// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/ParseContext.h" #include #include #include "compiler/preprocessor/SourceLocation.h" #include "compiler/translator/glslang.h" #include "compiler/translator/ValidateSwitch.h" /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// // // Look at a '.' field selector string and change it into offsets // for a vector. // bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line) { fields.num = (int) compString.size(); if (fields.num > 4) { error(line, "illegal vector field selection", compString.c_str()); return false; } enum { exyzw, ergba, estpq } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString.c_str()); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(line, "vector field selection out of range", compString.c_str()); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i-1]) { error(line, "illegal - vector component fields not from the same set", compString.c_str()); return false; } } } return true; } // // Look at a '.' field selector string and change it into offsets // for a matrix. // bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc& line) { fields.wholeRow = false; fields.wholeCol = false; fields.row = -1; fields.col = -1; if (compString.size() != 2) { error(line, "illegal length of matrix field selection", compString.c_str()); return false; } if (compString[0] == '_') { if (compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.wholeCol = true; fields.col = compString[1] - '0'; } else if (compString[1] == '_') { if (compString[0] < '0' || compString[0] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.wholeRow = true; fields.row = compString[0] - '0'; } else { if (compString[0] < '0' || compString[0] > '3' || compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.row = compString[0] - '0'; fields.col = compString[1] - '0'; } if (fields.row >= matRows || fields.col >= matCols) { error(line, "matrix field selection out of range", compString.c_str()); return false; } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Track whether errors have occurred. // void TParseContext::recover() { } // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(const TSourceLoc& loc, const char* reason, const char* token, const char* extraInfo) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; diagnostics.writeInfo(pp::Diagnostics::PP_ERROR, srcLoc, reason, token, extraInfo); } void TParseContext::warning(const TSourceLoc& loc, const char* reason, const char* token, const char* extraInfo) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; diagnostics.writeInfo(pp::Diagnostics::PP_WARNING, srcLoc, reason, token, extraInfo); } void TParseContext::trace(const char* str) { diagnostics.writeDebug(str); } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", op, extraInfo.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand << " (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand type", op, extraInfo.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand types ", op, extraInfo.c_str()); } bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){ if (!checksPrecisionErrors) return false; switch( type ){ case EbtFloat: if( precision == EbpUndefined ){ error( line, "No precision specified for (float)", "" ); return true; } break; case EbtInt: if( precision == EbpUndefined ){ error( line, "No precision specified (int)", "" ); return true; } break; default: return false; } return false; } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if the was an error. // bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node) { TIntermSymbol* symNode = node->getAsSymbolNode(); TIntermBinary* binaryNode = node->getAsBinaryNode(); if (binaryNode) { bool errorReturn; switch(binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: return lValueErrorCheck(line, op, binaryNode->getLeft()); case EOpVectorSwizzle: errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); if (!errorReturn) { int offset[4] = {0,0,0,0}; TIntermTyped* rightNode = binaryNode->getRight(); TIntermAggregate *aggrNode = rightNode->getAsAggregate(); for (TIntermSequence::iterator p = aggrNode->getSequence()->begin(); p != aggrNode->getSequence()->end(); p++) { int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0); offset[value]++; if (offset[value] > 1) { error(line, " l-value of swizzle cannot have duplicate components", op); return true; } } } return errorReturn; default: break; } error(line, " l-value required", op); return true; } const char* symbol = 0; if (symNode != 0) symbol = symNode->getSymbol().c_str(); const char* message = 0; switch (node->getQualifier()) { case EvqConst: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqFragmentIn: message = "can't modify an input"; break; case EvqVertexIn: message = "can't modify an input"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqVaryingIn: message = "can't modify a varying"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; default: // // Type that can't be written to? // if (node->getBasicType() == EbtVoid) { message = "can't modify void"; } if (IsSampler(node->getBasicType())) { message = "can't modify a sampler"; } } if (message == 0 && binaryNode == 0 && symNode == 0) { error(line, " l-value required", op); return true; } // // Everything else is okay, no error. // if (message == 0) return false; // // If we get here, we have an error and a message. // if (symNode) { std::stringstream extraInfoStream; extraInfoStream << "\"" << symbol << "\" (" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } else { std::stringstream extraInfoStream; extraInfoStream << "(" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } return true; } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // // Returns true if the was an error. // bool TParseContext::constErrorCheck(TIntermTyped* node) { if (node->getQualifier() == EvqConst) return false; error(node->getLine(), "constant expression required", ""); return true; } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // // Returns true if the was an error. // bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) { if (node->isScalarInt()) return false; error(node->getLine(), "integer expression required", token); return true; } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // // Returns true if the was an error. // bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token) { if (global) return false; error(line, "only allowed at global scope", token); return true; } // // For now, keep it simple: if it starts "gl_", it's reserved, independent // of scope. Except, if the symbol table is at the built-in push-level, // which is when we are parsing built-ins. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a // webgl shader. // // Returns true if there was an error. // bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier) { static const char* reservedErrMsg = "reserved built-in name"; if (!symbolTable.atBuiltInLevel()) { if (identifier.compare(0, 3, "gl_") == 0) { error(line, reservedErrMsg, "gl_"); return true; } if (IsWebGLBasedSpec(shaderSpec)) { if (identifier.compare(0, 6, "webgl_") == 0) { error(line, reservedErrMsg, "webgl_"); return true; } if (identifier.compare(0, 7, "_webgl_") == 0) { error(line, reservedErrMsg, "_webgl_"); return true; } if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) { error(line, reservedErrMsg, "css_"); return true; } } if (identifier.find("__") != TString::npos) { error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str()); return true; } } return false; } // // Make sure there is enough data provided to the constructor to build // something of the type of the constructor. Also returns the type of // the constructor. // // Returns true if there was an error in construction. // bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type) { *type = function.getReturnType(); bool constructingMatrix = false; switch(op) { case EOpConstructMat2: case EOpConstructMat3: case EOpConstructMat4: constructingMatrix = true; break; default: break; } // // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument, so 'overfull' will become true. // size_t size = 0; bool constType = true; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (size_t i = 0; i < function.getParamCount(); ++i) { const TParameter& param = function.getParam(i); size += param.type->getObjectSize(); if (constructingMatrix && param.type->isMatrix()) matrixInMatrix = true; if (full) overFull = true; if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) full = true; if (param.type->getQualifier() != EvqConst) constType = false; if (param.type->isArray()) arrayArg = true; } if (constType) type->setQualifier(EvqConst); if (type->isArray() && static_cast(type->getArraySize()) != function.getParamCount()) { error(line, "array constructor needs one argument per array element", "constructor"); return true; } if (arrayArg && op != EOpConstructStruct) { error(line, "constructing from a non-dereferenced array", "constructor"); return true; } if (matrixInMatrix && !type->isArray()) { if (function.getParamCount() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor"); return true; } } if (overFull) { error(line, "too many arguments", "constructor"); return true; } if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); return true; } if (!type->isMatrix() || !matrixInMatrix) { if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || (op == EOpConstructStruct && size < type->getObjectSize())) { error(line, "not enough data provided for construction", "constructor"); return true; } } TIntermTyped *typed = node ? node->getAsTyped() : 0; if (typed == 0) { error(line, "constructor argument does not have a type", "constructor"); return true; } if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { error(line, "cannot convert a sampler", "constructor"); return true; } if (typed->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor"); return true; } return false; } // This function checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType) { if (pubType.type == EbtVoid) { error(line, "illegal use of type 'void'", identifier.c_str()); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { error(line, "boolean expression expected", ""); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType) { if (pType.type != EbtBool || pType.isAggregate()) { error(line, "boolean expression expected", ""); return true; } return false; } bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason) { if (pType.type == EbtStruct) { if (containsSampler(*pType.userDef)) { error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); return true; } return false; } else if (IsSampler(pType.type)) { error(line, reason, getBasicString(pType.type)); return true; } return false; } bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType) { switch (pType.qualifier) { case EvqVaryingIn: case EvqVaryingOut: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: if (pType.type == EbtStruct) { error(line, "cannot be used with a structure", getQualifierString(pType.qualifier)); return true; } default: break; } if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) return true; return false; } bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType) { if (pType.layoutQualifier.location != -1) { error(line, "location must only be specified for a single input or output variable", "location"); return true; } return false; } bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { error(line, "samplers cannot be output parameters", type.getBasicString()); return true; } return false; } bool TParseContext::containsSampler(TType& type) { if (IsSampler(type.getBasicType())) return true; if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) { const TFieldList& fields = type.getStruct()->fields(); for (unsigned int i = 0; i < fields.size(); ++i) { if (containsSampler(*fields[i]->type())) return true; } } return false; } // // Do size checking for an array type's size. // // Returns true if there was an error. // bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size) { TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant == 0 || !constant->isScalarInt()) { error(line, "array size must be a constant integer expression", ""); return true; } unsigned int unsignedSize = 0; if (constant->getBasicType() == EbtUInt) { unsignedSize = constant->getUConst(0); size = static_cast(unsignedSize); } else { size = constant->getIConst(0); if (size < 0) { error(line, "array size must be non-negative", ""); size = 1; return true; } unsignedSize = static_cast(size); } if (size == 0) { error(line, "array size must be greater than zero", ""); size = 1; return true; } // The size of arrays is restricted here to prevent issues further down the // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to // 4096 registers so this should be reasonable even for aggressively optimizable code. const unsigned int sizeLimit = 65536; if (unsignedSize > sizeLimit) { error(line, "array size too large", ""); size = 1; return true; } return false; } // // See if this qualifier can be an array. // // Returns true if there is an error. // bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type) { if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConst)) { error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str()); return true; } return false; } // // See if this type can be an array. // // Returns true if there is an error. // bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type) { // // Can the type be an array? // if (type.array) { error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str()); return true; } return false; } // // Do all the semantic checking for declaring an array, with and // without a size, and make the right changes to the symbol table. // // size == 0 means no specified size. // // Returns true if there was an error. // bool TParseContext::arrayErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType &type, TVariable*& variable) { // // Don't check for reserved word use until after we know it's not in the symbol table, // because reserved arrays can be redeclared. // bool builtIn = false; bool sameScope = false; TSymbol* symbol = symbolTable.find(identifier, 0, &builtIn, &sameScope); if (symbol == 0 || !sameScope) { bool needsReservedErrorCheck = true; // gl_LastFragData may be redeclared with a new precision qualifier if (identifier.compare(0, 15, "gl_LastFragData") == 0) { if (type.arraySize == static_cast(symbolTable.findBuiltIn("gl_MaxDrawBuffers", shaderVersion))->getConstPointer()->getIConst()) { if (TSymbol* builtInSymbol = symbolTable.findBuiltIn(identifier, shaderVersion)) { needsReservedErrorCheck = extensionErrorCheck(line, builtInSymbol->getExtension()); } } else { error(line, "redeclaration of array with size != gl_MaxDrawBuffers", identifier.c_str()); return true; } } if (needsReservedErrorCheck) if (reservedErrorCheck(line, identifier)) return true; variable = new TVariable(&identifier, TType(type)); if (type.arraySize) variable->getType().setArraySize(type.arraySize); if (! symbolTable.declare(variable)) { delete variable; error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str()); return true; } } else { if (! symbol->isVariable()) { error(line, "variable expected", identifier.c_str()); return true; } variable = static_cast(symbol); if (! variable->getType().isArray()) { error(line, "redeclaring non-array as array", identifier.c_str()); return true; } if (variable->getType().getArraySize() > 0) { error(line, "redeclaration of array with size", identifier.c_str()); return true; } if (! variable->getType().sameElementType(TType(type))) { error(line, "redeclaration of array with a different type", identifier.c_str()); return true; } if (type.arraySize) variable->getType().setArraySize(type.arraySize); } if (voidErrorCheck(line, identifier, type)) return true; return false; } // // Enforce non-initializer type/qualifier rules. // // Returns true if there was an error. // bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, const TString& identifier, TPublicType& type, bool array) { if (type.qualifier == EvqConst) { // Make the qualifier make sense. type.qualifier = EvqTemporary; if (array) { error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str()); } else if (type.isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str()); } else { error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); } return true; } return false; } // // Do semantic checking for a variable declaration that has no initializer, // and update the symbol table. // // Returns true if there was an error. // bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& type, TVariable*& variable) { if (reservedErrorCheck(line, identifier)) recover(); variable = new TVariable(&identifier, TType(type)); if (! symbolTable.declare(variable)) { error(line, "redefinition", variable->getName().c_str()); delete variable; variable = 0; return true; } if (voidErrorCheck(line, identifier, type)) return true; return false; } bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type) { if (qualifier != EvqConst && qualifier != EvqTemporary) { error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); return true; } if (qualifier == EvqConst && paramQualifier != EvqIn) { error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); return true; } if (qualifier == EvqConst) type->setQualifier(EvqConstReadOnly); else type->setQualifier(paramQualifier); return false; } bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension) { const TExtensionBehavior& extBehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); if (iter == extBehavior.end()) { error(line, "extension", extension.c_str(), "is not supported"); return true; } // In GLSL ES, an extension's default behavior is "disable". if (iter->second == EBhDisable || iter->second == EBhUndefined) { error(line, "extension", extension.c_str(), "is disabled"); return true; } if (iter->second == EBhWarn) { warning(line, "extension", extension.c_str(), "is being used"); return false; } return false; } bool TParseContext::singleDeclarationErrorCheck(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier) { if (structQualifierErrorCheck(identifierLocation, publicType)) return true; // check for layout qualifier issues const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; if (layoutQualifier.matrixPacking != EmpUnspecified) { error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks"); return true; } if (layoutQualifier.blockStorage != EbsUnspecified) { error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks"); return true; } if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier)) { return true; } return false; } bool TParseContext::layoutLocationErrorCheck(const TSourceLoc& location, const TLayoutQualifier &layoutQualifier) { if (layoutQualifier.location != -1) { error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs"); return true; } return false; } bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate) { for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) { TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); if (qual == EvqOut || qual == EvqInOut) { TIntermTyped *node = (*(aggregate->getSequence()))[i]->getAsTyped(); if (lValueErrorCheck(node->getLine(), "assign", node)) { error(node->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); recover(); return true; } } } return false; } bool TParseContext::supportsExtension(const char* extension) { const TExtensionBehavior& extbehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extbehavior.find(extension); return (iter != extbehavior.end()); } bool TParseContext::isExtensionEnabled(const char* extension) const { const TExtensionBehavior& extbehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extbehavior.find(extension); if (iter == extbehavior.end()) { return false; } return (iter->second == EBhEnable || iter->second == EBhRequire); } void TParseContext::handleExtensionDirective(const TSourceLoc& loc, const char* extName, const char* behavior) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; directiveHandler.handleExtension(srcLoc, extName, behavior); } void TParseContext::handlePragmaDirective(const TSourceLoc& loc, const char* name, const char* value, bool stdgl) { pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; directiveHandler.handlePragma(srcLoc, name, value, stdgl); } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = NULL; if (!symbol) { error(location, "undeclared identifier", name->c_str()); recover(); } else if (!symbol->isVariable()) { error(location, "variable expected", name->c_str()); recover(); } else { variable = static_cast(symbol); if (symbolTable.findBuiltIn(variable->getName(), shaderVersion) && !variable->getExtension().empty() && extensionErrorCheck(location, variable->getExtension())) { recover(); } } if (!variable) { TType type(EbtFloat, EbpUndefined); TVariable *fakeVariable = new TVariable(name, type); symbolTable.declare(fakeVariable); variable = fakeVariable; } return variable; } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise 0. // const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, int inputShaderVersion, bool *builtIn) { // First find by unmangled name to check whether the function name has been // hidden by a variable name or struct typename. // If a function is found, check for one with a matching argument list. const TSymbol* symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn); if (symbol == 0 || symbol->isFunction()) { symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn); } if (symbol == 0) { error(line, "no matching overloaded function found", call->getName().c_str()); return 0; } if (!symbol->isFunction()) { error(line, "function name expected", call->getName().c_str()); return 0; } return static_cast(symbol); } // // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // // Returns true on error, false if no error // bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, TPublicType& pType, TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable) { TType type = TType(pType); if (variable == 0) { if (reservedErrorCheck(line, identifier)) return true; if (voidErrorCheck(line, identifier, pType)) return true; // // add variable to symbol table // variable = new TVariable(&identifier, type); if (! symbolTable.declare(variable)) { error(line, "redefinition", variable->getName().c_str()); return true; // don't delete variable, it's used by error recovery, and the pool // pop will take care of the memory } } // // identifier must be of type constant, a global, or a temporary // TQualifier qualifier = variable->getType().getQualifier(); if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); return true; } // // test for and propagate constant // if (qualifier == EvqConst) { if (qualifier != initializer->getType().getQualifier()) { std::stringstream extraInfoStream; extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; std::string extraInfo = extraInfoStream.str(); error(line, " assigning non-constant to", "=", extraInfo.c_str()); variable->getType().setQualifier(EvqTemporary); return true; } if (type != initializer->getType()) { error(line, " non-matching types for const initializer ", variable->getType().getQualifierString()); variable->getType().setQualifier(EvqTemporary); return true; } if (initializer->getAsConstantUnion()) { variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); } else if (initializer->getAsSymbolNode()) { const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); const TVariable* tVar = static_cast(symbol); ConstantUnion* constArray = tVar->getConstPointer(); variable->shareConstPointer(constArray); } else { std::stringstream extraInfoStream; extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; std::string extraInfo = extraInfoStream.str(); error(line, " cannot assign to", "=", extraInfo.c_str()); variable->getType().setQualifier(EvqTemporary); return true; } } if (qualifier != EvqConst) { TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); if (intermNode == 0) { assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return true; } } else intermNode = 0; return false; } bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode) { ASSERT(aggrNode != NULL); if (!aggrNode->isConstructor()) return false; bool allConstant = true; // check if all the child nodes are constants so that they can be inserted into // the parent node TIntermSequence *sequence = aggrNode->getSequence() ; for (TIntermSequence::iterator p = sequence->begin(); p != sequence->end(); ++p) { if (!