// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "libANGLE/Context.h" #include #include #include "common/platform.h" #include "common/utilities.h" #include "libANGLE/Buffer.h" #include "libANGLE/Compiler.h" #include "libANGLE/Display.h" #include "libANGLE/Fence.h" #include "libANGLE/Framebuffer.h" #include "libANGLE/FramebufferAttachment.h" #include "libANGLE/Program.h" #include "libANGLE/Query.h" #include "libANGLE/Renderbuffer.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/Sampler.h" #include "libANGLE/Surface.h" #include "libANGLE/Texture.h" #include "libANGLE/TransformFeedback.h" #include "libANGLE/VertexArray.h" #include "libANGLE/formatutils.h" #include "libANGLE/validationES.h" #include "libANGLE/renderer/Renderer.h" namespace gl { Context::Context(const egl::Config *config, int clientVersion, const Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer) { ASSERT(robustAccess == false); // Unimplemented initCaps(clientVersion); mState.initialize(mCaps, clientVersion); mClientVersion = clientVersion; mConfigID = config->configID; mClientType = EGL_OPENGL_ES_API; mRenderBuffer = EGL_NONE; mFenceNVHandleAllocator.setBaseHandle(0); if (shareContext != NULL) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(mRenderer); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. Texture *zeroTexture2D = new Texture(mRenderer->createTexture(GL_TEXTURE_2D), 0, GL_TEXTURE_2D); mZeroTextures[GL_TEXTURE_2D].set(zeroTexture2D); Texture *zeroTextureCube = new Texture(mRenderer->createTexture(GL_TEXTURE_CUBE_MAP), 0, GL_TEXTURE_CUBE_MAP); mZeroTextures[GL_TEXTURE_CUBE_MAP].set(zeroTextureCube); if (mClientVersion >= 3) { // TODO: These could also be enabled via extension Texture *zeroTexture3D = new Texture(mRenderer->createTexture(GL_TEXTURE_3D), 0, GL_TEXTURE_3D); mZeroTextures[GL_TEXTURE_3D].set(zeroTexture3D); Texture *zeroTexture2DArray = new Texture(mRenderer->createTexture(GL_TEXTURE_2D_ARRAY), 0, GL_TEXTURE_2D_ARRAY); mZeroTextures[GL_TEXTURE_2D_ARRAY].set(zeroTexture2DArray); } mState.initializeZeroTextures(mZeroTextures); bindVertexArray(0); bindArrayBuffer(0); bindElementArrayBuffer(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); bindGenericUniformBuffer(0); for (unsigned int i = 0; i < mCaps.maxCombinedUniformBlocks; i++) { bindIndexedUniformBuffer(0, i, 0, -1); } bindGenericTransformFeedbackBuffer(0); for (unsigned int i = 0; i < mCaps.maxTransformFeedbackSeparateAttributes; i++) { bindIndexedTransformFeedbackBuffer(0, i, 0, -1); } bindCopyReadBuffer(0); bindCopyWriteBuffer(0); bindPixelPackBuffer(0); bindPixelUnpackBuffer(0); // [OpenGL ES 3.0.2] section 2.14.1 pg 85: // In the initial state, a default transform feedback object is bound and treated as // a transform feedback object with a name of zero. That object is bound any time // BindTransformFeedback is called with id of zero mTransformFeedbackZero.set(new TransformFeedback(mRenderer->createTransformFeedback(), 0)); bindTransformFeedback(0); mHasBeenCurrent = false; mContextLost = false; mResetStatus = GL_NO_ERROR; mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT); mRobustAccess = robustAccess; mCompiler = new Compiler(mRenderer->createCompiler(getData())); } Context::~Context() { mState.reset(); while (!mFramebufferMap.empty()) { // Delete the framebuffer in reverse order to destroy the framebuffer zero last. deleteFramebuffer(mFramebufferMap.rbegin()->first); } while (!mFenceNVMap.empty()) { deleteFenceNV(mFenceNVMap.begin()->first); } while (!mQueryMap.empty()) { deleteQuery(mQueryMap.begin()->first); } while (!mVertexArrayMap.empty()) { deleteVertexArray(mVertexArrayMap.begin()->first); } mTransformFeedbackZero.set(NULL); while (!mTransformFeedbackMap.empty()) { deleteTransformFeedback(mTransformFeedbackMap.begin()->first); } for (auto it = mZeroTextures.begin(); it != mZeroTextures.end(); ++it) { it->second.set(NULL); } mZeroTextures.clear(); if (mResourceManager) { mResourceManager->release(); } SafeDelete(mCompiler); } void Context::makeCurrent(egl::Surface *surface) { if (!mHasBeenCurrent) { initRendererString(); initExtensionStrings(); mState.setViewportParams(0, 0, surface->getWidth(), surface->getHeight()); mState.setScissorParams(0, 0, surface->getWidth(), surface->getHeight()); mHasBeenCurrent = true; } // TODO(jmadill): do not allocate new pointers here Framebuffer *framebufferZero = new DefaultFramebuffer(mCaps, mRenderer, surface); setFramebufferZero(framebufferZero); mRenderBuffer = surface->getRenderBuffer(); } // NOTE: this function should not assume that this context is current! void Context::markContextLost() { if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; mContextLost = true; } bool Context::isContextLost() { return mContextLost; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(getData(), type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } GLsync Context::createFenceSync() { GLuint handle = mResourceManager->createFenceSync(); return reinterpret_cast(static_cast(handle)); } GLuint Context::createVertexArray() { GLuint handle = mVertexArrayHandleAllocator.allocate(); // Although the spec states VAO state is not initialized until the object is bound, // we create it immediately. The resulting behaviour is transparent to the application, // since it's not currently possible to access the state until the object is bound. VertexArray *vertexArray = new VertexArray(mRenderer->createVertexArray(), handle, MAX_VERTEX_ATTRIBS); mVertexArrayMap[handle] = vertexArray; return handle; } GLuint Context::createSampler() { return mResourceManager->createSampler(); } GLuint Context::createTransformFeedback() { GLuint handle = mTransformFeedbackAllocator.allocate(); TransformFeedback *transformFeedback = new TransformFeedback(mRenderer->createTransformFeedback(), handle); transformFeedback->addRef(); mTransformFeedbackMap[handle] = transformFeedback; return handle; } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { GLuint handle = mFramebufferHandleAllocator.allocate(); mFramebufferMap[handle] = NULL; return handle; } GLuint Context::createFenceNV() { GLuint handle = mFenceNVHandleAllocator.allocate(); mFenceNVMap[handle] = new FenceNV(mRenderer->createFenceNV()); return handle; } // Returns an unused query name GLuint Context::createQuery() { GLuint handle = mQueryHandleAllocator.allocate(); mQueryMap[handle] = NULL; return handle; } void Context::deleteBuffer(GLuint buffer) { if (mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if (mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if (mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFenceSync(GLsync fenceSync) { // The spec specifies the underlying Fence object is not deleted until all current // wait commands finish. However, since the name becomes invalid, we cannot query the fence, // and since our API is currently designed for being called from a single thread, we can delete // the fence immediately. mResourceManager->deleteFenceSync(reinterpret_cast(fenceSync)); } void Context::deleteVertexArray(GLuint vertexArray) { auto vertexArrayObject = mVertexArrayMap.find(vertexArray); if (vertexArrayObject != mVertexArrayMap.end()) { detachVertexArray(vertexArray); mVertexArrayHandleAllocator.release(vertexArrayObject->first); delete vertexArrayObject->second; mVertexArrayMap.erase(vertexArrayObject); } } void Context::deleteSampler(GLuint sampler) { if (mResourceManager->getSampler(sampler)) { detachSampler(sampler); } mResourceManager->deleteSampler(sampler); } void Context::deleteTransformFeedback(GLuint transformFeedback) { auto iter = mTransformFeedbackMap.find(transformFeedback); if (iter != mTransformFeedbackMap.end()) { detachTransformFeedback(transformFeedback); mTransformFeedbackAllocator.release(transformFeedback); iter->second->release(); mTransformFeedbackMap.erase(iter); } } void Context::deleteFramebuffer(GLuint framebuffer) { FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); if (framebufferObject != mFramebufferMap.end()) { detachFramebuffer(framebuffer); mFramebufferHandleAllocator.release(framebufferObject->first); delete framebufferObject->second; mFramebufferMap.erase(framebufferObject); } } void Context::deleteFenceNV(GLuint fence) { FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence); if (fenceObject != mFenceNVMap.end()) { mFenceNVHandleAllocator.release(fenceObject->first); delete fenceObject->second; mFenceNVMap.erase(fenceObject); } } void Context::deleteQuery(GLuint query) { QueryMap::iterator queryObject = mQueryMap.find(query); if (queryObject != mQueryMap.end()) { mQueryHandleAllocator.release(queryObject->first); if (queryObject->second) { queryObject->second->release(); } mQueryMap.erase(queryObject); } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) const { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) const { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) const { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } FenceSync *Context::getFenceSync(GLsync handle) const { return mResourceManager->getFenceSync(reinterpret_cast(handle)); } VertexArray *Context::getVertexArray(GLuint handle) const { auto vertexArray = mVertexArrayMap.find(handle); if (vertexArray == mVertexArrayMap.end()) { return NULL; } else { return vertexArray->second; } } Sampler *Context::getSampler(GLuint handle) const { return mResourceManager->getSampler(handle); } TransformFeedback *Context::getTransformFeedback(GLuint handle) const { if (handle == 0) { return mTransformFeedbackZero.get(); } else { TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle); return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL; } } bool Context::isSampler(GLuint samplerName) const { return mResourceManager->isSampler(samplerName); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setArrayBufferBinding(getBuffer(buffer)); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.getVertexArray()->setElementArrayBuffer(getBuffer(buffer)); } void Context::bindTexture(GLenum target, GLuint handle) { Texture *texture = NULL; if (handle == 0) { texture = mZeroTextures[target].get(); } else { mResourceManager->checkTextureAllocation(handle, target); texture = getTexture(handle); } ASSERT(texture); mState.setSamplerTexture(target, texture); } void Context::bindReadFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mCaps, mRenderer, framebuffer); } mState.setReadFramebufferBinding(getFramebuffer(framebuffer)); } void Context::bindDrawFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mCaps, mRenderer, framebuffer); } mState.setDrawFramebufferBinding(getFramebuffer(framebuffer)); } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.setRenderbufferBinding(getRenderbuffer(renderbuffer)); } void Context::bindVertexArray(GLuint vertexArray) { if (!getVertexArray(vertexArray)) { VertexArray *vertexArrayObject = new VertexArray(mRenderer->createVertexArray(), vertexArray, MAX_VERTEX_ATTRIBS); mVertexArrayMap[vertexArray] = vertexArrayObject; } mState.setVertexArrayBinding(getVertexArray(vertexArray)); } void Context::bindSampler(GLuint textureUnit, GLuint sampler) { ASSERT(textureUnit < mCaps.maxCombinedTextureImageUnits); mResourceManager->checkSamplerAllocation(sampler); mState.setSamplerBinding(textureUnit, getSampler(sampler)); } void Context::bindGenericUniformBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setGenericUniformBufferBinding(getBuffer(buffer)); } void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.setIndexedUniformBufferBinding(index, getBuffer(buffer), offset, size); } void Context::bindGenericTransformFeedbackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setGenericTransformFeedbackBufferBinding(getBuffer(buffer)); } void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.setIndexedTransformFeedbackBufferBinding(index, getBuffer(buffer), offset, size); } void Context::bindCopyReadBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setCopyReadBufferBinding(getBuffer(buffer)); } void Context::bindCopyWriteBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setCopyWriteBufferBinding(getBuffer(buffer)); } void Context::bindPixelPackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setPixelPackBufferBinding(getBuffer(buffer)); } void Context::bindPixelUnpackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setPixelUnpackBufferBinding(getBuffer(buffer)); } void Context::useProgram(GLuint program) { mState.setProgram(getProgram(program)); } void Context::bindTransformFeedback(GLuint transformFeedback) { mState.setTransformFeedbackBinding(getTransformFeedback(transformFeedback)); } Error Context::beginQuery(GLenum target, GLuint query) { Query *queryObject = getQuery(query, true, target); ASSERT(queryObject); // begin query Error error = queryObject->begin(); if (error.isError()) { return error; } // set query as active for specified target only if begin succeeded mState.setActiveQuery(target, queryObject); return Error(GL_NO_ERROR); } Error Context::endQuery(GLenum target) { Query *queryObject = mState.getActiveQuery(target); ASSERT(queryObject); gl::Error error = queryObject->end(); // Always unbind the query, even if there was an error. This may delete the query object. mState.setActiveQuery(target, NULL); return error; } void Context::setFramebufferZero(Framebuffer *buffer) { // First, check to see if the old default framebuffer // was set for draw or read