// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libANGLE/Program.h" #include #include "common/debug.h" #include "common/platform.h" #include "common/utilities.h" #include "common/version.h" #include "compiler/translator/blocklayout.h" #include "libANGLE/Data.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/features.h" #include "libANGLE/renderer/Renderer.h" #include "libANGLE/renderer/ProgramImpl.h" namespace gl { const char * const g_fakepath = "C:\\fakepath"; namespace { unsigned int ParseAndStripArrayIndex(std::string* name) { unsigned int subscript = GL_INVALID_INDEX; // Strip any trailing array operator and retrieve the subscript size_t open = name->find_last_of('['); size_t close = name->find_last_of(']'); if (open != std::string::npos && close == name->length() - 1) { subscript = atoi(name->substr(open + 1).c_str()); name->erase(open); } return subscript; } } AttributeBindings::AttributeBindings() { } AttributeBindings::~AttributeBindings() { } InfoLog::InfoLog() : mInfoLog(NULL) { } InfoLog::~InfoLog() { delete[] mInfoLog; } int InfoLog::getLength() const { if (!mInfoLog) { return 0; } else { return strlen(mInfoLog) + 1; } } void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) { int index = 0; if (bufSize > 0) { if (mInfoLog) { index = std::min(bufSize - 1, (int)strlen(mInfoLog)); memcpy(infoLog, mInfoLog, index); } infoLog[index] = '\0'; } if (length) { *length = index; } } // append a santized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void InfoLog::appendSanitized(const char *message) { std::string msg(message); size_t found; do { found = msg.find(g_fakepath); if (found != std::string::npos) { msg.erase(found, strlen(g_fakepath)); } } while (found != std::string::npos); append("%s", msg.c_str()); } void InfoLog::append(const char *format, ...) { if (!format) { return; } va_list vararg; va_start(vararg, format); size_t infoLength = vsnprintf(NULL, 0, format, vararg); va_end(vararg); char *logPointer = NULL; if (!mInfoLog) { mInfoLog = new char[infoLength + 2]; logPointer = mInfoLog; } else { size_t currentlogLength = strlen(mInfoLog); char *newLog = new char[currentlogLength + infoLength + 2]; strcpy(newLog, mInfoLog); delete[] mInfoLog; mInfoLog = newLog; logPointer = mInfoLog + currentlogLength; } va_start(vararg, format); vsnprintf(logPointer, infoLength, format, vararg); va_end(vararg); logPointer[infoLength] = 0; strcpy(logPointer + infoLength, "\n"); } void InfoLog::reset() { if (mInfoLog) { delete [] mInfoLog; mInfoLog = NULL; } } VariableLocation::VariableLocation() : name(), element(0), index(0) { } VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index) { } LinkedVarying::LinkedVarying() { } LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName, unsigned int semanticIndex, unsigned int semanticIndexCount) : name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount) { } Program::Program(rx::ProgramImpl *impl, ResourceManager *manager, GLuint handle) : mProgram(impl), mValidated(false), mTransformFeedbackVaryings(), mTransformFeedbackBufferMode(GL_NONE), mFragmentShader(NULL), mVertexShader(NULL), mLinked(false), mDeleteStatus(false), mRefCount(0), mResourceManager(manager), mHandle(handle) { ASSERT(mProgram); resetUniformBlockBindings(); unlink(); } Program::~Program() { unlink(true); if (mVertexShader != NULL) { mVertexShader->release(); } if (mFragmentShader != NULL) { mFragmentShader->release(); } SafeDelete(mProgram); } bool Program::attachShader(Shader *shader) { if (shader->getType() == GL_VERTEX_SHADER) { if (mVertexShader) { return false; } mVertexShader = shader; mVertexShader->addRef(); } else if (shader->getType() == GL_FRAGMENT_SHADER) { if (mFragmentShader) { return false; } mFragmentShader = shader; mFragmentShader->addRef(); } else UNREACHABLE(); return true; } bool Program::detachShader(Shader *shader) { if (shader->getType() == GL_VERTEX_SHADER) { if (mVertexShader != shader) { return false; } mVertexShader->release(); mVertexShader = NULL; } else if (shader->getType() == GL_FRAGMENT_SHADER) { if (mFragmentShader != shader) { return false; } mFragmentShader->release(); mFragmentShader = NULL; } else UNREACHABLE(); return true; } int Program::getAttachedShadersCount() const { return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0); } void AttributeBindings::bindAttributeLocation(GLuint index, const char *name) { if (index < MAX_VERTEX_ATTRIBS) { for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mAttributeBinding[i].erase(name); } mAttributeBinding[index].insert(name); } } void Program::bindAttributeLocation(GLuint index, const char *name) { mAttributeBindings.bindAttributeLocation(index, name); } // Links the HLSL code of the vertex and pixel shader by matching up their varyings, // compiling them into binaries, determining the attribute