// // Copyright (c) 2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/util.h" #include #include "common/utilities.h" #include "compiler/preprocessor/numeric_lex.h" #include "compiler/translator/SymbolTable.h" bool atoi_clamp(const char *str, unsigned int *value) { bool success = pp::numeric_lex_int(str, value); if (!success) *value = std::numeric_limits::max(); return success; } namespace sh { namespace { bool IsInterpolationIn(TQualifier qualifier) { switch (qualifier) { case EvqSmoothIn: case EvqFlatIn: case EvqCentroidIn: return true; default: return false; } } } // anonymous namespace float NumericLexFloat32OutOfRangeToInfinity(const std::string &str) { // Parses a decimal string using scientific notation into a floating point number. // Out-of-range values are converted to infinity. Values that are too small to be // represented are converted to zero. // The mantissa in decimal scientific notation. The magnitude of the mantissa integer does not // matter. unsigned int decimalMantissa = 0; size_t i = 0; bool decimalPointSeen = false; bool nonZeroSeenInMantissa = false; // The exponent offset reflects the position of the decimal point. int exponentOffset = -1; while (i < str.length()) { const char c = str[i]; if (c == 'e' || c == 'E') { break; } if (c == '.') { decimalPointSeen = true; ++i; continue; } unsigned int digit = static_cast(c - '0'); ASSERT(digit < 10u); if (digit != 0u) { nonZeroSeenInMantissa = true; } if (nonZeroSeenInMantissa) { // Add bits to the mantissa until space runs out in 32-bit int. This should be // enough precision to make the resulting binary mantissa accurate to 1 ULP. if (decimalMantissa <= (std::numeric_limits::max() - 9u) / 10u) { decimalMantissa = decimalMantissa * 10u + digit; } if (!decimalPointSeen) { ++exponentOffset; } } else if (decimalPointSeen) { --exponentOffset; } ++i; } if (decimalMantissa == 0) { return 0.0f; } int exponent = 0; if (i < str.length()) { ASSERT(str[i] == 'e' || str[i] == 'E'); ++i; bool exponentOutOfRange = false; bool negativeExponent = false; if (str[i] == '-') { negativeExponent = true; ++i; } else if (str[i] == '+') { ++i; } while (i < str.length()) { const char c = str[i]; unsigned int digit = static_cast(c - '0'); ASSERT(digit < 10u); if (exponent <= (std::numeric_limits::max() - 9) / 10) { exponent = exponent * 10 + digit; } else { exponentOutOfRange = true; } ++i; } if (negativeExponent) { exponent = -exponent; } if (exponentOutOfRange) { if (negativeExponent) { return 0.0f; } else { return std::numeric_limits::infinity(); } } } // Do the calculation in 64-bit to avoid overflow. long long exponentLong = static_cast(exponent) + static_cast(exponentOffset); if (exponentLong > std::numeric_limits::max_exponent10) { return std::numeric_limits::infinity(); } else if (exponentLong < std::numeric_limits::min_exponent10) { return 0.0f; } // The exponent is in range, so we need to actually evaluate the float. exponent = static_cast(exponentLong); double value = decimalMantissa; // Calculate the exponent offset to normalize the mantissa. int normalizationExponentOffset = 0; while (decimalMantissa >= 10u) { --normalizationExponentOffset; decimalMantissa /= 10u; } // Apply the exponent. value *= std::pow(10.0, static_cast(exponent + normalizationExponentOffset)); if (value > static_cast(std::numeric_limits::max())) { return std::numeric_limits::infinity(); } if (value < static_cast(std::numeric_limits::min())) { return 0.0f; } return static_cast(value); } bool strtof_clamp(const std::string &str, float *value) { // Try the standard float parsing path first. bool success = pp::numeric_lex_float(str, value); // If the standard path doesn't succeed, take the path that can handle the following corner // cases: // 1. The decimal mantissa is very small but the exponent is very large, putting the resulting // number inside the float range. // 2. The decimal mantissa is very large but the exponent is very small, putting the resulting // number inside the float range. // 3. The value is out-of-range and should be evaluated as infinity. // 4. The value is too small and should be evaluated as zero. // See ESSL 3.00.6 section 4.1.4 for the relevant specification. if (!success) *value = NumericLexFloat32OutOfRangeToInfinity(str); return !gl::isInf(*value); } GLenum GLVariableType(const TType &type) { if (type.getBasicType() == EbtFloat) { if (type.isVector()) { switch (type.getNominalSize()) { case 2: return GL_FLOAT_VEC2; case 3: return GL_FLOAT_VEC3; case 4: return GL_FLOAT_VEC4; default: UNREACHABLE(); } } else if (type.isMatrix()) { switch (type.getCols()) { case 2: switch (type.getRows()) { case 2: return GL_FLOAT_MAT2; case 3: return GL_FLOAT_MAT2x3; case 4: return GL_FLOAT_MAT2x4; default: UNREACHABLE(); } case 3: switch (type.getRows()) { case 2: return GL_FLOAT_MAT3x2; case 3: return GL_FLOAT_MAT3; case 4: return GL_FLOAT_MAT3x4; default: UNREACHABLE(); } case 4: switch (type.getRows()) { case 2: return GL_FLOAT_MAT4x2; case 3: return GL_FLOAT_MAT4x3; case 4: return GL_FLOAT_MAT4; default: UNREACHABLE(); } default: UNREACHABLE(); } } else { return GL_FLOAT; } } else if (type.getBasicType() == EbtInt) { if (type.isVector()) { switch (type.getNominalSize()) { case 2: return GL_INT_VEC2; case 3: return GL_INT_VEC3; case 4: return GL_INT_VEC4; default: UNREACHABLE(); } } else { ASSERT(!type.isMatrix()); return GL_INT; } } else if (type.getBasicType() == EbtUInt) { if (type.isVector()) { switch (type.getNominalSize()) { case 2: return GL_UNSIGNED_INT_VEC2; case 3: return GL_UNSIGNED_INT_VEC3; case 4: return GL_UNSIGNED_INT_VEC4; default: UNREACHABLE(); } } else { ASSERT(!type.isMatrix()); return GL_UNSIGNED_INT; } } else if (type.getBasicType() == EbtBool) { if (type.isVector()) { switch (type.getNominalSize()) { case 2: return GL_BOOL_VEC2; case 3: return GL_BOOL_VEC3; case 4: return GL_BOOL_VEC4; default: UNREACHABLE(); } } else { ASSERT(!type.isMatrix()); return GL_BOOL; } } switch (type.getBasicType()) { case EbtSampler2D: return GL_SAMPLER_2D; case EbtSampler3D: return GL_SAMPLER_3D; case EbtSamplerCube: return GL_SAMPLER_CUBE; case EbtSamplerExternalOES: return GL_SAMPLER_EXTERNAL_OES; case EbtSamplerExternal2DY2YEXT: return GL_SAMPLER_EXTERNAL_2D_Y2Y_EXT; case EbtSampler2DRect: return GL_SAMPLER_2D_RECT_ANGLE; case EbtSampler2DArray: return GL_SAMPLER_2D_ARRAY; case EbtSampler2DMS: return GL_SAMPLER_2D_MULTISAMPLE; case EbtISampler2D: return GL_INT_SAMPLER_2D; case EbtISampler3D: return GL_INT_SAMPLER_3D; case EbtISamplerCube: return GL_INT_SAMPLER_CUBE; case EbtISampler2DArray: return GL_INT_SAMPLER_2D_ARRAY; case EbtISampler2DMS: return GL_INT_SAMPLER_2D_MULTISAMPLE; case EbtUSampler2D: return GL_UNSIGNED_INT_SAMPLER_2D; case EbtUSampler3D: return GL_UNSIGNED_INT_SAMPLER_3D; case