framebuffer, and change // the bindings to point to the new one before deleting it. if (mState.getDrawFramebuffer()->id() == 0) { mState.setDrawFramebufferBinding(buffer); } if (mState.getReadFramebuffer()->id() == 0) { mState.setReadFramebufferBinding(buffer); } delete mFramebufferMap[0]; mFramebufferMap[0] = buffer; } Framebuffer *Context::getFramebuffer(unsigned int handle) const { FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle); if (framebuffer == mFramebufferMap.end()) { return NULL; } else { return framebuffer->second; } } FenceNV *Context::getFenceNV(unsigned int handle) { FenceNVMap::iterator fence = mFenceNVMap.find(handle); if (fence == mFenceNVMap.end()) { return NULL; } else { return fence->second; } } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { QueryMap::iterator query = mQueryMap.find(handle); if (query == mQueryMap.end()) { return NULL; } else { if (!query->second && create) { query->second = new Query(mRenderer->createQuery(type), handle); query->second->addRef(); } return query->second; } } Texture *Context::getTargetTexture(GLenum target) const { ASSERT(ValidTextureTarget(this, target)); return getSamplerTexture(mState.getActiveSampler(), target); } Texture *Context::getSamplerTexture(unsigned int sampler, GLenum type) const { return mState.getSamplerTexture(sampler, type); } Compiler *Context::getCompiler() const { return mCompiler; } void Context::getBooleanv(GLenum pname, GLboolean *params) { switch (pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; default: mState.getBooleanv(pname, params); break; } } void Context::getFloatv(GLenum pname, GLfloat *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = mCaps.minAliasedLineWidth; params[1] = mCaps.maxAliasedLineWidth; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = mCaps.minAliasedPointSize; params[1] = mCaps.maxAliasedPointSize; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: ASSERT(mExtensions.textureFilterAnisotropic); *params = mExtensions.maxTextureAnisotropy; break; default: mState.getFloatv(pname, params); break; } } void Context::getIntegerv(GLenum pname, GLint *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_VERTEX_ATTRIBS: *params = mCaps.maxVertexAttributes; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mCaps.maxVertexUniformVectors; break; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxVertexUniformComponents; break; case GL_MAX_VARYING_VECTORS: *params = mCaps.maxVaryingVectors; break; case GL_MAX_VARYING_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mCaps.maxCombinedTextureImageUnits; break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxVertexTextureImageUnits; break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxTextureImageUnits; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mCaps.maxFragmentUniformVectors; break; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxFragmentInputComponents; break; case GL_MAX_RENDERBUFFER_SIZE: *params = mCaps.maxRenderbufferSize; break; case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mCaps.maxColorAttachments; break; case GL_MAX_DRAW_BUFFERS_EXT: *params = mCaps.maxDrawBuffers; break; //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = mCaps.max2DTextureSize; break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = mCaps.maxCubeMapTextureSize; break; case GL_MAX_3D_TEXTURE_SIZE: *params = mCaps.max3DTextureSize; break; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = mCaps.maxArrayTextureLayers; break; case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = mCaps.uniformBufferOffsetAlignment; break; case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = mCaps.maxUniformBufferBindings; break; case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mCaps.maxVertexUniformBlocks; break; case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mCaps.maxFragmentUniformBlocks; break; case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = mCaps.maxCombinedTextureImageUnits; break; case GL_MAJOR_VERSION: *params = mClientVersion; break; case GL_MINOR_VERSION: *params = 0; break; case GL_MAX_ELEMENTS_INDICES: *params = mCaps.maxElementsIndices; break; case GL_MAX_ELEMENTS_VERTICES: *params = mCaps.maxElementsVertices; break; case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mCaps.maxTransformFeedbackInterleavedComponents; break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mCaps.maxTransformFeedbackSeparateAttributes; break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mCaps.maxTransformFeedbackSeparateComponents; break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = mCaps.compressedTextureFormats.size(); break; case