mappings, and collecting // a list of uniforms Error Program::link(const Data &data) { unlink(false); mInfoLog.reset(); resetUniformBlockBindings(); if (!mFragmentShader || !mFragmentShader->isCompiled()) { return Error(GL_NO_ERROR); } ASSERT(mFragmentShader->getType() == GL_FRAGMENT_SHADER); if (!mVertexShader || !mVertexShader->isCompiled()) { return Error(GL_NO_ERROR); } ASSERT(mVertexShader->getType() == GL_VERTEX_SHADER); if (!linkAttributes(mInfoLog, mAttributeBindings, mVertexShader)) { return Error(GL_NO_ERROR); } int registers; std::vector linkedVaryings; rx::LinkResult result = mProgram->link(data, mInfoLog, mFragmentShader, mVertexShader, mTransformFeedbackVaryings, mTransformFeedbackBufferMode, ®isters, &linkedVaryings, &mOutputVariables); if (result.error.isError() || !result.linkSuccess) { return result.error; } if (!mProgram->linkUniforms(mInfoLog, *mVertexShader, *mFragmentShader, *data.caps)) { return Error(GL_NO_ERROR); } if (!linkUniformBlocks(mInfoLog, *mVertexShader, *mFragmentShader, *data.caps)) { return Error(GL_NO_ERROR); } if (!gatherTransformFeedbackLinkedVaryings(mInfoLog, linkedVaryings, mTransformFeedbackVaryings, mTransformFeedbackBufferMode, &mProgram->getTransformFeedbackLinkedVaryings(), *data.caps)) { return Error(GL_NO_ERROR); } // TODO: The concept of "executables" is D3D only, and as such this belongs in ProgramD3D. It must be called, // however, last in this function, so it can't simply be moved to ProgramD3D::link without further shuffling. result = mProgram->compileProgramExecutables(mInfoLog, mFragmentShader, mVertexShader, registers); if (result.error.isError() || !result.linkSuccess) { mInfoLog.append("Failed to create D3D shaders."); unlink(false); return result.error; } mLinked = true; return gl::Error(GL_NO_ERROR); } int AttributeBindings::getAttributeBinding(const std::string &name) const { for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++) { if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end()) { return location; } } return -1; } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink(bool destroy) { if (destroy) // Object being destructed { if (mFragmentShader) { mFragmentShader->release(); mFragmentShader = NULL; } if (mVertexShader) { mVertexShader->release(); mVertexShader = NULL; } } std::fill(mLinkedAttribute, mLinkedAttribute + ArraySize(mLinkedAttribute), sh::Attribute()); mOutputVariables.clear(); mProgram->reset(); mValidated = false; mLinked = false; } bool Program::isLinked() { return mLinked; } Error Program::loadBinary(GLenum binaryFormat, const void *binary, GLsizei length) { unlink(false); #if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED return Error(GL_NO_ERROR); #else ASSERT(binaryFormat == mProgram->getBinaryFormat()); BinaryInputStream stream(binary, length); GLenum format = stream.readInt(); if (format != mProgram->getBinaryFormat()) { mInfoLog.append("Invalid program binary format."); return Error(GL_NO_ERROR); } int majorVersion = stream.readInt(); int minorVersion = stream.readInt(); if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION) { mInfoLog.append("Invalid program binary version."); return Error(GL_NO_ERROR); } unsigned char commitString[ANGLE_COMMIT_HASH_SIZE]; stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE); if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0) { mInfoLog.append("Invalid program binary version."); return Error(GL_NO_ERROR); } for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.readInt(&mLinkedAttribute[i].type); stream.readString(&mLinkedAttribute[i].name); stream.readInt(&mProgram->getShaderAttributes()[i].type); stream.readString(&mProgram->getShaderAttributes()[i].name); stream.readInt(&mProgram->getSemanticIndexes()[i]); } rx::LinkResult result = mProgram->load(mInfoLog, &stream); if (result.error.isError() || !result.linkSuccess) { return result.error; } mLinked = true; return Error(GL_NO_ERROR); #endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED } Error Program::saveBinary(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const { if (binaryFormat) { *binaryFormat = mProgram->getBinaryFormat(); } BinaryOutputStream stream; stream.writeInt(mProgram->getBinaryFormat()); stream.writeInt(ANGLE_MAJOR_VERSION); stream.writeInt(ANGLE_MINOR_VERSION); stream.writeBytes(reinterpret_cast(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE); for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.writeInt(mLinkedAttribute[i].type); stream.writeString(mLinkedAttribute[i].name); stream.writeInt(mProgram->getShaderAttributes()[i].type); stream.writeString(mProgram->getShaderAttributes()[i].name); stream.writeInt(mProgram->getSemanticIndexes()[i]); } gl::Error error = mProgram->save(&stream); if (error.isError()) { return error; } GLsizei streamLength = stream.length(); const void *streamData = stream.data(); if (streamLength > bufSize) { if (length) { *length = 0; } // TODO: This should be moved to the validation layer but computing the size of the binary before saving // it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate // sizes and then copy it. return Error(GL_INVALID_OPERATION); } if (binary) { char *ptr = reinterpret_cast(binary); memcpy(ptr, streamData, streamLength); ptr += streamLength; ASSERT(ptr - streamLength == binary); } if (length) { *length = streamLength; } return Error(GL_NO_ERROR); } GLint Program::getBinaryLength() const { GLint length; Error error = saveBinary(NULL, NULL, std::numeric_limits::max(), &length); if (error.isError()) { return 0; } return length; } void Program::release() { mRefCount--; if (mRefCount == 0 && mDeleteStatus) { mResourceManager->deleteProgram(mHandle); } } void Program::addRef() { mRefCount++; } unsigned int Program::getRefCount() const { return mRefCount; } int Program::getInfoLogLength() const { return mInfoLog.getLength(); } void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) { return mInfoLog.getLog(bufSize, length, infoLog); } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) { int total = 0; if (mVertexShader) { if (total < maxCount) { shaders[total] = mVertexShader->getHandle(); } total++; } if (mFragmentShader) { if (total < maxCount) { shaders[total] = mFragmentShader->getHandle(); } total++; } if (count) { *count = total; } } GLuint Program::getAttributeLocation(const std::string &name) { for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { if (mLinkedAttribute[index].name == name) { return index; } } return static_cast(-1); } int Program::getSemanticIndex(int attributeIndex) { ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); return mProgram->getSemanticIndexes()[attributeIndex]; } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { if (mLinked) { // Skip over inactive attributes unsigned int activeAttribute = 0; unsigned int attribute; for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mLinkedAttribute[attribute].name.empty()) { continue; } if (activeAttribute == index) { break; } activeAttribute++; } if (bufsize > 0) { const char *string = mLinkedAttribute[attribute].name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = 1; // Always a single 'type' instance *type = mLinkedAttribute[attribute].type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *type = GL_NONE; *size = 1; } } GLint Program::getActiveAttributeCount() { int count = 0; if (mLinked) { for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { count++; } } } return count; } GLint Program::getActiveAttributeMaxLength() { int maxLength = 0; if (mLinked) { for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); } } } return maxLength; } // Returns one more than the highest sampler index used. GLint Program::getUsedSamplerRange(SamplerType type) { return mProgram->getUsedSamplerRange(type); } bool Program::usesPointSize() const { return mProgram->usesPointSize(); } GLint Program::getSamplerMapping(SamplerType type, unsigned int samplerIndex, const Caps &caps) { return mProgram->getSamplerMapping(type, samplerIndex, caps); } GLenum Program::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) { return mProgram->getSamplerTextureType(type, samplerIndex); } GLint Program::getFragDataLocation(const std::string &name) const { std::string baseName(name); unsigned int arrayIndex = ParseAndStripArrayIndex(&baseName); for (auto locationIt = mOutputVariables.begin(); locationIt != mOutputVariables.end(); locationIt++) { const VariableLocation &outputVariable = locationIt->second; if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element)) { return static_cast(locationIt->first); } } return -1; } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { if (mLinked) { ASSERT(index < mProgram->getUniforms().size()); // index must be smaller than getActiveUniformCount() LinkedUniform *uniform = mProgram->getUniforms()[index]; if (bufsize > 0) { std::string string = uniform->name; if (uniform->isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = uniform->elementCount(); *type = uniform->type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *size = 0; *type = GL_NONE; } } GLint Program::getActiveUniformCount() { if (mLinked) { return mProgram->getUniforms().size(); } else { return 0; } } GLint Program::getActiveUniformMaxLength() { int maxLength = 0; if (mLinked) { unsigned int numUniforms = mProgram->getUniforms().size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (!mProgram->getUniforms()[uniformIndex]->name.empty()) { int length = (int)(mProgram->getUniforms()[uniformIndex]->name.length() + 1); if (mProgram->getUniforms()[uniformIndex]->isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } } return maxLength; } GLint Program::getActiveUniformi(GLuint