()); } } else { error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str()); return false; } } if (needsReservedErrorCheck && reservedErrorCheck(line, identifier)) return false; (*variable) = new TVariable(&identifier, type); if (!symbolTable.declare(*variable)) { error(line, "redefinition", identifier.c_str()); *variable = nullptr; return false; } if (voidErrorCheck(line, identifier, type.getBasicType())) return false; return true; } bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType *type) { if (qualifier != EvqConst && qualifier != EvqTemporary) { error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); return true; } if (qualifier == EvqConst && paramQualifier != EvqIn) { error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); return true; } if (qualifier == EvqConst) type->setQualifier(EvqConstReadOnly); else type->setQualifier(paramQualifier); return false; } bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString &extension) { const TExtensionBehavior &extBehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); if (iter == extBehavior.end()) { error(line, "extension", extension.c_str(), "is not supported"); return true; } // In GLSL ES, an extension's default behavior is "disable". if (iter->second == EBhDisable || iter->second == EBhUndefined) { error(line, "extension", extension.c_str(), "is disabled"); return true; } if (iter->second == EBhWarn) { warning(line, "extension", extension.c_str(), "is being used"); return false; } return false; } // These checks are common for all declarations starting a declarator list, and declarators that // follow an empty declaration. // bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation) { switch (publicType.qualifier) { case EvqVaryingIn: case EvqVaryingOut: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: if (publicType.type == EbtStruct) { error(identifierLocation, "cannot be used with a structure", getQualifierString(publicType.qualifier)); return true; } default: break; } if (publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType, "samplers must be uniform")) { return true; } // check for layout qualifier issues const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; if (layoutQualifier.matrixPacking != EmpUnspecified) { error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks"); return true; } if (layoutQualifier.blockStorage != EbsUnspecified) { error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks"); return true; } if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier)) { return true; } return false; } bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { if (layoutQualifier.location != -1) { error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs"); return true; } return false; } bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate) { for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) { TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); if (qual == EvqOut || qual == EvqInOut) { TIntermTyped *node = (*(aggregate->getSequence()))[i]->getAsTyped(); if (lValueErrorCheck(node->getLine(), "assign", node)) { error(node->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); recover(); return true; } } } return false; } void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation) { if (!sh::IsVaryingOut(qualifier) && qualifier != EvqFragmentOut) { error(invariantLocation, "Only out variables can be invariant.", "invariant"); recover(); } } bool TParseContext::supportsExtension(const char *extension) { const TExtensionBehavior &extbehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extbehavior.find(extension); return (iter != extbehavior.end()); } bool TParseContext::isExtensionEnabled(const char *extension) const { return ::IsExtensionEnabled(extensionBehavior(), extension); } void TParseContext::handleExtensionDirective(const TSourceLoc &loc, const char *extName, const char *behavior) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handleExtension(srcLoc, extName, behavior); } void TParseContext::handlePragmaDirective(const TSourceLoc &loc, const char *name, const char *value, bool stdgl) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = NULL; if (!symbol) { error(location, "undeclared identifier", name->c_str()); recover(); } else if (!symbol->isVariable()) { error(location, "variable expected", name->c_str()); recover(); } else { variable = static_cast(symbol); if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) && !variable->getExtension().empty() && extensionErrorCheck(location, variable->getExtension())) { recover(); } // Reject shaders using both gl_FragData and gl_FragColor TQualifier qualifier = variable->getType().getQualifier(); if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) { mUsesFragData = true; } else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) { mUsesFragColor = true; } if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) { mUsesSecondaryOutputs = true; } // This validation is not quite correct - it's only an error to write to // both FragData and FragColor. For simplicity, and because users shouldn't // be rewarded for reading from undefined varaibles, return an error // if they are both referenced, rather than assigned. if (mUsesFragData && mUsesFragColor) { const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; if (mUsesSecondaryOutputs) { errorMessage = "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" " and (gl_FragColor, gl_SecondaryFragColorEXT)"; } error(location, errorMessage, name->c_str()); recover(); } } if (!variable) { TType type(EbtFloat, EbpUndefined); TVariable *fakeVariable = new TVariable(name, type); symbolTable.declare(fakeVariable); variable = fakeVariable; } return variable; } TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = getNamedVariable(location, name, symbol); if (variable->getConstPointer()) { const TConstantUnion *constArray = variable->getConstPointer(); return intermediate.addConstantUnion(constArray, variable->getType(), location); } else { return intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), location); } } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise 0. // const TFunction *TParseContext::findFunction(const TSourceLoc &line, TFunction *call, int inputShaderVersion, bool *builtIn) { // First find by unmangled name to check whether the function name has been // hidden by a variable name or struct typename. // If a function is found, check for one with a matching argument list. const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn); if (symbol == 0 || symbol->isFunction()) { symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn); } if (symbol == 0) { error(line, "no matching overloaded function found", call->getName().c_str()); return 0; } if (!symbol->isFunction()) { error(line, "function name expected", call->getName().c_str()); return 0; } return static_cast(symbol); } // // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // // Returns true on error, false if no error // bool TParseContext::executeInitializer(const TSourceLoc &line, const TString &identifier, const TPublicType &pType, TIntermTyped *initializer, TIntermNode **intermNode) { ASSERT(intermNode != nullptr); TType type = TType(pType); TVariable *variable = nullptr; if (type.isUnsizedArray()) { type.setArraySize(initializer->getArraySize()); } if (!declareVariable(line, identifier, type, &variable)) { return true; } bool globalInitWarning = false; if (symbolTable.atGlobalLevel() && !