GL_MAX_SAMPLES_ANGLE: *params = mExtensions.maxSamples; break; case GL_MAX_VIEWPORT_DIMS: { params[0] = mCaps.maxViewportWidth; params[1] = mCaps.maxViewportHeight; } break; case GL_COMPRESSED_TEXTURE_FORMATS: std::copy(mCaps.compressedTextureFormats.begin(), mCaps.compressedTextureFormats.end(), params); break; case GL_RESET_NOTIFICATION_STRATEGY_EXT: *params = mResetStrategy; break; case GL_NUM_SHADER_BINARY_FORMATS: *params = mCaps.shaderBinaryFormats.size(); break; case GL_SHADER_BINARY_FORMATS: std::copy(mCaps.shaderBinaryFormats.begin(), mCaps.shaderBinaryFormats.end(), params); break; case GL_NUM_PROGRAM_BINARY_FORMATS: *params = mCaps.programBinaryFormats.size(); break; case GL_PROGRAM_BINARY_FORMATS: std::copy(mCaps.programBinaryFormats.begin(), mCaps.programBinaryFormats.end(), params); break; case GL_NUM_EXTENSIONS: *params = static_cast(mExtensionStrings.size()); break; default: mState.getIntegerv(getData(), pname, params); break; } } void Context::getInteger64v(GLenum pname, GLint64 *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_ELEMENT_INDEX: *params = mCaps.maxElementIndex; break; case GL_MAX_UNIFORM_BLOCK_SIZE: *params = mCaps.maxUniformBlockSize; break; case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxCombinedVertexUniformComponents; break; case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxCombinedFragmentUniformComponents; break; case GL_MAX_SERVER_WAIT_TIMEOUT: *params = mCaps.maxServerWaitTimeout; break; default: UNREACHABLE(); break; } } bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. // Indexed integer queries all refer to current state, so this function is a // mere passthrough. return mState.getIndexedIntegerv(target, index, data); } bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. // Indexed integer queries all refer to current state, so this function is a // mere passthrough. return mState.getIndexedInteger64v(target, index, data); } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { *type = GL_INT; *numParams = 1; return true; } // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch (pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = mCaps.compressedTextureFormats.size(); } return true; case GL_PROGRAM_BINARY_FORMATS_OES: { *type = GL_INT; *numParams = mCaps.programBinaryFormats.size(); } return true; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = mCaps.shaderBinaryFormats.size(); } return true; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_MAX_COLOR_ATTACHMENTS_EXT: case GL_MAX_DRAW_BUFFERS_EXT: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: //case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: case GL_READ_FRAMEBUFFER_BINDING_ANGLE: case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_PACK_REVERSE_ROW_ORDER_ANGLE: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_RESET_NOTIFICATION_STRATEGY_EXT: case GL_NUM_PROGRAM_BINARY_FORMATS_OES: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_SAMPLES_ANGLE: { if (mExtensions.framebufferMultisample) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_PIXEL_PACK_BUFFER_BINDING: case GL_PIXEL_UNPACK_BUFFER_BINDING: { if (mExtensions.pixelBufferObject) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } return true; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } return true; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_CONTEXT_ROBUST_ACCESS_EXT: { *type = GL_BOOL; *numParams = 1; } return true; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } return true; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } return true; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } return true; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } return true; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: if (!mExtensions.maxTextureAnisotropy) { return false; } *type = GL_FLOAT; *numParams = 1; return true; } if (mClientVersion < 3) { return false; } // Check for ES3.0+ parameter names switch (pname) { case GL_MAX_UNIFORM_BUFFER_BINDINGS: case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: case GL_UNIFORM_BUFFER_BINDING: case GL_TRANSFORM_FEEDBACK_BINDING: case GL_COPY_READ_BUFFER_BINDING: case GL_COPY_WRITE_BUFFER_BINDING: case GL_TEXTURE_BINDING_3D: case GL_TEXTURE_BINDING_2D_ARRAY: case