index, GLenum pname) const { const gl::LinkedUniform& uniform = *mProgram->getUniforms()[index]; switch (pname) { case GL_UNIFORM_TYPE: return static_cast(uniform.type); case GL_UNIFORM_SIZE: return static_cast(uniform.elementCount()); case GL_UNIFORM_NAME_LENGTH: return static_cast(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0)); case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex; case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset; case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride; case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride; case GL_UNIFORM_IS_ROW_MAJOR: return static_cast(uniform.blockInfo.isRowMajorMatrix); default: UNREACHABLE(); break; } return 0; } bool Program::isValidUniformLocation(GLint location) const { ASSERT(rx::IsIntegerCastSafe(mProgram->getUniformIndices().size())); return (location >= 0 && location < static_cast(mProgram->getUniformIndices().size())); } LinkedUniform *Program::getUniformByLocation(GLint location) const { return mProgram->getUniformByLocation(location); } LinkedUniform *Program::getUniformByName(const std::string &name) const { return mProgram->getUniformByName(name); } GLint Program::getUniformLocation(const std::string &name) { return mProgram->getUniformLocation(name); } GLuint Program::getUniformIndex(const std::string &name) { return mProgram->getUniformIndex(name); } void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) { mProgram->setUniform1fv(location, count, v); } void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { mProgram->setUniform2fv(location, count, v); } void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { mProgram->setUniform3fv(location, count, v); } void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { mProgram->setUniform4fv(location, count, v); } void Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) { mProgram->setUniform1iv(location, count, v); } void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) { mProgram->setUniform2iv(location, count, v); } void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) { mProgram->setUniform3iv(location, count, v); } void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) { mProgram->setUniform4iv(location, count, v); } void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { mProgram->setUniform1uiv(location, count, v); } void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { mProgram->setUniform2uiv(location, count, v); } void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { mProgram->setUniform3uiv(location, count, v); } void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { mProgram->setUniform4uiv(location, count, v); } void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix2fv(location, count, transpose, v); } void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix3fv(location, count, transpose, v); } void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix4fv(location, count, transpose, v); } void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix2x3fv(location, count, transpose, v); } void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix2x4fv(location, count, transpose, v); } void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix3x2fv(location, count, transpose, v); } void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix3x4fv(location, count, transpose, v); } void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix4x2fv(location, count, transpose, v); } void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { mProgram->setUniformMatrix4x3fv(location, count, transpose, v); } void Program::getUniformfv(GLint location, GLfloat *v) { mProgram->getUniformfv(location, v); } void Program::getUniformiv(GLint location, GLint *v) { mProgram->getUniformiv(location, v); } void Program::getUniformuiv(GLint location, GLuint *v) { mProgram->getUniformuiv(location, v); } // Applies all the uniforms set for this program object to the renderer Error Program::applyUniforms() { return mProgram->applyUniforms(); } Error Program::applyUniformBuffers(const gl::Data &data) { return mProgram->applyUniformBuffers(data, mUniformBlockBindings); } void Program::flagForDeletion() { mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { return mDeleteStatus; } void Program::validate(const Caps &caps) { mInfoLog.reset(); mValidated = false; if (mLinked) { applyUniforms(); mValidated = mProgram->validateSamplers(&mInfoLog, caps); } else { mInfoLog.append("Program has not been successfully linked."); } } bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps) { return mProgram->validateSamplers(infoLog, caps); } bool Program::isValidated() const { return mValidated; } void Program::updateSamplerMapping() { return mProgram->updateSamplerMapping(); } GLuint Program::getActiveUniformBlockCount() { return