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) { // Error message does not completely match behavior with ESSL 1.00, but // we want to steer developers towards only using constant expressions. error(line, "global variable initializers must be constant expressions", "="); return true; } if (globalInitWarning) { warning( line, "global variable initializers should be constant expressions " "(uniforms and globals are allowed in global initializers for legacy compatibility)", "="); } // // identifier must be of type constant, a global, or a temporary // TQualifier qualifier = variable->getType().getQualifier(); if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); return true; } // // test for and propagate constant // if (qualifier == EvqConst) { if (qualifier != initializer->getType().getQualifier()) { std::stringstream extraInfoStream; extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; std::string extraInfo = extraInfoStream.str(); error(line, " assigning non-constant to", "=", extraInfo.c_str()); variable->getType().setQualifier(EvqTemporary); return true; } if (type != initializer->getType()) { error(line, " non-matching types for const initializer ", variable->getType().getQualifierString()); variable->getType().setQualifier(EvqTemporary); return true; } // Save the constant folded value to the variable if possible. For example array // initializers are not folded, since that way copying the array literal to multiple places // in the shader is avoided. // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where // it would be beneficial. if (initializer->getAsConstantUnion()) { variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); *intermNode = nullptr; return false; } else if (initializer->getAsSymbolNode()) { const TSymbol *symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); const TVariable *tVar = static_cast(symbol); const TConstantUnion *constArray = tVar->getConstPointer(); if (constArray) { variable->shareConstPointer(constArray); *intermNode = nullptr; return false; } } } TIntermSymbol *intermSymbol = intermediate.addSymbol( variable->getUniqueId(), variable->getName(), variable->getType(), line); *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); if (*intermNode == nullptr) { assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return true; } return false; } TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier) { TPublicType returnType = typeSpecifier; returnType.qualifier = qualifier; returnType.invariant = invariant; returnType.layoutQualifier = layoutQualifier; if (mShaderVersion < 300) { if (typeSpecifier.array) { error(typeSpecifier.line, "not supported", "first-class array"); recover(); returnType.clearArrayness(); } if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } } else { if (!layoutQualifier.isEmpty()) { if (globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout")) { recover(); } } if (sh::IsVarying(qualifier) || qualifier == EvqVertexIn || qualifier == EvqFragmentOut) { es3InputOutputTypeCheck(qualifier, typeSpecifier, typeSpecifier.line); } } return returnType; } void TParseContext::es3InputOutputTypeCheck(const TQualifier qualifier, const TPublicType &type, const TSourceLoc &qualifierLocation) { // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. if (type.type == EbtBool) { error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); recover(); } // Specific restrictions apply for vertex shader inputs and fragment shader outputs. switch (qualifier) { case EvqVertexIn: // ESSL 3.00 section 4.3.4 if (type.array) { error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); recover(); } // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck return; case EvqFragmentOut: // ESSL 3.00 section 4.3.6 if (type.isMatrix()) { error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); recover(); } // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck return; default: break; } // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of // restrictions. bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt || type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) { error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier)); recover(); } if (type.type == EbtStruct) { // ESSL 3.00 sections 4.3.4 and 4.3.6. // These restrictions are only implied by the ESSL 3.00 spec, but // the ESSL 3.10 spec lists these restrictions explicitly. if (type.array) { error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier)); recover(); } if (type.isStructureContainingArrays()) { error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier)); recover(); } if (type.isStructureContainingType(EbtStruct)) { error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier)); recover(); } if (type.isStructureContainingType(EbtBool)) { error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier)); recover(); } } } TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc &identifierOrTypeLocation, const TString &identifier) { TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation); bool emptyDeclaration = (identifier == ""); mDeferredSingleDeclarationErrorCheck = emptyDeclaration; if (emptyDeclaration) { if (publicType.isUnsizedArray()) { // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an // error. It is assumed that this applies to empty declarations as well. error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str()); } } else { if (singleDeclarationErrorCheck(publicType, identifierOrTypeLocation)) recover(); if (nonInitErrorCheck(identifierOrTypeLocation, identifier, &publicType)) recover(); TVariable *variable = nullptr; if (!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable)) recover(); if (variable && symbol) symbol->setId(variable->getUniqueId()); } return intermediate.makeAggregate(symbol, identifierOrTypeLocation); } TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression) { mDeferredSingleDeclarationErrorCheck = false; if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); if (nonInitErrorCheck(identifierLocation, identifier, &publicType)) recover(); if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TType arrayType(publicType); int size; if (arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); TVariable *variable = nullptr; if (!declareVariable(identifierLocation, identifier, arrayType, &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.makeAggregate(symbol, identifierLocation); } TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); TIntermNode *intermNode = nullptr; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // Build intermediate representation // return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr; } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration( TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TPublicType arrayType(publicType); int size = 0; // If indexExpression is nullptr, then the array will eventually get its size implicitly from // the initializer. if (indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); // initNode will correspond to the whole of "type b[n] = initializer". TIntermNode *initNode = nullptr; if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr; } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, const TSourceLoc &identifierLoc, const TString *identifier, const TSymbol *symbol) { // invariant declaration if (globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying")) { recover(); } if (!symbol) { error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); recover(); return nullptr; } else { const TString kGlFrontFacing("gl_FrontFacing"); if (*identifier == kGlFrontFacing) { error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str()); recover(); return nullptr; } symbolTable.addInvariantVarying(std::string(identifier->c_str())); const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); ASSERT(variable); const TType &type = variable->getType(); TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); aggregate->setOp(EOpInvariantDeclaration); return aggregate; } } TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if (nonInitErrorCheck(identifierLocation, identifier, &publicType)) recover(); TVariable *variable = nullptr; if (!declareVariable(identifierLocation, identifier, TType(publicType), &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &arrayLocation, TIntermTyped *indexExpression) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if (nonInitErrorCheck(identifierLocation, identifier, &publicType)) recover(); if (arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType)) { recover(); } else { TType arrayType = TType(publicType); int size; if (arraySizeErrorCheck(arrayLocation, indexExpression, size)) { recover(); } arrayType.setArraySize(size); TVariable *variable = nullptr; if (!declareVariable(identifierLocation, identifier, arrayType, &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if (variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } return nullptr; } TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); TIntermNode *intermNode = nullptr; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // build the intermediate representation // if (intermNode) { return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation); } else { return aggregateDeclaration; } } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredSingleDeclarationErrorCheck) { if (singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TPublicType arrayType(publicType); int size = 0; // If indexExpression is nullptr, then the array will eventually get its size implicitly from // the initializer. if (indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); // initNode will correspond to the whole of "b[n] = initializer". TIntermNode *initNode = nullptr; if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { if (initNode) { return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation); } else { return aggregateDeclaration; } } else { recover(); return nullptr; } } void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) { if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); recover(); return; } const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; ASSERT(!layoutQualifier.isEmpty()); if (mShaderVersion < 300) { error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout"); recover(); return; } if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier)) { recover(); return; } if (layoutQualifier.matrixPacking != EmpUnspecified) { mDefaultMatrixPacking = layoutQualifier.matrixPacking; } if (layoutQualifier.blockStorage != EbsUnspecified) { mDefaultBlockStorage = layoutQualifier.blockStorage; } } TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location) { // Note: symbolTableFunction could be the same as function if this is the first declaration. // Either way the instance in the symbol table is used to track whether the function is declared // multiple times. TFunction *symbolTableFunction = static_cast(symbolTable.find(function.getMangledName(), getShaderVersion())); if (symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100) { // ESSL 1.00.17 section 4.2.7. // Doesn't apply to ESSL 3.00.4: see section 4.2.3. error(location, "duplicate function prototype declarations are not allowed", "function"); recover(); } symbolTableFunction->setHasPrototypeDeclaration(); TIntermAggregate *prototype = new TIntermAggregate; prototype->setType(function.getReturnType()); prototype->setName(function.getMangledName()); prototype->setFunctionId(function.getUniqueId()); for (size_t i = 0; i < function.getParamCount(); i++) { const TConstParameter ¶m = function.getParam(i); if (param.name != 0) { TVariable variable(param.name, *param.type); TIntermSymbol *paramSymbol = intermediate.addSymbol( variable.getUniqueId(), variable.getName(), variable.getType(), location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } else { TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } } prototype->setOp(EOpPrototype); symbolTable.pop(); if (!symbolTable.atGlobalLevel()) { // ESSL 3.00.4 section 4.2.4. error(location, "local function prototype declarations are not allowed", "function"); recover(); } return prototype; } TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location) { //?? Check that all paths return a value if return type != void ? // May be best done as post process phase on intermediate code if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) { error(location, "function does not return a value:", "", function.getName().c_str()); recover(); } TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location); intermediate.setAggregateOperator(aggregate, EOpFunction, location); aggregate->setName(function.getMangledName().c_str()); aggregate->setType(function.getReturnType()); aggregate->setFunctionId(function.getUniqueId()); symbolTable.pop(); return aggregate; } void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut) { const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); if (builtIn) { error(location, "built-in functions cannot be redefined", function->getName().c_str()); recover(); } TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); // // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurance. // if (prevDec->isDefined()) { // Then this function already has a body. error(location, "function already has a body", function->getName().c_str()); recover(); } prevDec->setDefined(); // // Overload the unique ID of the definition to be the same unique ID as the declaration. // Eventually we will probably want to have only a single definition and just swap the // arguments to be the definition's arguments. // function->setUniqueId(prevDec->getUniqueId()); // Raise error message if main function takes any parameters or return anything other than void if (function->getName() == "main") { if (function->getParamCount() > 0) { error(location, "function cannot take any parameter(s)", function->getName().c_str()); recover(); } if (function->getReturnType().getBasicType() != EbtVoid) { error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value"); recover(); } } // // Remember the return type for later checking for RETURN statements. // mCurrentFunctionType = &(prevDec->getReturnType()); mFunctionReturnsValue = false; // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate *paramNodes = new TIntermAggregate; for (size_t i = 0; i < function->getParamCount(); i++) { const TConstParameter ¶m = function->getParam(i); if (param.name != 0) { TVariable *variable = new TVariable(param.name, *param.type); // // Insert the parameters with name in the symbol table. // if (!symbolTable.declare(variable)) { error(location, "redefinition", variable->getName().c_str()); recover(); paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); continue; } // // Add the parameter to the HIL // TIntermSymbol *symbol = intermediate.addSymbol( variable->getUniqueId(), variable->getName(), variable->getType(), location); paramNodes = intermediate.growAggregate(paramNodes, symbol, location); } else { paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); } } intermediate.setAggregateOperator(paramNodes, EOpParameters, location); *aggregateOut = paramNodes; setLoopNestingLevel(0); } TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) { // // We don't know at this point whether this is a function definition or a prototype. // The definition production code will check for redefinitions. // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. // // Return types and parameter qualifiers must match in all redeclarations, so those are checked // here. // TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); if (prevDec) { if (prevDec->getReturnType() != function->getReturnType()) { error(location, "overloaded functions must have the same return type", function->getReturnType().getBasicString()); recover(); } for (size_t i = 0; i < prevDec->getParamCount(); ++i) { if (prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier()) { error(location, "overloaded functions must have the same parameter qualifiers", function->getParam(i).type->getQualifierString()); recover(); } } } // // Check for previously declared variables using the same name. // TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); if (prevSym) { if (!prevSym->isFunction()) { error(location, "redefinition", function->getName().c_str(), "function"); recover(); } } else { // Insert the unmangled name to detect potential future redefinition as a variable. TFunction *newFunction = new TFunction(NewPoolTString(function->getName().c_str()), &function->getReturnType()); symbolTable.getOuterLevel()->insertUnmangled(newFunction); } // We're at the inner scope level of the function's arguments and body statement. // Add the function prototype to the surrounding scope instead. symbolTable.getOuterLevel()->insert(function); // // If this is a redeclaration, it