(*p)->getAsTyped()->getAsConstantUnion()) return false; } return allConstant; } TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, TLayoutQualifier layoutQualifier, const TPublicType& typeSpecifier) { TPublicType returnType = typeSpecifier; returnType.qualifier = qualifier; returnType.layoutQualifier = layoutQualifier; if (typeSpecifier.array) { error(typeSpecifier.line, "not supported", "first-class array"); recover(); returnType.setArray(false); } if (shaderVersion < 300) { if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } } else { switch (qualifier) { case EvqSmoothIn: case EvqSmoothOut: case EvqVertexOut: case EvqFragmentIn: case EvqCentroidOut: case EvqCentroidIn: if (typeSpecifier.type == EbtBool) { error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier)); recover(); } if (typeSpecifier.type == EbtInt || typeSpecifier.type == EbtUInt) { error(typeSpecifier.line, "must use 'flat' interpolation here", getQualifierString(qualifier)); recover(); } break; case EvqVertexIn: case EvqFragmentOut: case EvqFlatIn: case EvqFlatOut: if (typeSpecifier.type == EbtBool) { error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier)); recover(); } break; default: break; } } return returnType; } TIntermAggregate* TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier) { TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation); if (identifier != "") { if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier)) recover(); // this error check can mutate the type if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false)) recover(); TVariable* variable = 0; if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable)) recover(); if (variable && symbol) { symbol->setId(variable->getUniqueId()); } } return aggregate; } TIntermAggregate* TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& indexLocation, TIntermTyped *indexExpression) { if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier)) recover(); // this error check can mutate the type if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true)) recover(); if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TPublicType arrayType = publicType; int size; if (arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } else { arrayType.setArray(true, size); } TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(arrayType), identifierLocation); TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation); TVariable* variable = 0; if (arrayErrorCheck(identifierLocation, identifier, arrayType, variable)) recover(); if (variable && symbol) { symbol->setId(variable->getUniqueId()); } return aggregate; } TIntermAggregate* TParseContext::parseSingleInitDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer) { if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier)) recover(); TIntermNode* intermNode; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode)) { // // Build intermediate representation // return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : NULL; } else { recover(); return NULL; } } TIntermAggregate* TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, const TSourceLoc &identifierLoc, const TString *identifier, const TSymbol *symbol) { // invariant declaration if (globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying")) { recover(); } if (!symbol) { error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); recover(); return NULL; } else { const TString kGlFrontFacing("gl_FrontFacing"); if (*identifier == kGlFrontFacing) { error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str()); recover(); return NULL; } symbolTable.addInvariantVarying(std::string(identifier->c_str())); const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); ASSERT(variable); const TType &type = variable->getType(); TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); aggregate->setOp(EOpInvariantDeclaration); return aggregate; } } TIntermAggregate* TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, TSymbol *identifierSymbol, const TSourceLoc& identifierLocation, const TString &identifier) { TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); TIntermAggregate* intermAggregate = intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); if (structQualifierErrorCheck(identifierLocation, publicType)) recover(); if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false)) recover(); TVariable* variable = 0; if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable)) recover(); if (symbol && variable) symbol->setId(variable->getUniqueId()); return intermAggregate; } TIntermAggregate* TParseContext::parseArrayDeclarator(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& arrayLocation, TIntermNode *declaratorList, TIntermTyped *indexExpression) { if (structQualifierErrorCheck(identifierLocation, publicType)) recover(); if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true)) recover(); if (arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType)) { recover(); } else if (indexExpression) { int size; if (arraySizeErrorCheck(arrayLocation, indexExpression, size)) recover(); TPublicType arrayType(publicType); arrayType.setArray(true, size); TVariable* variable = NULL; if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable)) recover(); TType type = TType(arrayType); type.setArraySize(size); return intermediate.growAggregate(declaratorList, intermediate.addSymbol(variable ? variable->getUniqueId() : 0, identifier, type, identifierLocation), identifierLocation); } else { TPublicType arrayType(publicType); arrayType.setArray(true); TVariable* variable = NULL; if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable)) recover(); } return NULL; } TIntermAggregate* TParseContext::parseInitDeclarator(TPublicType &publicType, TIntermAggregate *declaratorList, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer) { if (structQualifierErrorCheck(identifierLocation, publicType)) recover(); if (locationDeclaratorListCheck(identifierLocation, publicType)) recover(); TIntermNode* intermNode; if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode)) { // // build the intermediate representation // if (intermNode) { return intermediate.growAggregate(declaratorList, intermNode, initLocation); } else { return declaratorList; } } else { recover(); return NULL; } } void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) { if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); recover(); return; } const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; ASSERT(!layoutQualifier.isEmpty()); if (shaderVersion < 300) { error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout"); recover(); return; } if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier)) { recover(); return; } if (layoutQualifier.matrixPacking != EmpUnspecified) { defaultMatrixPacking = layoutQualifier.matrixPacking; } if (layoutQualifier.blockStorage != EbsUnspecified) { defaultBlockStorage = layoutQualifier.blockStorage; } } TFunction *TParseContext::addConstructorFunc(TPublicType publicType) { TOperator op = EOpNull; if (publicType.userDef) { op = EOpConstructStruct; } else { switch (publicType.type) { case EbtFloat: if (publicType.isMatrix()) { // TODO: non-square matrices switch(publicType.getCols()) { case 2: op = EOpConstructMat2; break; case 3: op = EOpConstructMat3; break; case 4: op = EOpConstructMat4; break; } } else { switch(publicType.getNominalSize()) { case 1: op = EOpConstructFloat; break; case 2: op = EOpConstructVec2; break; case 3: op = EOpConstructVec3; break; case 4: op = EOpConstructVec4; break; } } break; case EbtInt: switch(publicType.getNominalSize()) { case 1: op = EOpConstructInt; break; case 2: op = EOpConstructIVec2; break; case 3: op = EOpConstructIVec3; break; case 4: op = EOpConstructIVec4; break; } break; case EbtUInt: switch(publicType.getNominalSize()) { case 1: op = EOpConstructUInt; break; case 2: op = EOpConstructUVec2; break; case 3: op = EOpConstructUVec3; break; case 4: op = EOpConstructUVec4; break; } break; case EbtBool: switch(publicType.getNominalSize()) { case 