mProgram->getUniformBlocks().size(); } void Program::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const { ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex]; if (bufSize > 0) { std::string string = uniformBlock.name; if (uniformBlock.isArrayElement()) { string += ArrayString(uniformBlock.elementIndex); } strncpy(uniformBlockName, string.c_str(), bufSize); uniformBlockName[bufSize - 1] = '\0'; if (length) { *length = strlen(uniformBlockName); } } } void Program::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const { ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex]; switch (pname) { case GL_UNIFORM_BLOCK_DATA_SIZE: *params = static_cast(uniformBlock.dataSize); break; case GL_UNIFORM_BLOCK_NAME_LENGTH: *params = static_cast(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0)); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS: *params = static_cast(uniformBlock.memberUniformIndexes.size()); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES: { for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++) { params[blockMemberIndex] = static_cast(uniformBlock.memberUniformIndexes[blockMemberIndex]); } } break; case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER: *params = static_cast(uniformBlock.isReferencedByVertexShader()); break; case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER: *params = static_cast(uniformBlock.isReferencedByFragmentShader()); break; default: UNREACHABLE(); } } GLint Program::getActiveUniformBlockMaxLength() { int maxLength = 0; if (mLinked) { unsigned int numUniformBlocks = mProgram->getUniformBlocks().size(); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++) { const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex]; if (!uniformBlock.name.empty()) { const int length = uniformBlock.name.length() + 1; // Counting in "[0]". const int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0); maxLength = std::max(length + arrayLength, maxLength); } } } return maxLength; } GLuint Program::getUniformBlockIndex(const std::string &name) { return mProgram->getUniformBlockIndex(name); } const UniformBlock *Program::getUniformBlockByIndex(GLuint index) const { return mProgram->getUniformBlockByIndex(index); } void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding) { mUniformBlockBindings[uniformBlockIndex] = uniformBlockBinding; } GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const { return mUniformBlockBindings[uniformBlockIndex]; } void Program::resetUniformBlockBindings() { for (unsigned int blockId = 0; blockId < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; blockId++) { mUniformBlockBindings[blockId] = 0; } } void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) { mTransformFeedbackVaryings.resize(count); for (GLsizei i = 0; i < count; i++) { mTransformFeedbackVaryings[i] = varyings[i]; } mTransformFeedbackBufferMode = bufferMode; } void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const { if (mLinked) { ASSERT(index < mProgram->getTransformFeedbackLinkedVaryings().size()); const LinkedVarying &varying = mProgram->getTransformFeedbackLinkedVaryings()[index]; GLsizei lastNameIdx = std::min(bufSize - 1, static_cast(varying.name.length())); if (length) { *length = lastNameIdx; } if (size) { *size = varying.size; } if (type) { *type = varying.type; } if (name) { memcpy(name, varying.name.c_str(), lastNameIdx); name[lastNameIdx] = '\0'; } } } GLsizei Program::getTransformFeedbackVaryingCount() const { if (mLinked) { return static_cast(mProgram->getTransformFeedbackLinkedVaryings().size()); } else { return 0; } } GLsizei Program::getTransformFeedbackVaryingMaxLength() const { if (mLinked) { GLsizei maxSize = 0; for (size_t i = 0; i < mProgram->getTransformFeedbackLinkedVaryings().size(); i++) { const LinkedVarying &varying = mProgram->getTransformFeedbackLinkedVaryings()[i]; maxSize = std::max(maxSize, static_cast(varying.name.length() + 1)); } return maxSize; } else { return 0; } } GLenum Program::getTransformFeedbackBufferMode() const { return mTransformFeedbackBufferMode; } bool Program::linkVaryings(InfoLog &infoLog, Shader *fragmentShader, Shader *vertexShader) { std::vector &fragmentVaryings = fragmentShader->getVaryings(); std::vector &vertexVaryings = vertexShader->getVaryings(); for (size_t fragVaryingIndex = 0; fragVaryingIndex < fragmentVaryings.size(); fragVaryingIndex++) { PackedVarying *input = &fragmentVaryings[fragVaryingIndex]; bool matched = false; // Built-in varyings obey special rules if (input->isBuiltIn()) { continue; } for (size_t vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++) { PackedVarying *output = &vertexVaryings[vertVaryingIndex]; if (output->name == input->name) { if (!linkValidateVaryings(infoLog, output->name, *input, *output)) { return false; } output->registerIndex = input->registerIndex; output->columnIndex = input->columnIndex; matched = true; break; } } // We permit unmatched, unreferenced varyings if (!matched && input->staticUse) { infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); return false; } } return true; } bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform) { if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true)) { return false; } if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout) { infoLog.append("Matrix packings for %s differ between vertex and fragment shaders", uniformName.c_str()); return false; } return true; } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool Program::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, const Shader *vertexShader) { unsigned int usedLocations = 0; const std::vector &shaderAttributes = vertexShader->getActiveAttributes(); // Link attributes that have a binding location for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++) { const sh::Attribute &attribute = shaderAttributes[attributeIndex]; ASSERT(attribute.staticUse); const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location; mProgram->getShaderAttributes()[attributeIndex] = attribute; if (location != -1) // Set by glBindAttribLocation or by location layout qualifier { const int rows = VariableRegisterCount(attribute.type); if (rows + location > MAX_VERTEX_ATTRIBS) { infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location); return false; } for (int row = 0; row < rows; row++) { const int rowLocation = location + row; sh::ShaderVariable &linkedAttribute = mLinkedAttribute[rowLocation]; // In GLSL 3.00, attribute aliasing produces a link error // In GLSL 1.00, attribute aliasing is allowed if (mProgram->getShaderVersion() >= 300) { if (!linkedAttribute.name.empty()) { infoLog.append("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), linkedAttribute.name.c_str(), rowLocation); return false; } } linkedAttribute = attribute; usedLocations |= 1 << rowLocation; } } } // Link attributes that don't have a binding location for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++) { const sh::Attribute &attribute = shaderAttributes[attributeIndex]; ASSERT(attribute.staticUse); const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location; if (location == -1) // Not set by glBindAttribLocation or by location layout qualifier { int rows = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) { infoLog.append("Too many active attributes (%s)", attribute.name.c_str()); return false; // Fail to link } mLinkedAttribute[availableIndex] = attribute; } } for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) { int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); int rows = VariableRegisterCount(mLinkedAttribute[attributeIndex].type); for (int r = 0; r < rows; r++) { mProgram->getSemanticIndexes()[attributeIndex++] = index++; } } return true; } bool Program::linkUniformBlocks(InfoLog &infoLog, const Shader &vertexShader, const Shader &fragmentShader, const Caps &caps) { const std::vector &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks(); const std::vector &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks(); // Check that interface blocks defined in the vertex and fragment shaders are identical typedef std::map UniformBlockMap; UniformBlockMap linkedUniformBlocks; for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &vertexInterfaceBlock = vertexInterfaceBlocks[blockIndex]; linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock; } for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &fragmentInterfaceBlock = fragmentInterfaceBlocks[blockIndex]; UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name); if (entry != linkedUniformBlocks.end()) { const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second; if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock)) { return false; } } } for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &interfaceBlock = vertexInterfaceBlocks[blockIndex]; // Note: shared and std140 layouts are always considered active if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED) { if (!mProgram->defineUniformBlock(infoLog, vertexShader, interfaceBlock, caps)) { return false; } } } for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &interfaceBlock = fragmentInterfaceBlocks[blockIndex]; // Note: shared and std140 layouts are always considered active if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED) { if (!mProgram->defineUniformBlock(infoLog, fragmentShader, interfaceBlock, caps)) { return false; } } } return true; } bool Program::areMatchingInterfaceBlocks(gl::InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock) { const char* blockName = vertexInterfaceBlock.name.c_str(); // validate blocks for the same member types