could also be a definition, in which case, we want to use the // variable names from this one, and not the one that's // being redeclared. So, pass back up this declaration, not the one in the symbol table. // return function; } TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) { TPublicType publicType = publicTypeIn; if (publicType.isStructSpecifier) { error(publicType.line, "constructor can't be a structure definition", getBasicString(publicType.type)); recover(); } TOperator op = EOpNull; if (publicType.userDef) { op = EOpConstructStruct; } else { switch (publicType.type) { case EbtFloat: if (publicType.isMatrix()) { switch (publicType.getCols()) { case 2: switch (publicType.getRows()) { case 2: op = EOpConstructMat2; break; case 3: op = EOpConstructMat2x3; break; case 4: op = EOpConstructMat2x4; break; } break; case 3: switch (publicType.getRows()) { case 2: op = EOpConstructMat3x2; break; case 3: op = EOpConstructMat3; break; case 4: op = EOpConstructMat3x4; break; } break; case 4: switch (publicType.getRows()) { case 2: op = EOpConstructMat4x2; break; case 3: op = EOpConstructMat4x3; break; case 4: op = EOpConstructMat4; break; } break; } } else { switch (publicType.getNominalSize()) { case 1: op = EOpConstructFloat; break; case 2: op = EOpConstructVec2; break; case 3: op = EOpConstructVec3; break; case 4: op = EOpConstructVec4; break; } } break; case EbtInt: switch (publicType.getNominalSize()) { case 1: op = EOpConstructInt; break; case 2: op = EOpConstructIVec2; break; case 3: op = EOpConstructIVec3; break; case 4: op = EOpConstructIVec4; break; } break; case EbtUInt: switch (publicType.getNominalSize()) { case 1: op = EOpConstructUInt; break; case 2: op = EOpConstructUVec2; break; case 3: op = EOpConstructUVec3; break; case 4: op = EOpConstructUVec4; break; } break; case EbtBool: switch (publicType.getNominalSize()) { case 1: op = EOpConstructBool; break; case 2: op = EOpConstructBVec2; break; case 3: op = EOpConstructBVec3; break; case 4: op = EOpConstructBVec4; break; } break; default: break; } if (op == EOpNull) { error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); recover(); publicType.type = EbtFloat; op = EOpConstructFloat; } } TString tempString; const TType *type = new TType(publicType); return new TFunction(&tempString, type, op); } // This function is used to test for the correctness of the parameters passed to various constructor // functions and also convert them to the right datatype if it is allowed and required. // // Returns 0 for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, TType *type, TOperator op, TFunction *fnCall, const TSourceLoc &line) { TIntermAggregate *constructor = arguments->getAsAggregate(); ASSERT(constructor != nullptr); if (type->isArray()) { // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of // the array. TIntermSequence *args = constructor->getSequence(); for (size_t i = 0; i < args->size(); i++) { const TType &argType = (*args)[i]->getAsTyped()->getType(); // It has already been checked that the argument is not an array. ASSERT(!argType.isArray()); if (!argType.sameElementType(*type)) { error(line, "Array constructor argument has an incorrect type", "Error"); recover(); return nullptr; } } } else if (op == EOpConstructStruct) { const TFieldList &fields = type->getStruct()->fields(); TIntermSequence *args = constructor->getSequence(); for (size_t i = 0; i < fields.size(); i++) { if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type()) { error(line, "Structure constructor arguments do not match structure fields", "Error"); recover(); return 0; } } } // Turn the argument list itself into a constructor constructor->setOp(op); constructor->setLine(line); ASSERT(constructor->isConstructor()); // Need to set type before setPrecisionFromChildren() because bool doesn't have precision. constructor->setType(*type); // Structs should not be precision qualified, the individual members may be. // Built-in types on the other hand should be precision qualified. if (op != EOpConstructStruct) { constructor->setPrecisionFromChildren(); type->setPrecision(constructor->getPrecision()); } TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor); if (constConstructor) { return constConstructor; } return constructor; } // // This function returns the tree representation for the vector field(s) being accessed from contant // vector. // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a // contant node is returned, else an aggregate node is returned (for v.xy). The input to this // function could either be the symbol node or it could be the intermediate tree representation of // accessing fields in a constant structure or column of a constant matrix. // TIntermTyped *TParseContext::addConstVectorNode(TVectorFields &fields, TIntermConstantUnion *node, const TSourceLoc &line, bool outOfRangeIndexIsError) { const TConstantUnion *unionArray = node->getUnionArrayPointer(); ASSERT(unionArray); TConstantUnion *constArray = new TConstantUnion[fields.num]; for (int i = 0; i < fields.num; i++) { if (fields.offsets[i] >= node->getType().getNominalSize()) { std::stringstream extraInfoStream; extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str()); fields.offsets[i] = node->getType().getNominalSize() - 1; } constArray[i] = unionArray[fields.offsets[i]]; } return intermediate.addConstantUnion(constArray, node->getType(), line); } // // This function returns the column being accessed from a constant matrix. The values are retrieved // from the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). // The input to the function could either be a symbol node (m[0] where m is a constant matrix)that // represents a constant matrix or it could be the tree representation of the constant matrix // (s.m1[0] where s is a constant structure) // TIntermTyped *TParseContext::addConstMatrixNode(int index, TIntermConstantUnion *node, const TSourceLoc &line, bool outOfRangeIndexIsError) { if (index >= node->getType().getCols()) { std::stringstream extraInfoStream; extraInfoStream << "matrix field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str()); index = node->getType().getCols() - 1; } const TConstantUnion *unionArray = node->getUnionArrayPointer(); int size = node->getType().getCols(); return intermediate.addConstantUnion(&unionArray[size * index], node->getType(), line); } // // This function returns an element of an array accessed from a constant array. The values are // retrieved from the symbol table and parse-tree is built for the type of the element. The input // to the function could either be a symbol node (a[0] where a is a constant array)that represents a // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a // constant structure) // TIntermTyped *TParseContext::addConstArrayNode(int index, TIntermConstantUnion *node, const TSourceLoc &line, bool outOfRangeIndexIsError) { TType arrayElementType = node->getType(); arrayElementType.clearArrayness(); if (index >= node->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str()); index = node->getType().getArraySize() - 1; } size_t arrayElementSize = arrayElementType.getObjectSize(); const TConstantUnion *unionArray = node->getUnionArrayPointer(); return intermediate.addConstantUnion(&unionArray[arrayElementSize * index], node->getType(), line); } // // This function returns the value of a particular field inside a constant structure from the symbol // table. // If there is an embedded/nested struct, it appropriately calls addConstStructNested or // addConstStructFromAggr function and returns the parse-tree with the values of the embedded/nested // struct. // TIntermTyped *TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc &line) { const TFieldList &fields = node->getType().getStruct()->fields(); size_t instanceSize = 0; for (size_t index = 0; index < fields.size(); ++index) { if (fields[index]->name() == identifier) { break; } else { instanceSize += fields[index]->type()->getObjectSize(); } } TIntermTyped *typedNode; TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); if (tempConstantNode) { const TConstantUnion *constArray = tempConstantNode->getUnionArrayPointer(); // type will be changed in the calling function typedNode = intermediate.addConstantUnion(constArray + instanceSize, tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the structure", "Error"); recover(); return 0; } return typedNode; } // // Interface/uniform blocks // TIntermAggregate *TParseContext::addInterfaceBlock(const TPublicType &typeQualifier, const TSourceLoc &nameLine, const TString &blockName, TFieldList *fieldList, const TString *instanceName, const TSourceLoc &instanceLine, TIntermTyped *arrayIndex, const TSourceLoc &arrayIndexLine) { if (reservedErrorCheck(nameLine, blockName)) recover(); if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform"); recover(); } TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier)) { recover(); } if (blockLayoutQualifier.matrixPacking == EmpUnspecified) { blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; } if (blockLayoutQualifier.blockStorage == EbsUnspecified) { blockLayoutQualifier.blockStorage = mDefaultBlockStorage; } TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName); if (!symbolTable.declare(blockNameSymbol)) { error(nameLine, "redefinition", blockName.c_str(), "interface block name"); recover(); } // check for sampler types and apply layout qualifiers for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = field->type(); if (IsSampler(fieldType->getBasicType())) { error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks"); recover(); } const TQualifier qualifier = fieldType->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqUniform: break; default: error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); recover(); break; } // check layout qualifiers TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier)) { recover(); } if (fieldLayoutQualifier.blockStorage != EbsUnspecified) { error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); recover(); } if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) { fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; } else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) { warning(field->line(), "extraneous layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "only has an effect on matrix types"); } fieldType->setLayoutQualifier(fieldLayoutQualifier); } // add array index int arraySize = 0; if (arrayIndex != NULL) { if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize)) recover(); } TInterfaceBlock *interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize); TString symbolName = ""; int symbolId = 0; if (!instanceName) { // define symbols for the members of the interface block for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = field->type(); // set parent pointer of the field variable fieldType->setInterfaceBlock(interfaceBlock); TVariable *fieldVariable = new TVariable(&field->name(), *fieldType); fieldVariable->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(fieldVariable)) { error(field->line(), "redefinition", field->name().c_str(), "interface block member name"); recover(); } } } else { if (reservedErrorCheck(instanceLine, *instanceName)) recover(); // add a symbol for this interface block TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); instanceTypeDef->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(instanceTypeDef)) { error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name"); recover(); } symbolId = instanceTypeDef->getUniqueId(); symbolName = instanceTypeDef->getName(); } TIntermAggregate *aggregate = intermediate.makeAggregate( intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine); aggregate->setOp(EOpDeclaration); exitStructDeclaration(); return aggregate; } bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) { ++mStructNestingLevel; // Embedded structure definitions are not supported per GLSL ES spec. // They aren't allowed in GLSL either, but we need to detect this here // so we don't rely on the GLSL compiler to catch it. if (mStructNestingLevel > 1) { error(line, "", "Embedded struct definitions are not allowed"); return true; } return false; } void TParseContext::exitStructDeclaration() { --mStructNestingLevel; } namespace { const int kWebGLMaxStructNesting = 4; } // namespace bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field) { if (!IsWebGLBasedSpec(mShaderSpec)) { return false; } if (field.type()->getBasicType() != EbtStruct) { return false; } // We're already inside a structure definition at this point, so add // one to the field's struct nesting. if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) { std::stringstream reasonStream; reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; std::string reason = reasonStream.str(); error(line, reason.c_str(), field.name().c_str(), ""); return true; } return false; } // // Parse an array index expression // TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression) { TIntermTyped *indexedExpression = NULL; if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) { if (baseExpression->getAsSymbolNode()) { error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str()); } else { error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); } recover(); } TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able // to constant fold all constant expressions. Right now we don't allow indexing interface blocks // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the // index is a constant expression. if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) { if (baseExpression->isInterfaceBlock()) { error( location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions"); recover(); } else if (baseExpression->getQualifier() == EvqFragmentOut) { error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions"); recover(); } else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) { error(location, "", "[", "array index for gl_FragData must be constant zero"); recover(); } } if (indexConstantUnion) { // If the index is not qualified as constant, the behavior in the spec is undefined. This // applies even if ANGLE has been able to constant fold it (ANGLE may constant fold // expressions that are not constant expressions). The most compatible way to handle this // case is to report a warning instead of an error and force the index to be in the // correct range. bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; int index = indexConstantUnion->getIConst(0); if (index < 0) { std::stringstream infoStream; infoStream << index; std::string info = infoStream.str(); outOfRangeError(outOfRangeIndexIsError, location, "negative index", info.c_str()); index = 0; } TIntermConstantUnion *baseConstantUnion = baseExpression->getAsConstantUnion(); if (baseConstantUnion) { if (baseExpression->isArray()) { // constant folding for array indexing indexedExpression = addConstArrayNode(index, baseConstantUnion, location, outOfRangeIndexIsError); } else if (baseExpression->isVector()) { // constant folding for vector indexing TVectorFields fields; fields.num = 1; fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array indexedExpression = addConstVectorNode(fields, baseConstantUnion, location, outOfRangeIndexIsError); } else if (baseExpression->isMatrix()) { // constant folding for matrix indexing indexedExpression = addConstMatrixNode(index, baseConstantUnion, location, outOfRangeIndexIsError); } } else { int safeIndex = -1; if (baseExpression->isArray()) { if (baseExpression->getQualifier() == EvqFragData && index > 0) { if (mShaderSpec == SH_WEBGL2_SPEC) { // Error has been already generated if index is not const. if (indexExpression->getQualifier() == EvqConst) { error(location, "", "[", "array index for gl_FragData must be constant zero"); recover(); } safeIndex = 0; } else if (!isExtensionEnabled("GL_EXT_draw_buffers")) { outOfRangeError(outOfRangeIndexIsError, location, "", "[", "array index for gl_FragData must be zero when " "GL_EXT_draw_buffers is disabled"); safeIndex = 0; } } // Only do generic out-of-range check if similar error hasn't already been reported. if (safeIndex < 0 && index >= baseExpression->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array