1: op = EOpConstructBool; break; case 2: op = EOpConstructBVec2; break; case 3: op = EOpConstructBVec3; break; case 4: op = EOpConstructBVec4; break; } break; default: break; } if (op == EOpNull) { error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); recover(); publicType.type = EbtFloat; op = EOpConstructFloat; } } TString tempString; TType type(publicType); return new TFunction(&tempString, type, op); } // This function is used to test for the correctness of the parameters passed to various constructor functions // and also convert them to the right datatype if it is allowed and required. // // Returns 0 for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, TType *type, TOperator op, TFunction *fnCall, const TSourceLoc &line) { TIntermAggregate *aggregateArguments = arguments->getAsAggregate(); if (!aggregateArguments) { aggregateArguments = new TIntermAggregate; aggregateArguments->getSequence()->push_back(arguments); } if (op == EOpConstructStruct) { const TFieldList &fields = type->getStruct()->fields(); TIntermSequence *args = aggregateArguments->getSequence(); for (size_t i = 0; i < fields.size(); i++) { if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type()) { error(line, "Structure constructor arguments do not match structure fields", "Error"); recover(); return 0; } } } // Turn the argument list itself into a constructor TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line); TIntermTyped *constConstructor = foldConstConstructor(constructor, *type); if (constConstructor) { return constConstructor; } // Structs should not be precision qualified, the individual members may be. // Built-in types on the other hand should be precision qualified. if (op != EOpConstructStruct) { constructor->setPrecisionFromChildren(); type->setPrecision(constructor->getPrecision()); } return constructor; } TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) { bool canBeFolded = areAllChildConst(aggrNode); aggrNode->setType(type); if (canBeFolded) { bool returnVal = false; ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; if (aggrNode->getSequence()->size() == 1) { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true); } else { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type); } if (returnVal) return 0; return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); } return 0; } // // This function returns the tree representation for the vector field(s) being accessed from contant vector. // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of // a constant matrix. // TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); ConstantUnion *unionArray; if (tempConstantNode) { unionArray = tempConstantNode->getUnionArrayPointer(); if (!unionArray) { return node; } } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error error(line, "Cannot offset into the vector", "Error"); recover(); return 0; } ConstantUnion* constArray = new ConstantUnion[fields.num]; for (int i = 0; i < fields.num; i++) { if (fields.offsets[i] >= node->getType().getNominalSize()) { std::stringstream extraInfoStream; extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); fields.offsets[i] = 0; } constArray[i] = unionArray[fields.offsets[i]]; } typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); return typedNode; } // // This function returns the column being accessed from a constant matrix. The values are retrieved from // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); if (index >= node->getType().getCols()) { std::stringstream extraInfoStream; extraInfoStream << "matrix field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); index = 0; } if (tempConstantNode) { ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); int size = tempConstantNode->getType().getCols(); typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the matrix", "Error"); recover(); return 0; } return typedNode; } // // This function returns an element of an array accessed from a constant array. The values are retrieved from // the symbol table and parse-tree is built for the type of the element. The input // to the function could either be a symbol node (a[0] where a is a constant array)that represents a // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); TType arrayElementType = node->getType(); arrayElementType.clearArrayness(); if (index >= node->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); index = 0; } if (tempConstantNode) { size_t arrayElementSize = arrayElementType.getObjectSize(); ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the array", "Error"); recover(); return 0; } return typedNode; } // // This function returns the value of a particular field inside a constant structure from the symbol table. // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr // function and returns the parse-tree with the values of the embedded/nested struct. // TIntermTyped* TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc& line) { const TFieldList& fields = node->getType().getStruct()->fields(); size_t instanceSize = 0; for (size_t index = 0; index < fields.size(); ++index) { if (fields[index]->name() == identifier) { break; } else { instanceSize += fields[index]->type()->getObjectSize(); } } TIntermTyped *typedNode; TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); if (tempConstantNode) { ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function } else { error(line, "Cannot offset into the structure", "Error"); recover(); return 0; } return typedNode; } // // Interface/uniform blocks // TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList, const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine) { if (reservedErrorCheck(nameLine, blockName)) recover(); if (typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform"); recover(); } TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier)) { recover(); } if (blockLayoutQualifier.matrixPacking == EmpUnspecified) { blockLayoutQualifier.matrixPacking = defaultMatrixPacking; } if (blockLayoutQualifier.blockStorage == EbsUnspecified) { blockLayoutQualifier.blockStorage = defaultBlockStorage; } TSymbol* blockNameSymbol = new TInterfaceBlockName(&blockName); if (!symbolTable.declare(blockNameSymbol)) { error(nameLine, "redefinition", blockName.c_str(), "interface block name"); recover(); } // check for sampler types and apply layout qualifiers for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField* field = (*fieldList)[memberIndex]; TType* fieldType = field->type(); if (IsSampler(fieldType->getBasicType())) { error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks"); recover(); } const TQualifier qualifier = fieldType->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqUniform: break; default: error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); recover(); break; } // check layout qualifiers TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier)) { recover(); } if (fieldLayoutQualifier.blockStorage != EbsUnspecified) { error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); recover(); } if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) { fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; } else if (!fieldType->isMatrix()) { error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types"); recover(); } fieldType->setLayoutQualifier(fieldLayoutQualifier); } // add array index int arraySize = 0; if (arrayIndex != NULL) { if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize)) recover(); } TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize); TString symbolName = ""; int symbolId = 0; if (!instanceName) { // define symbols for the members of the interface block for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField* field = (*fieldList)[memberIndex]; TType* fieldType = field->type(); // set parent pointer of the field variable fieldType->setInterfaceBlock(interfaceBlock); TVariable* fieldVariable = new TVariable(&field->name(), *fieldType); fieldVariable->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(fieldVariable)) { error(field->line(), "redefinition", field->name().c_str(), "interface block member name"); recover(); } } } else { // add a symbol for this interface block TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); instanceTypeDef->setQualifier(typeQualifier.qualifier); if (!symbolTable.declare(instanceTypeDef)) { error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name"); recover(); } symbolId = instanceTypeDef->getUniqueId(); symbolName = instanceTypeDef->getName(); } TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine); aggregate->setOp(EOpDeclaration); exitStructDeclaration(); return aggregate; } bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier) { ++structNestingLevel; // Embedded structure definitions are not supported per GLSL ES spec. // They aren't allowed in GLSL either, but we need to detect this here // so we don't rely on the GLSL compiler to catch it. if (structNestingLevel > 1) { error(line, "", "Embedded struct definitions are not allowed"); return true; } return false; } void TParseContext::exitStructDeclaration() { --structNestingLevel; } namespace { const int kWebGLMaxStructNesting = 4; } // namespace bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field) { if (!IsWebGLBasedSpec(shaderSpec)) { return false; } if (field.type()->getBasicType() != EbtStruct) { return false; } // We're already inside a structure definition at this point, so add // one to the field's struct nesting. if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) { std::stringstream reasonStream; reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; std::string reason = reasonStream.str(); error(line, reason.c_str(), field.name().c_str(), ""); return true; } return false; } // // Parse an array index expression // TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression) { TIntermTyped *indexedExpression = NULL; if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) { if (baseExpression->getAsSymbolNode()) { error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str()); } else { error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); } recover(); } TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); if (indexExpression->getQualifier() == EvqConst && indexConstantUnion) { int index = indexConstantUnion->getIConst(0); if (index < 0) { std::stringstream infoStream; infoStream << index; std::string info = infoStream.str(); error(location, "negative index", info.c_str()); recover(); index = 0; } if (baseExpression->getType().getQualifier() == EvqConst) { if (baseExpression->isArray()) { // constant folding for arrays indexedExpression = addConstArrayNode(index, baseExpression, location); } else if (baseExpression->isVector()) { // constant folding for vectors TVectorFields fields; fields.num = 1; fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array indexedExpression = addConstVectorNode(fields, baseExpression, location); } else if (baseExpression->isMatrix()) { // constant folding for matrices indexedExpression = addConstMatrixNode(index, baseExpression, location); } } else { if (baseExpression->isArray()) { if (index >= baseExpression->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array index out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(location, "", "[", extraInfo.c_str()); recover(); index = baseExpression->getType().getArraySize() - 1; } else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers")) { error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled"); recover(); index = 0; } } else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index) { std::stringstream extraInfoStream; extraInfoStream << "field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(location, "", "[", extraInfo.c_str()); recover(); index = baseExpression->getType().getNominalSize() - 1; } indexConstantUnion->getUnionArrayPointer()->setIConst(index); indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); } } else { if (baseExpression->isInterfaceBlock()) { error(location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions"); recover(); } else if (baseExpression->getQualifier() == EvqFragmentOut) { error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions"); recover(); } indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); } if (indexedExpression == 0) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location); } else if (baseExpression->isArray()) { const TType &baseType = baseExpression->getType(); if (baseType.getStruct()) { TType copyOfType(baseType.getStruct()); indexedExpression->setType(copyOfType); } else if (baseType.isInterfaceBlock()) { TType copyOfType(baseType.getInterfaceBlock(), baseType.getQualifier(), baseType.getLayoutQualifier(), 0); indexedExpression->setType(copyOfType); } else { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->getSecondarySize())); } if (baseExpression->getType().getQualifier() == EvqConst) { indexedExpression->getTypePointer()->setQualifier(EvqConst); } } else if (baseExpression->isMatrix()) { TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary; indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getRows())); } else if (baseExpression->isVector()) { TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary; indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier)); } else { indexedExpression->setType(baseExpression->getType()); } return indexedExpression; } TIntermTyped* TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc& dotLocation, const TString &fieldString, const TSourceLoc& fieldLocation) { TIntermTyped *indexedExpression = NULL; if (baseExpression->isArray()) { error(fieldLocation, "cannot apply dot operator to an array", "."); recover(); } if (baseExpression->isVector()) { TVectorFields fields; if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation)) { fields.num = 1; fields.offsets[0] = 0; recover(); } if (baseExpression->getType().getQualifier() == EvqConst) { // constant folding for vector fields indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation); if (indexedExpression == 0) { recover(); indexedExpression = baseExpression; } else { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqConst, (int) (fieldString).size())); } } else { TString vectorString = fieldString; TIntermTyped* index = intermediate.addSwizzle(fields, fieldLocation); indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, (int) vectorString.size())); } } else if (baseExpression->isMatrix()) { TMatrixFields fields; if (!parseMatrixFields(fieldString, baseExpression->getCols(), baseExpression->getRows(), fields, fieldLocation)) { fields.wholeRow = false; fields.wholeCol = false; fields.row = 0; fields.col = 0; recover(); } if (fields.wholeRow || fields.wholeCol) { error(dotLocation, " non-scalar fields not implemented yet", "."); recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(0); TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),EvqTemporary, baseExpression->getCols(), baseExpression->getRows())); } else { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(fields.col * baseExpression->getRows() + fields.row); TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision())); } } else if (baseExpression->getBasicType() == EbtStruct) { bool fieldFound = false; const TFieldList& fields = baseExpression->getType().getStruct()->fields(); if (fields.empty()) { error(dotLocation, "structure has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { if (baseExpression->getType().getQualifier() == EvqConst) { indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); if (indexedExpression == 0) { recover(); indexedExpression = baseExpression; } else { indexedExpression->setType(*fields[i]->type()); // change the qualifier of the return type, not of the structure field // as the structure definition is shared between various structures. indexedExpression->getTypePointer()->setQualifier(EvqConst); } } else { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(i); TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } } else { error(dotLocation, " no such field in structure", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else if (baseExpression->isInterfaceBlock()) { bool fieldFound = false; const TFieldList& fields = baseExpression->getType().getInterfaceBlock()->fields(); if (fields.empty()) { error(dotLocation, "interface block has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(i); TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } else { error(dotLocation, " no such field in interface block", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else { if (shaderVersion < 300) { error(dotLocation, " field selection requires structure, vector, or matrix on left hand side", fieldString.c_str()); } else { error(dotLocation, " field selection requires structure, vector, matrix, or interface block on left hand side", fieldString.c_str()); } recover(); indexedExpression = baseExpression; } return indexedExpression; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if (qualifierType == "shared") { qualifier.blockStorage = EbsShared; } else if (qualifierType == "packed") { qualifier.blockStorage = EbsPacked; } else if (qualifierType == "std140") { qualifier.blockStorage = EbsStd140; } else if (qualifierType == "row_major") { qualifier.matrixPacking = EmpRowMajor; } else if (qualifierType == "column_major") { qualifier.matrixPacking = EmpColumnMajor; } else if (qualifierType == "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument"); recover(); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); recover(); } return qualifier; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if (qualifierType != "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments"); recover(); } else { // must check that location is non-negative if (intValue < 0) { error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative"); recover(); } else { qualifier.location = intValue; } } return qualifier; } TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier) { TLayoutQualifier joinedQualifier = leftQualifier; if (rightQualifier.location != -1) { joinedQualifier.location = rightQualifier.location; } if (rightQualifier.matrixPacking != EmpUnspecified) { joinedQualifier.matrixPacking = rightQualifier.matrixPacking; } if (rightQualifier.blockStorage != EbsUnspecified) { joinedQualifier.blockStorage = rightQualifier.blockStorage; } return joinedQualifier; } TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier, const TSourceLoc &storageLoc, TQualifier storageQualifier) { TQualifier mergedQualifier = EvqSmoothIn; if (storageQualifier == EvqFragmentIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidIn) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidIn; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(); } else if (storageQualifier == EvqVertexOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else if (storageQualifier == EvqCentroidOut) { if (interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidOut; else if (interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(); } else { error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier)); recover(); mergedQualifier = storageQualifier; } TPublicType type; type.setBasic(EbtVoid, mergedQualifier, storageLoc); return type; } TFieldList *TParseContext::addStructDeclaratorList(const TPublicType& typeSpecifier, TFieldList *fieldList) { if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier)) { recover(); } for (unsigned int i = 0; i < fieldList->size(); ++i) { // // Careful not to replace already known aspects of type, like array-ness // TType* type = (*fieldList)[i]->type(); type->setBasicType(typeSpecifier.type); type->setPrimarySize(typeSpecifier.primarySize); type->setSecondarySize(typeSpecifier.secondarySize); type->setPrecision(typeSpecifier.precision); type->setQualifier(typeSpecifier.qualifier); type->setLayoutQualifier(typeSpecifier.layoutQualifier); // don't allow arrays of arrays if (type->isArray()) { if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier)) recover(); } if (typeSpecifier.array) type->setArraySize(typeSpecifier.arraySize); if (typeSpecifier.userDef) { type->setStruct(typeSpecifier.userDef->getStruct()); } if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) { recover(); } } return fieldList; } TPublicType TParseContext::addStructure(const TSourceLoc& structLine, const TSourceLoc& nameLine, const TString *structName, TFieldList* fieldList) { TStructure* structure = new TStructure(structName, fieldList); TType* structureType = new TType(structure); // Store a bool in the struct if we're at global scope, to allow us to // skip the local struct scoping workaround in HLSL. structure->setUniqueId(TSymbolTable::nextUniqueId()); structure->setAtGlobalScope(symbolTable.atGlobalLevel()); if (!structName->empty()) { if (reservedErrorCheck(nameLine, *structName)) { recover(); } TVariable* userTypeDef = new TVariable(structName, *structureType, true); if (!symbolTable.declare(userTypeDef)) { error(nameLine, "redefinition", structName->c_str(), "struct"); recover(); } } // ensure we do not specify any storage qualifiers on the struct members for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) { const TField &field = *(*fieldList)[typeListIndex]; const TQualifier qualifier = field.type()->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqTemporary: break; default: error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); recover(); break; } } TPublicType publicType; publicType.setBasic(EbtStruct, EvqTemporary, structLine); publicType.userDef = structureType; exitStructDeclaration(); return publicType; } TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc) { TBasicType switchType = init->getBasicType(); if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || init->isVector()) { error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); recover(); return nullptr; } if (statementList) { if (!ValidateSwitch::validate(switchType, this, statementList, loc)) { recover(); return nullptr; } } TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); if (node == nullptr) { error(loc, "erroneous switch statement", "switch"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "case labels need to be inside switch statements", "case"); recover(); return nullptr; } if (condition == nullptr) { error(loc, "case label must have a condition", "case"); recover(); return nullptr; } if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || condition->isMatrix() || condition->isArray() || condition->isVector()) { error(condition->getLine(), "case label must be a scalar integer", "case"); recover(); } TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); if (conditionConst == nullptr) { error(condition->getLine(), "case label must be constant", "case"); recover(); } TIntermCase *node = intermediate.addCase(condition, loc); if (node == nullptr) { error(loc, "erroneous case statement", "case"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "default labels need to be inside switch statements", "default"); recover(); return nullptr; } TIntermCase *node = intermediate.addCase(nullptr, loc); if (node == nullptr) { error(loc, "erroneous default statement", "default"); recover(); return nullptr; } return node; } TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType) { if (child == nullptr) { return nullptr; } switch (op) { case EOpLogicalNot: if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || child->isVector()) { return nullptr; } break; case EOpBitwiseNot: if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || child->isMatrix() || child->isArray()) { return nullptr; } break; case EOpPostIncrement: case EOpPreIncrement: case EOpPostDecrement: case EOpPreDecrement: case EOpNegative: case EOpPositive: if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || child->isArray()) { return nullptr; } // Operators for built-ins are already type checked against their prototype. default: break; } return intermediate.addUnaryMath(op, child, loc, funcReturnType); } TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); if (node == nullptr) { unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); recover(); return child; } return node; } TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { if (lValueErrorCheck(loc, GetOperatorString(op), child)) recover(); return addUnaryMath(op, child, loc); } bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (left->isArray() || right->isArray()) { if (shaderVersion < 300) { error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } if (left->isArray() != right->isArray()) { error(loc, "array / non-array mismatch", GetOperatorString(op)); return false; } switch (op) { case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: break; default: error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } if (left->getArraySize() != right->getArraySize()) { error(loc, "array size mismatch", GetOperatorString(op)); return false; } } // Check ops which require integer / ivec parameters bool isBitShift = false; switch (op) { case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: // Unsigned can be bit-shifted by signed and vice versa, but we need to // check that the basic type is an integer type. isBitShift = true; if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) { return false; } break; case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: // It is enough to check the type of only one operand, since later it // is checked that the operand types match. if (!IsInteger(left->getBasicType())) { return false; } break; default: break; } // GLSL ES 1.00 and 3.00 do not support implicit type casting. // So the basic type should usually match. if (!isBitShift && left->getBasicType() != right->getBasicType()) { return false; } // Check that type sizes match exactly on ops that require that. // Also check restrictions for structs that contain arrays or samplers. switch(op) { case EOpAssign: case EOpInitialize: case EOpEqual: case EOpNotEqual: // ESSL 1.00 sections 5.7, 5.8, 5.9 if (shaderVersion < 300 && left->getType().isStructureContainingArrays()) { error(loc, "undefined operation for structs containing arrays", GetOperatorString(op)); return false; } // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, // we interpret the spec so that this extends to structs containing samplers, // similarly to ESSL 1.00 spec. if ((shaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && left->getType().isStructureContainingSamplers()) { error(loc, "undefined operation for structs containing samplers", GetOperatorString(op)); return false; } case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if ((left->getNominalSize() != right->getNominalSize()) || (left->getSecondarySize() != right->getSecondarySize())) { return false; } default: break; } return true; } TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (!binaryOpCommonCheck(op, left, right, loc)) return nullptr; switch (op) { case EOpEqual: case EOpNotEqual: break; case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: ASSERT(!left->isArray() && !right->isArray()); if (left->isMatrix() || left->isVector() || left->getBasicType() == EbtStruct) { return nullptr; } break; case EOpLogicalOr: case EOpLogicalXor: case EOpLogicalAnd: ASSERT(!left->isArray() && !right->isArray()); if (left->getBasicType() != EbtBool || left->isMatrix() || left->isVector()) { return nullptr; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpMul: ASSERT(!left->isArray() && !right->isArray()); if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool) { return nullptr; } break; case EOpIMod: ASSERT(!left->isArray() && !right->isArray()); // Note that this is only for the % operator, not for mod() if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) { return nullptr; } break; // Note that for bitwise ops, type checking is done in promote() to // share code between ops and compound assignment default: break; } return intermediate.addBinaryMath(op, left, right, loc); } TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), loc); } return node; } TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (binaryOpCommonCheck(op, left, right, loc)) { return intermediate.addAssign(op, left, right, loc); } return nullptr; } TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = createAssign(op, left, right, loc); if (node == nullptr) { assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) { switch (op) { case EOpContinue: if (mLoopNestingLevel <= 0) { error(loc, "continue statement only allowed in loops", ""); recover(); } break; case EOpBreak: if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) { error(loc, "break statement only allowed in loops and switch statements", ""); recover(); } break; case EOpReturn: if (currentFunctionType->getBasicType() != EbtVoid) { error(loc, "non-void function must return a value", "return"); recover(); } break; default: // No checks for discard break; } return intermediate.addBranch(op, loc); } TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc) { ASSERT(op == EOpReturn); mFunctionReturnsValue = true; if (currentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return"); recover(); } else if (*currentFunctionType != returnValue->getType()) { error(loc, "function return is not matching type:", "return"); recover(); } return intermediate.addBranch(op, returnValue, loc); } TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *node, const TSourceLoc &loc, bool *fatalError) { *fatalError = false; TOperator op = fnCall->getBuiltInOp(); TIntermTyped *callNode = nullptr; if (op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid, EbpUndefined); // use this to get the type back if (!constructorErrorCheck(loc, node, *fnCall, op, &type)) { // // It's a constructor, of type 'type'. // callNode = addConstructor(node, &type, op, fnCall, loc); } if (callNode == nullptr) { recover(); callNode = intermediate.setAggregateOperator(nullptr, op, loc); } callNode->setType(type); } else { // // Not a constructor. Find it in the symbol table. // const TFunction* fnCandidate; bool builtIn; fnCandidate = findFunction(loc, fnCall, shaderVersion, &builtIn); if (fnCandidate) { // // A declared function. // if (builtIn && !fnCandidate->getExtension().empty() && extensionErrorCheck(loc, fnCandidate->getExtension())) { recover(); } op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // // A function call mapped to a built-in operation. // if (fnCandidate->getParamCount() == 1) { // // Treat it like a built-in unary operator. // callNode = createUnaryMath(op, node->getAsTyped(), loc, &fnCandidate->getReturnType()); if (callNode == nullptr) { std::stringstream extraInfoStream; extraInfoStream << "built in unary operator function. Type: " << static_cast(node)->getCompleteString(); std::string extraInfo = extraInfoStream.str(); error(node->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str()); *fatalError = true; return nullptr; } } else { TIntermAggregate *aggregate = intermediate.setAggregateOperator(node, op, loc); aggregate->setType(fnCandidate->getReturnType()); aggregate->setPrecisionFromChildren(); callNode = aggregate; // Some built-in functions have out parameters too. functionCallLValueErrorCheck(fnCandidate, aggregate); } } else { // This is a real function call TIntermAggregate *aggregate = intermediate.setAggregateOperator(node, EOpFunctionCall, loc); aggregate->setType(fnCandidate->getReturnType()); // this is how we know whether the given function is a builtIn function or a user defined function // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also // if builtIn == true, it's definitely a builtIn function with EOpNull if (!builtIn) aggregate->setUserDefined(); aggregate->setName(fnCandidate->getMangledName()); // This needs to happen after the name is set if (builtIn) aggregate->setBuiltInFunctionPrecision(); callNode = aggregate; functionCallLValueErrorCheck(fnCandidate, aggregate); } } else { // error message was put out by findFunction() // Put on a dummy node for error recovery ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), loc); recover(); } } delete fnCall; return callNode; } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(size_t count, const char* const string[], const int length[], TParseContext* context) { if ((count == 0) || (string == NULL)) return 1; if (glslang_initialize(context)) return 1; int error = glslang_scan(count, string, length, context); if (!error) error = glslang_parse(context); glslang_finalize(context); return (error == 0) && (context->numErrors() == 0) ? 0 : 1; }