GL_MAX_3D_TEXTURE_SIZE: case GL_MAX_ARRAY_TEXTURE_LAYERS: case GL_MAX_VERTEX_UNIFORM_BLOCKS: case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: case GL_MAX_COMBINED_UNIFORM_BLOCKS: case GL_MAX_VARYING_COMPONENTS: case GL_VERTEX_ARRAY_BINDING: case GL_MAX_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: case GL_NUM_EXTENSIONS: case GL_MAJOR_VERSION: case GL_MINOR_VERSION: case GL_MAX_ELEMENTS_INDICES: case GL_MAX_ELEMENTS_VERTICES: case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_ELEMENT_INDEX: case GL_MAX_UNIFORM_BLOCK_SIZE: case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_SERVER_WAIT_TIMEOUT: { *type = GL_INT_64_ANGLEX; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_ACTIVE: case GL_TRANSFORM_FEEDBACK_PAUSED: { *type = GL_BOOL; *numParams = 1; } return true; } return false; } bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams) { if (mClientVersion < 3) { return false; } switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: case GL_UNIFORM_BUFFER_BINDING: { *type = GL_INT; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_BUFFER_START: case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: case GL_UNIFORM_BUFFER_START: case GL_UNIFORM_BUFFER_SIZE: { *type = GL_INT_64_ANGLEX; *numParams = 1; } } return false; } Error Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances) { return mRenderer->drawArrays(getData(), mode, first, count, instances); } Error Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances, const rx::RangeUI &indexRange) { return mRenderer->drawElements(getData(), mode, count, type, indices, instances, indexRange); } Error Context::flush() { return mRenderer->flush(); } Error Context::finish() { return mRenderer->finish(); } void Context::recordError(const Error &error) { if (error.isError()) { mErrors.insert(error.getCode()); } } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if (mErrors.empty()) { return GL_NO_ERROR; } else { GLenum error = *mErrors.begin(); mErrors.erase(mErrors.begin()); return error; } } GLenum Context::getResetStatus() { //TODO(jmadill): needs MANGLE reworking if (mResetStatus == GL_NO_ERROR && !mContextLost) { // mResetStatus will be set by the markContextLost callback // in the case a notification is sent if (mRenderer->testDeviceLost()) { mRenderer->notifyDeviceLost(); } } GLenum status = mResetStatus; if (mResetStatus != GL_NO_ERROR) { ASSERT(mContextLost); if (mRenderer->testDeviceResettable()) { mResetStatus = GL_NO_ERROR; } } return status; } bool Context::isResetNotificationEnabled() { return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } int Context::getClientVersion() const { return mClientVersion; } EGLint Context::getConfigID() const { return mConfigID; } EGLenum Context::getClientType() const { return mClientType; } EGLenum Context::getRenderBuffer() const { return mRenderBuffer; } const Caps &Context::getCaps() const { return mCaps; } const TextureCapsMap &Context::getTextureCaps() const { return mTextureCaps; } const Extensions &Context::getExtensions() const { return mExtensions; } void Context::detachTexture(GLuint texture) { // Simple pass-through to State's detachTexture method, as textures do not require // allocation map management either here or in the resource manager at detach time. // Zero textures are held by the Context, and we don't attempt to request them from // the State. mState.detachTexture(mZeroTextures, texture); } void Context::detachBuffer(GLuint buffer) { // Buffer detachment is handled by Context, because the buffer must also be // attached from any VAOs in existence, and Context holds the VAO map. // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. mState.removeArrayBufferBinding(buffer); // mark as freed among the vertex array objects for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++) { vaoIt->second->detachBuffer(buffer); } } void Context::detachFramebuffer(GLuint framebuffer) { // Framebuffer detachment is handled by Context, because 0 is a valid // Framebuffer object, and a pointer to it must be passed from Context // to State at binding time. // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if (mState.removeReadFramebufferBinding(framebuffer) && framebuffer != 0) { bindReadFramebuffer(0); } if (mState.removeDrawFramebufferBinding(framebuffer) && framebuffer != 0) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { mState.detachRenderbuffer(renderbuffer); } void Context::detachVertexArray(GLuint