index out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, location, "", "[", extraInfo.c_str()); safeIndex = baseExpression->getType().getArraySize() - 1; } } else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index) { std::stringstream extraInfoStream; extraInfoStream << "field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); outOfRangeError(outOfRangeIndexIsError, location, "", "[", extraInfo.c_str()); safeIndex = baseExpression->getType().getNominalSize() - 1; } // Data of constant unions can't be changed, because it may be shared with other // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new // sanitized object. if (safeIndex != -1) { TConstantUnion *safeConstantUnion = new TConstantUnion(); safeConstantUnion->setIConst(safeIndex); indexConstantUnion->replaceConstantUnion(safeConstantUnion); } indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); } } else { indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); } if (indexedExpression == 0) { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setFConst(0.0f); indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location); } else if (baseExpression->isArray()) { TType indexedType = baseExpression->getType(); indexedType.clearArrayness(); indexedExpression->setType(indexedType); } else if (baseExpression->isMatrix()) { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, static_cast(baseExpression->getRows()))); } else if (baseExpression->isVector()) { indexedExpression->setType( TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary)); } else { indexedExpression->setType(baseExpression->getType()); } if (baseExpression->getType().getQualifier() == EvqConst && indexExpression->getType().getQualifier() == EvqConst) { indexedExpression->getTypePointer()->setQualifier(EvqConst); } else { indexedExpression->getTypePointer()->setQualifier(EvqTemporary); } return indexedExpression; } TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation, const TString &fieldString, const TSourceLoc &fieldLocation) { TIntermTyped *indexedExpression = NULL; if (baseExpression->isArray()) { error(fieldLocation, "cannot apply dot operator to an array", "."); recover(); } if (baseExpression->isVector()) { TVectorFields fields; if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation)) { fields.num = 1; fields.offsets[0] = 0; recover(); } if (baseExpression->getAsConstantUnion()) { // constant folding for vector fields indexedExpression = addConstVectorNode(fields, baseExpression->getAsConstantUnion(), fieldLocation, true); } else { TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation); indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); } if (indexedExpression == nullptr) { recover(); indexedExpression = baseExpression; } else { // Note that the qualifier set here will be corrected later. indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, (unsigned char)(fieldString).size())); } } else if (baseExpression->getBasicType() == EbtStruct) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getStruct()->fields(); if (fields.empty()) { error(dotLocation, "structure has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { if (baseExpression->getAsConstantUnion()) { indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); if (indexedExpression == 0) { recover(); indexedExpression = baseExpression; } else { indexedExpression->setType(*fields[i]->type()); } } else { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setIConst(i); TIntermTyped *index = intermediate.addConstantUnion( unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } } else { error(dotLocation, " no such field in structure", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else if (baseExpression->isInterfaceBlock()) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); if (fields.empty()) { error(dotLocation, "interface block has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setIConst(i); TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } else { error(dotLocation, " no such field in interface block", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else { if (mShaderVersion < 300) { error(dotLocation, " field selection requires structure or vector on left hand side", fieldString.c_str()); } else { error(dotLocation, " field selection requires structure, vector, or interface block on left hand " "side", fieldString.c_str()); } recover(); indexedExpression = baseExpression; } if (baseExpression->getQualifier() == EvqConst) { indexedExpression->getTypePointer()->setQualifier(EvqConst); } else { indexedExpression->getTypePointer()->setQualifier(EvqTemporary); } return indexedExpression; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc &qualifierTypeLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if (qualifierType == "shared") { qualifier.blockStorage = EbsShared; } else if (qualifierType == "packed") { qualifier.blockStorage = EbsPacked; } else if (qualifierType == "std140") { qualifier.blockStorage = EbsStd140; } else if (qualifierType == "row_major") { qualifier.matrixPacking = EmpRowMajor; } else if (qualifierType == "column_major") { qualifier.matrixPacking = EmpColumnMajor; } else if (qualifierType == "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument"); recover(); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); recover(); } return qualifier; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc &qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc &intValueLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if (qualifierType != "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments"); recover(); } else { // must check that location is non-negative if (intValue < 0) { error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative"); recover(); } else { qualifier.location = intValue; } } return qualifier; } TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier) { TLayoutQualifier joinedQualifier = leftQualifier; if (rightQualifier.location != -1) { joinedQualifier.location = rightQualifier.location; } if (rightQualifier.matrixPacking != EmpUnspecified) { joinedQualifier.matrixPacking = rightQualifier.matrixPacking; } if (rightQualifier.blockStorage != EbsUnspecified) { joinedQualifier.blockStorage = rightQualifier.blockStorage; } return joinedQualifier; } TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier, const TSourceLoc &storageLoc, TQualifier storageQualifier) { TQualifier mergedQualifier = EvqSmoothIn; if (storageQualifier == EvqFragmentIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqVertexOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else { error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier)); recover(); mergedQualifier = storageQualifier; } TPublicType type; type.setBasic(EbtVoid, mergedQualifier, storageLoc); return type; } TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList) { if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type)) { recover(); } for (unsigned int i = 0; i < fieldList->size(); ++i) { // // Careful not to replace already known aspects of type, like array-ness // TType *type = (*fieldList)[i]->type(); type->setBasicType(typeSpecifier.type); type->setPrimarySize(typeSpecifier.primarySize); type->setSecondarySize(typeSpecifier.secondarySize); type->setPrecision(typeSpecifier.precision); type->setQualifier(typeSpecifier.qualifier); type->setLayoutQualifier(typeSpecifier.layoutQualifier); // don't allow arrays of arrays if (type->isArray()) { if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier)) recover(); } if (typeSpecifier.array) type->setArraySize(typeSpecifier.arraySize); if (typeSpecifier.userDef) { type->setStruct(typeSpecifier.userDef->getStruct()); } if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) { recover(); } } return fieldList; } TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine, const TString *structName, TFieldList *fieldList) { TStructure *structure = new TStructure(structName, fieldList); TType *structureType = new TType(structure); // Store a bool in the struct if we're at global scope, to allow us to // skip