if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size()) { infoLog.append("Types for interface block '%s' differ between vertex and fragment shaders", blockName); return false; } if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize) { infoLog.append("Array sizes differ for interface block '%s' between vertex and fragment shaders", blockName); return false; } if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout) { infoLog.append("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", blockName); return false; } const unsigned int numBlockMembers = vertexInterfaceBlock.fields.size(); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) { const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex]; const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog.append("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')", blockMemberIndex, blockName, vertexMember.name.c_str(), fragmentMember.name.c_str()); return false; } std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'"; if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember)) { return false; } } return true; } bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable, const sh::ShaderVariable &fragmentVariable, bool validatePrecision) { if (vertexVariable.type != fragmentVariable.type) { infoLog.append("Types for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (vertexVariable.arraySize != fragmentVariable.arraySize) { infoLog.append("Array sizes for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (validatePrecision && vertexVariable.precision != fragmentVariable.precision) { infoLog.append("Precisions for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (vertexVariable.fields.size() != fragmentVariable.fields.size()) { infoLog.append("Structure lengths for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } const unsigned int numMembers = vertexVariable.fields.size(); for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++) { const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex]; const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog.append("Name mismatch for field '%d' of %s: (in vertex: '%s', in fragment: '%s')", memberIndex, variableName.c_str(), vertexMember.name.c_str(), fragmentMember.name.c_str()); return false; } const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." + vertexMember.name + "'"; if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision)) { return false; } } return true; } bool Program::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform) { if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true)) { return false; } return true; } bool Program::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying) { if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false)) { return false; } if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation)) { infoLog.append("Interpolation types for %s differ between vertex and fragment shaders", varyingName.c_str()); return false; } return true; } bool Program::gatherTransformFeedbackLinkedVaryings(InfoLog &infoLog, const std::vector &linkedVaryings, const std::vector &transformFeedbackVaryingNames, GLenum transformFeedbackBufferMode, std::vector *outTransformFeedbackLinkedVaryings, const Caps &caps) const { size_t totalComponents = 0; // Gather the linked varyings that are used for transform feedback, they should all exist. outTransformFeedbackLinkedVaryings->clear(); for (size_t i = 0; i < transformFeedbackVaryingNames.size(); i++) { bool found = false; for (size_t j = 0; j < linkedVaryings.size(); j++) { if (transformFeedbackVaryingNames[i] == linkedVaryings[j].name) { for (size_t k = 0; k < outTransformFeedbackLinkedVaryings->size(); k++) { if (outTransformFeedbackLinkedVaryings->at(k).name == linkedVaryings[j].name) { infoLog.append("Two transform feedback varyings specify the same output variable (%s).", linkedVaryings[j].name.c_str()); return false; } } size_t componentCount = linkedVaryings[j].semanticIndexCount * 4; if (transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && componentCount > caps.maxTransformFeedbackSeparateComponents) { infoLog.append("Transform feedback varying's %s components (%u) exceed the maximum separate components (%u).", linkedVaryings[j].name.c_str(), componentCount, caps.maxTransformFeedbackSeparateComponents); return false; } totalComponents += componentCount; outTransformFeedbackLinkedVaryings->push_back(linkedVaryings[j]); found = true; break; } } // All transform feedback varyings are expected to exist since packVaryings checks for them. ASSERT(found); } if (transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents) { infoLog.append("Transform feedback varying total components (%u) exceed the maximum interleaved components (%u).", totalComponents, caps.maxTransformFeedbackInterleavedComponents); return false; } return true; } }