vertexArray) { // Vertex array detachment is handled by Context, because 0 is a valid // VAO, and a pointer to it must be passed from Context to State at // binding time. // [OpenGL ES 3.0.2] section 2.10 page 43: // If a vertex array object that is currently bound is deleted, the binding // for that object reverts to zero and the default vertex array becomes current. if (mState.removeVertexArrayBinding(vertexArray)) { bindVertexArray(0); } } void Context::detachTransformFeedback(GLuint transformFeedback) { mState.detachTransformFeedback(transformFeedback); } void Context::detachSampler(GLuint sampler) { mState.detachSampler(sampler); } void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) { mState.getVertexArray()->setVertexAttribDivisor(index, divisor); } void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast(param)); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast(param)); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast(param)); break; default: UNREACHABLE(); break; } } void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround(param)); break; default: UNREACHABLE(); break; } } GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return uiround(samplerObject->getMinLod()); case GL_TEXTURE_MAX_LOD: return uiround(samplerObject->getMaxLod()); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod(); case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod(); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } void Context::initRendererString() { std::ostringstream rendererString; rendererString << "ANGLE ("; rendererString << mRenderer->getRendererDescription(); rendererString << ")"; mRendererString = MakeStaticString(rendererString.str()); } const std::string &Context::getRendererString() const { return mRendererString; } void Context::initExtensionStrings() { mExtensionStrings = mExtensions.getStrings(); std::ostringstream combinedStringStream; std::copy(mExtensionStrings.begin(), mExtensionStrings.end(), std::ostream_iterator(combinedStringStream, " ")); mExtensionString = combinedStringStream.str(); } const std::string &Context::getExtensionString() const { return mExtensionString; } const std::string &Context::getExtensionString(size_t idx) const { return mExtensionStrings[idx]; } size_t Context::getExtensionStringCount() const { return mExtensionStrings.size(); } void Context::initCaps(GLuint clientVersion) { mCaps = mRenderer->getRendererCaps(); mExtensions = mRenderer->getRendererExtensions(); if (clientVersion < 3) { // Disable ES3+ extensions mExtensions.colorBufferFloat = false; } if (clientVersion > 2) { // FIXME(geofflang): Don't support EXT_sRGB in non-ES2 contexts //mExtensions.sRGB = false; } // Apply implementation limits mCaps.maxVertexAttributes = std::min(mCaps.maxVertexAttributes, MAX_VERTEX_ATTRIBS); mCaps.maxVertexUniformBlocks = std::min(mCaps.maxVertexUniformBlocks, IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS); mCaps.maxVertexOutputComponents = std::min(mCaps.maxVertexOutputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4); mCaps.maxFragmentInputComponents = std::min(mCaps.maxFragmentInputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4); GLuint maxSamples = 0; mCaps.compressedTextureFormats.clear(); const TextureCapsMap &rendererFormats = mRenderer->getRendererTextureCaps(); for (TextureCapsMap::const_iterator i = rendererFormats.begin(); i != rendererFormats.end(); i++) { GLenum format = i->first; TextureCaps formatCaps = i->second; const InternalFormat &formatInfo = GetInternalFormatInfo(format); // Update the format caps based on the client version and extensions formatCaps.texturable = formatInfo.textureSupport(clientVersion, mExtensions); formatCaps.renderable = formatInfo.renderSupport(clientVersion, mExtensions); formatCaps.filterable = formatInfo.filterSupport(clientVersion, mExtensions); // OpenGL ES does not support multisampling with integer formats if (!formatInfo.renderSupport || formatInfo.componentType == GL_INT || formatInfo.componentType == GL_UNSIGNED_INT) { formatCaps.sampleCounts.clear(); } maxSamples = std::max(maxSamples, formatCaps.getMaxSamples()); if (formatCaps.texturable && formatInfo.compressed) { mCaps.compressedTextureFormats.push_back(format); } mTextureCaps.insert(format, formatCaps); } mExtensions.maxSamples = maxSamples; } Data Context::getData() const { return Data(mClientVersion, mState, mCaps, mTextureCaps, mExtensions, mResourceManager); } }