the local struct scoping workaround in HLSL. structure->setUniqueId(TSymbolTable::nextUniqueId()); structure->setAtGlobalScope(symbolTable.atGlobalLevel()); if (!structName->empty()) { if (reservedErrorCheck(nameLine, *structName)) { recover(); } TVariable *userTypeDef = new TVariable(structName, *structureType, true); if (!symbolTable.declare(userTypeDef)) { error(nameLine, "redefinition", structName->c_str(), "struct"); recover(); } } // ensure we do not specify any storage qualifiers on the struct members for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) { const TField &field = *(*fieldList)[typeListIndex]; const TQualifier qualifier = field.type()->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqTemporary: break; default: error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); recover(); break; } } TPublicType publicType; publicType.setBasic(EbtStruct, EvqTemporary, structLine); publicType.userDef = structureType; publicType.isStructSpecifier = true; exitStructDeclaration(); return publicType; } TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc) { TBasicType switchType = init->getBasicType(); if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || init->isVector()) { error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); recover(); return nullptr; } if (statementList) { if (!ValidateSwitch::validate(switchType, this, statementList, loc)) { recover(); return nullptr; } } TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); if (node == nullptr) { error(loc, "erroneous switch statement", "switch"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "case labels need to be inside switch statements", "case"); recover(); return nullptr; } if (condition == nullptr) { error(loc, "case label must have a condition", "case"); recover(); return nullptr; } if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || condition->isMatrix() || condition->isArray() || condition->isVector()) { error(condition->getLine(), "case label must be a scalar integer", "case"); recover(); } TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't // fold in case labels. if (condition->getQualifier() != EvqConst || conditionConst == nullptr) { error(condition->getLine(), "case label must be constant", "case"); recover(); } TIntermCase *node = intermediate.addCase(condition, loc); if (node == nullptr) { error(loc, "erroneous case statement", "case"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "default labels need to be inside switch statements", "default"); recover(); return nullptr; } TIntermCase *node = intermediate.addCase(nullptr, loc); if (node == nullptr) { error(loc, "erroneous default statement", "default"); recover(); return nullptr; } return node; } TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType) { if (child == nullptr) { return nullptr; } switch (op) { case EOpLogicalNot: if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || child->isVector()) { return nullptr; } break; case EOpBitwiseNot: if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || child->isMatrix() || child->isArray()) { return nullptr; } break; case EOpPostIncrement: case EOpPreIncrement: case EOpPostDecrement: case EOpPreDecrement: case EOpNegative: case EOpPositive: if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || child->isArray()) { return nullptr; } // Operators for built-ins are already type checked against their prototype. default: break; } return intermediate.addUnaryMath(op, child, loc, funcReturnType); } TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); if (node == nullptr) { unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); recover(); return child; } return node; } TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { if (lValueErrorCheck(loc, GetOperatorString(op), child)) recover(); return addUnaryMath(op, child, loc); } bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (left->isArray() || right->isArray()) { if (mShaderVersion < 300) { error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } if (left->isArray() != right->isArray()) { error(loc, "array / non-array mismatch", GetOperatorString(op)); return false; } switch (op) { case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: break; default: error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } // At this point, size of implicitly sized arrays should be resolved. if (left->getArraySize() != right->getArraySize()) { error(loc, "array size mismatch", GetOperatorString(op)); return false; } } // Check ops which require integer / ivec parameters bool isBitShift = false; switch (op) { case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: // Unsigned can be bit-shifted by signed and vice versa, but we need to // check that the basic type is an integer type. isBitShift = true; if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) { return false; } break; case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: // It is enough to check the type of only one operand, since later it // is checked that the operand types match. if (!IsInteger(left->getBasicType())) { return false; } break; default: break; } // GLSL ES 1.00 and 3.00 do not support implicit type casting. // So the basic type should usually match. if (!isBitShift && left->getBasicType() != right->getBasicType()) { return false; } // Check that type sizes match exactly on ops that require that. // Also check restrictions for structs that contain arrays or samplers. switch (op) { case EOpAssign: case EOpInitialize: case EOpEqual: case EOpNotEqual: // ESSL 1.00 sections 5.7, 5.8, 5.9 if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) { error(loc, "undefined operation for structs containing arrays", GetOperatorString(op)); return false; } // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, // we interpret the spec so that this extends to structs containing samplers, // similarly to ESSL 1.00 spec. if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && left->getType().isStructureContainingSamplers()) { error(loc, "undefined operation for structs containing samplers", GetOperatorString(op)); return false; } case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if ((left->getNominalSize() != right->getNominalSize()) || (left->getSecondarySize() != right->getSecondarySize())) { return false; } default: break; } return true; } TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (!binaryOpCommonCheck(op, left, right, loc)) return nullptr; switch (op) { case EOpEqual: case EOpNotEqual: break; case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: ASSERT(!left->isArray() && !right->isArray()); if (left->isMatrix() || left->isVector() || left->getBasicType() == EbtStruct) { return nullptr; } break; case EOpLogicalOr: case EOpLogicalXor: case EOpLogicalAnd: ASSERT(!left->isArray() && !right->isArray()); if (left->getBasicType() != EbtBool || left->isMatrix() || left->isVector()) { return nullptr; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpMul: ASSERT(!left->isArray() && !right->isArray()); if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool) { return nullptr; } break; case EOpIMod: ASSERT(!left->isArray() && !right->isArray()); // Note that this is only for the % operator, not for mod() if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) { return nullptr; } break; // Note that for bitwise ops, type checking is done in promote() to // share code between ops and compound assignment default: break; } return intermediate.addBinaryMath(op, left, right, loc); } TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setBConst(false); return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), loc); } return node; } TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (binaryOpCommonCheck(op, left, right, loc)) { return intermediate.addAssign(op, left, right, loc); } return nullptr; } TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = createAssign(op, left, right, loc); if (node == nullptr) { assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermTyped *TParseContext::addComma(TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { return intermediate.addComma(left, right, loc, mShaderVersion); } TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) { switch (op) { case EOpContinue: if (mLoopNestingLevel <= 0) { error(loc, "continue statement only allowed in loops", ""); recover(); } break; case EOpBreak: if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) { error(loc, "break statement only allowed in loops and switch statements", ""); recover(); } break; case EOpReturn: if (mCurrentFunctionType->getBasicType() != EbtVoid) { error(loc, "non-void function must return a value", "return"); recover(); } break; default: // No checks for discard break; } return intermediate.addBranch(op, loc); } TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc) { ASSERT(op == EOpReturn); mFunctionReturnsValue = true; if (mCurrentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return"); recover(); } else if (*mCurrentFunctionType != returnValue->getType()) { error(loc, "function return is not matching type:", "return"); recover(); } return intermediate.addBranch(op, returnValue, loc); } void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall) { ASSERT(!functionCall->isUserDefined()); const TString &name = functionCall->getName(); TIntermNode *offset = nullptr; TIntermSequence *arguments = functionCall->getSequence(); if (name.compare(0, 16, "texelFetchOffset") == 0 || name.compare(0, 16, "textureLodOffset") == 0 || name.compare(0, 20, "textureProjLodOffset") == 0 || name.compare(0, 17, "textureGradOffset") == 0 || name.compare(0, 21, "textureProjGradOffset") == 0) { offset = arguments->back(); } else if (name.compare(0, 13, "textureOffset") == 0 || name.compare(0, 17, "textureProjOffset") == 0) { // A bias parameter might follow the offset parameter. ASSERT(arguments->size() >= 3); offset = (*arguments)[2]; } if (offset != nullptr) { TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion) { TString unmangledName = TFunction::unmangleName(name); error(functionCall->getLine(), "Texture offset must be a constant expression", unmangledName.c_str()); recover(); } else { ASSERT(offsetConstantUnion->getBasicType() == EbtInt); size_t size = offsetConstantUnion->getType().getObjectSize(); const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer(); for (size_t i = 0u; i < size; ++i) { int offsetValue = values[i].getIConst(); if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset) { std::stringstream tokenStream; tokenStream << offsetValue; std::string token = tokenStream.str(); error(offset->getLine(), "Texture offset value out of valid range", token.c_str()); recover(); } } } } } TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError) { *fatalError = false; TOperator op = fnCall->getBuiltInOp(); TIntermTyped *callNode = nullptr; if (thisNode != nullptr) { TConstantUnion *unionArray = new TConstantUnion[1]; int arraySize = 0; TIntermTyped *typedThis = thisNode->getAsTyped(); if (fnCall->getName() != "length") { error(loc, "invalid method", fnCall->getName().c_str()); recover(); } else if (paramNode != nullptr) { error(loc, "method takes no parameters", "length"); recover(); } else if (typedThis == nullptr || !typedThis->isArray()) { error(loc, "length can only be called on arrays", "length"); recover(); } else { arraySize = typedThis->getArraySize(); if (typedThis->getAsSymbolNode() == nullptr) { // This code path can be hit with expressions like these: // (a = b).length() // (func()).length() // (int[3](0, 1, 2)).length() // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid // expression. // It allows "An array name with the length method applied" in contrast to GLSL 4.4 // spec section 5.9 which allows "An array, vector or matrix expression with the // length method applied". error(loc, "length can only be called on array names, not on array expressions", "length"); recover(); } } unionArray->setIConst(arraySize); callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc); } else if (op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid, EbpUndefined); // use this to get the type back if (!constructorErrorCheck(loc, paramNode, *fnCall, op, &type)) { // // It's a constructor, of type 'type'. // callNode = addConstructor(paramNode, &type, op, fnCall, loc); } if (callNode == nullptr) { recover(); callNode = intermediate.setAggregateOperator(nullptr, op, loc); } callNode->setType(type); } else { // // Not a constructor. Find it in the symbol table. // const TFunction *fnCandidate; bool builtIn; fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn); if (fnCandidate) { // // A declared function. // if (builtIn && !fnCandidate->getExtension().empty() && extensionErrorCheck(loc, fnCandidate->getExtension())) { recover(); } op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // // A function call mapped to a built-in operation. // if (fnCandidate->getParamCount() == 1) { // // Treat it like a built-in unary operator. // TIntermAggregate *paramAgg = paramNode->getAsAggregate(); paramNode = paramAgg->getSequence()->front(); callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType()); if (callNode == nullptr) { std::stringstream extraInfoStream; extraInfoStream << "built in unary operator function. Type: " << static_cast(paramNode)->getCompleteString(); std::string extraInfo = extraInfoStream.str(); error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str()); *fatalError = true; return nullptr; } } else { TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc); aggregate->setType(fnCandidate->getReturnType()); aggregate->setPrecisionFromChildren(); if (aggregate->areChildrenConstQualified()) { aggregate->getTypePointer()->setQualifier(EvqConst); } // Some built-in functions have out parameters too. functionCallLValueErrorCheck(fnCandidate, aggregate); // See if we can constant fold a built-in. Note that this may be possible even // if it is not const-qualified. TIntermTyped *foldedNode = intermediate.foldAggregateBuiltIn(aggregate); if (foldedNode) { callNode = foldedNode; } else { callNode = aggregate; } } } else { // This is a real function call TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); aggregate->setType(fnCandidate->getReturnType()); // this is how we know whether the given function is a builtIn function or a user // defined function // if builtIn == false, it's a userDefined -> could be an overloaded // builtIn function also // if builtIn == true, it's definitely a builtIn function with EOpNull if (!builtIn) aggregate->setUserDefined(); aggregate->setName(fnCandidate->getMangledName()); aggregate->setFunctionId(fnCandidate->getUniqueId()); // This needs to happen after the name is set if (builtIn) { aggregate->setBuiltInFunctionPrecision(); checkTextureOffsetConst(aggregate); } callNode = aggregate; functionCallLValueErrorCheck(fnCandidate, aggregate); } } else { // error message was put out by findFunction() // Put on a dummy node for error recovery TConstantUnion *unionArray = new TConstantUnion[1]; unionArray->setFConst(0.0f); callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), loc); recover(); } } return callNode; } TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc) { if (boolErrorCheck(loc, cond)) recover(); if (trueBlock->getType() != falseBlock->getType()) { binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString()); recover(); return falseBlock; } // ESSL1 sections 5.2 and 5.7: // ESSL3 section 5.7: // Ternary operator is not among the operators allowed for structures/arrays. if (trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct) { error(loc, "ternary operator is not allowed for structures or arrays", ":"); recover(); return falseBlock; } return intermediate.addSelection(cond, trueBlock, falseBlock, loc); } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(size_t count, const char *const string[], const int length[], TParseContext *context) { if ((count == 0) || (string == NULL)) return 1; if (glslang_initialize(context)) return 1; int error = glslang_scan(count, string, length, context); if (!error) error = glslang_parse(context); glslang_finalize(context); return (error == 0) && (context->numErrors() == 0) ? 0 : 1; }