EbtUSamplerCube: return GL_UNSIGNED_INT_SAMPLER_CUBE; case EbtUSampler2DArray: return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY; case EbtUSampler2DMS: return GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE; case EbtSampler2DShadow: return GL_SAMPLER_2D_SHADOW; case EbtSamplerCubeShadow: return GL_SAMPLER_CUBE_SHADOW; case EbtSampler2DArrayShadow: return GL_SAMPLER_2D_ARRAY_SHADOW; case EbtImage2D: return GL_IMAGE_2D; case EbtIImage2D: return GL_INT_IMAGE_2D; case EbtUImage2D: return GL_UNSIGNED_INT_IMAGE_2D; case EbtImage2DArray: return GL_IMAGE_2D_ARRAY; case EbtIImage2DArray: return GL_INT_IMAGE_2D_ARRAY; case EbtUImage2DArray: return GL_UNSIGNED_INT_IMAGE_2D_ARRAY; case EbtImage3D: return GL_IMAGE_3D; case EbtIImage3D: return GL_INT_IMAGE_3D; case EbtUImage3D: return GL_UNSIGNED_INT_IMAGE_3D; case EbtImageCube: return GL_IMAGE_CUBE; case EbtIImageCube: return GL_INT_IMAGE_CUBE; case EbtUImageCube: return GL_UNSIGNED_INT_IMAGE_CUBE; case EbtAtomicCounter: return GL_UNSIGNED_INT_ATOMIC_COUNTER; default: UNREACHABLE(); } return GL_NONE; } GLenum GLVariablePrecision(const TType &type) { if (type.getBasicType() == EbtFloat) { switch (type.getPrecision()) { case EbpHigh: return GL_HIGH_FLOAT; case EbpMedium: return GL_MEDIUM_FLOAT; case EbpLow: return GL_LOW_FLOAT; case EbpUndefined: // Should be defined as the default precision by the parser default: UNREACHABLE(); } } else if (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt) { switch (type.getPrecision()) { case EbpHigh: return GL_HIGH_INT; case EbpMedium: return GL_MEDIUM_INT; case EbpLow: return GL_LOW_INT; case EbpUndefined: // Should be defined as the default precision by the parser default: UNREACHABLE(); } } // Other types (boolean, sampler) don't have a precision return GL_NONE; } TString ArrayString(const TType &type) { TStringStream arrayString; if (!type.isArray()) return arrayString.str(); const TVector &arraySizes = *type.getArraySizes(); for (auto arraySizeIter = arraySizes.rbegin(); arraySizeIter != arraySizes.rend(); ++arraySizeIter) { arrayString << "["; if (*arraySizeIter > 0) { arrayString << (*arraySizeIter); } arrayString << "]"; } return arrayString.str(); } TString GetTypeName(const TType &type, ShHashFunction64 hashFunction, NameMap *nameMap) { if (type.getBasicType() == EbtStruct) return HashName(TName(type.getStruct()->name()), hashFunction, nameMap); else return type.getBuiltInTypeNameString(); } bool IsVaryingOut(TQualifier qualifier) { switch (qualifier) { case EvqVaryingOut: case EvqSmoothOut: case EvqFlatOut: case EvqCentroidOut: case EvqVertexOut: case EvqGeometryOut: return true; default: break; } return false; } bool IsVaryingIn(TQualifier qualifier) { switch (qualifier) { case EvqVaryingIn: case EvqSmoothIn: case EvqFlatIn: case EvqCentroidIn: case EvqFragmentIn: case EvqGeometryIn: return true; default: break; } return false; } bool IsVarying(TQualifier qualifier) { return IsVaryingIn(qualifier) || IsVaryingOut(qualifier); } bool IsGeometryShaderInput(GLenum shaderType, TQualifier qualifier) { return (qualifier == EvqGeometryIn) || ((shaderType == GL_GEOMETRY_SHADER_OES) && IsInterpolationIn(qualifier)); } InterpolationType GetInterpolationType(TQualifier qualifier) { switch (qualifier) { case EvqFlatIn: case EvqFlatOut: return INTERPOLATION_FLAT; case EvqSmoothIn: case EvqSmoothOut: case EvqVertexOut: case EvqFragmentIn: case EvqVaryingIn: case EvqVaryingOut: case EvqGeometryIn: case EvqGeometryOut: return INTERPOLATION_SMOOTH; case EvqCentroidIn: case EvqCentroidOut: return INTERPOLATION_CENTROID; default: UNREACHABLE(); return INTERPOLATION_SMOOTH; } } TType GetShaderVariableBasicType(const sh::ShaderVariable &var) { switch (var.type) { case GL_BOOL: return TType(EbtBool); case GL_BOOL_VEC2: return TType(EbtBool, 2); case GL_BOOL_VEC3: return TType(EbtBool, 3); case GL_BOOL_VEC4: return TType(EbtBool, 4); case GL_FLOAT: return TType(EbtFloat); case GL_FLOAT_VEC2: return TType(EbtFloat, 2); case GL_FLOAT_VEC3: return TType(EbtFloat, 3); case GL_FLOAT_VEC4: return TType(EbtFloat, 4); case GL_FLOAT_MAT2: return TType(EbtFloat, 2, 2); case GL_FLOAT_MAT3: return TType(EbtFloat, 3, 3); case GL_FLOAT_MAT4: return TType(EbtFloat, 4, 4); case GL_FLOAT_MAT2x3: return TType(EbtFloat, 2, 3); case GL_FLOAT_MAT2x4: return TType(EbtFloat, 2, 4); case GL_FLOAT_MAT3x2: return TType(EbtFloat, 3, 2); case GL_FLOAT_MAT3x4: return TType(EbtFloat, 3, 4); case GL_FLOAT_MAT4x2: return TType(EbtFloat, 4, 2); case GL_FLOAT_MAT4x3: return TType(EbtFloat, 4, 3); case GL_INT: return TType(EbtInt); case GL_INT_VEC2: return TType(EbtInt, 2); case GL_INT_VEC3: return TType(EbtInt, 3); case GL_INT_VEC4: return TType(EbtInt, 4); case GL_UNSIGNED_INT: return TType(EbtUInt); case GL_UNSIGNED_INT_VEC2: return TType(EbtUInt, 2); case GL_UNSIGNED_INT_VEC3: return TType(EbtUInt, 3); case GL_UNSIGNED_INT_VEC4: return TType(EbtUInt, 4); default: UNREACHABLE(); return TType(); } } // GLSL ES 1.0.17 4.6.1 The Invariant Qualifier bool CanBeInvariantESSL1(TQualifier qualifier) { return IsVaryingIn(qualifier) || IsVaryingOut(qualifier) || IsBuiltinOutputVariable(qualifier) || (IsBuiltinFragmentInputVariable(qualifier) && qualifier != EvqFrontFacing); } // GLSL ES 3.00 Revision 6, 4.6.1 The Invariant Qualifier // GLSL ES 3.10 Revision 4, 4.8.1 The Invariant Qualifier bool CanBeInvariantESSL3OrGreater(TQualifier qualifier) { return IsVaryingOut(qualifier) || qualifier == EvqFragmentOut || IsBuiltinOutputVariable(qualifier); } bool IsBuiltinOutputVariable(TQualifier qualifier) { switch (qualifier) { case EvqPosition: case EvqPointSize: case EvqFragDepth: case EvqFragDepthEXT: case EvqFragColor: case EvqSecondaryFragColorEXT: case EvqFragData: case EvqSecondaryFragDataEXT: return true; default: break; } return false; } bool IsBuiltinFragmentInputVariable(TQualifier qualifier) { switch (qualifier) { case EvqFragCoord: case EvqPointCoord: case EvqFrontFacing: return true; default: break; } return false; } bool IsOutputESSL(ShShaderOutput output) { return output == SH_ESSL_OUTPUT; } bool IsOutputGLSL(ShShaderOutput output) { switch (output) { case SH_GLSL_130_OUTPUT: case SH_GLSL_140_OUTPUT: case SH_GLSL_150_CORE_OUTPUT: case SH_GLSL_330_CORE_OUTPUT: case SH_GLSL_400_CORE_OUTPUT: case SH_GLSL_410_CORE_OUTPUT: case SH_GLSL_420_CORE_OUTPUT: case SH_GLSL_430_CORE_OUTPUT: case SH_GLSL_440_CORE_OUTPUT: case SH_GLSL_450_CORE_OUTPUT: case SH_GLSL_COMPATIBILITY_OUTPUT: return true; default: break; } return false; } bool IsOutputHLSL(ShShaderOutput output) { switch (output) { case SH_HLSL_3_0_OUTPUT: case SH_HLSL_4_1_OUTPUT: case SH_HLSL_4_0_FL9_3_OUTPUT: return true; default: break; } return false; } bool IsOutputVulkan(ShShaderOutput output) { return output == SH_GLSL_VULKAN_OUTPUT; } } // namespace sh