// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libANGLE/Program.h" #include #include "common/bitset_utils.h" #include "common/debug.h" #include "common/platform.h" #include "common/string_utils.h" #include "common/utilities.h" #include "compiler/translator/blocklayout.h" #include "libANGLE/Context.h" #include "libANGLE/MemoryProgramCache.h" #include "libANGLE/ProgramLinkedResources.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/Uniform.h" #include "libANGLE/VaryingPacking.h" #include "libANGLE/features.h" #include "libANGLE/histogram_macros.h" #include "libANGLE/queryconversions.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/ProgramImpl.h" #include "platform/Platform.h" namespace gl { namespace { // This simplified cast function doesn't need to worry about advanced concepts like // depth range values, or casting to bool. template DestT UniformStateQueryCast(SrcT value); // From-Float-To-Integer Casts template <> GLint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } template <> GLuint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } // From-Integer-to-Integer Casts template <> GLint UniformStateQueryCast(GLuint value) { return clampCast(value); } template <> GLuint UniformStateQueryCast(GLint value) { return clampCast(value); } // From-Boolean-to-Anything Casts template <> GLfloat UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1.0f : 0.0f); } template <> GLint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1 : 0); } template <> GLuint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1u : 0u); } // Default to static_cast template DestT UniformStateQueryCast(SrcT value) { return static_cast(value); } template void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components) { for (int comp = 0; comp < components; ++comp) { // We only work with strides of 4 bytes for uniform components. (GLfloat/GLint) // Don't use SrcT stride directly since GLboolean has a stride of 1 byte. size_t offset = comp * 4; const SrcT *typedSrcPointer = reinterpret_cast(&srcPointer[offset]); dataOut[comp] = UniformStateQueryCast(*typedSrcPointer); } } template GLuint GetResourceIndexFromName(const std::vector &list, const std::string &name) { std::string nameAsArrayName = name + "[0]"; for (size_t index = 0; index < list.size(); index++) { const VarT &resource = list[index]; if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName)) { return static_cast(index); } } return GL_INVALID_INDEX; } template GLint GetVariableLocation(const std::vector &list, const std::vector &locationList, const std::string &name) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); for (size_t location = 0u; location < locationList.size(); ++location) { const VariableLocation &variableLocation = locationList[location]; if (!variableLocation.used()) { continue; } const VarT &variable = list[variableLocation.index]; if (angle::BeginsWith(variable.name, name)) { if (name.length() == variable.name.length()) { ASSERT(name == variable.name); // GLES 3.1 November 2016 page 87. // The string exactly matches the name of the active variable. return static_cast(location); } if (name.length() + 3u == variable.name.length() && variable.isArray()) { ASSERT(name + "[0]" == variable.name); // The string identifies the base name of an active array, where the string would // exactly match the name of the variable if the suffix "[0]" were appended to the // string. return static_cast(location); } } if (variable.isArray() && variableLocation.arrayIndex == arrayIndex && nameLengthWithoutArrayIndex + 3u == variable.name.length() && angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex)) { ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name); // The string identifies an active element of the array, where the string ends with the // concatenation of the "[" character, an integer (with no "+" sign, extra leading // zeroes, or whitespace) identifying an array element, and the "]" character, the // integer is less than the number of active elements of the array variable, and where // the string would exactly match the enumerated name of the array if the decimal // integer were replaced with zero. return static_cast(location); } } return -1; } void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *length) { ASSERT(bufSize > 0); strncpy(buffer, string.c_str(), bufSize); buffer[bufSize - 1] = '\0'; if (length) { *length = static_cast(strlen(buffer)); } } bool IncludeSameArrayElement(const std::set &nameSet, const std::string &name) { std::vector subscripts; std::string baseName = ParseResourceName(name, &subscripts); for (auto nameInSet : nameSet) { std::vector arrayIndices; std::string arrayName = ParseResourceName(nameInSet, &arrayIndices); if (baseName == arrayName && (subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices)) { return true; } } return false; } bool validateInterfaceBlocksCount(GLuint maxInterfaceBlocks, const std::vector &interfaceBlocks, const std::string &errorMessage, InfoLog &infoLog) { GLuint blockCount = 0; for (const sh::InterfaceBlock &block : interfaceBlocks) { if (block.staticUse || block.layout != sh::BLOCKLAYOUT_PACKED) { blockCount += (block.arraySize ? block.arraySize : 1); if (blockCount > maxInterfaceBlocks) { infoLog << errorMessage << maxInterfaceBlocks << ")"; return false; } } } return true; } GLuint GetInterfaceBlockIndex(const std::vector &list, const std::string &name) { std::vector subscripts; std::string baseName = ParseResourceName(name, &subscripts); unsigned int numBlocks = static_cast(list.size()); for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++) { const auto &block = list[blockIndex]; if (block.name == baseName) { const bool arrayElementZero = (subscripts.empty() && (!block.isArray || block.arrayElement == 0)); const bool arrayElementMatches = (subscripts.size() == 1 && subscripts[0] == block.arrayElement); if (arrayElementMatches || arrayElementZero) { return blockIndex; } } } return GL_INVALID_INDEX; } void GetInterfaceBlockName(const GLuint index, const std::vector &list, GLsizei bufSize, GLsizei *length, GLchar *name) { ASSERT(index < list.size()); const auto &block = list[index]; if (bufSize > 0) { std::string blockName = block.name; if (block.isArray) { blockName += ArrayString(block.arrayElement); } CopyStringToBuffer(name, blockName, bufSize, length); } } void InitUniformBlockLinker(const gl::Context *context, const ProgramState &state, UniformBlockLinker *blockLinker) { if (state.getAttachedVertexShader()) { blockLinker->addShaderBlocks(GL_VERTEX_SHADER, &state.getAttachedVertexShader()->getUniformBlocks(context)); } if (state.getAttachedFragmentShader()) { blockLinker->addShaderBlocks(GL_FRAGMENT_SHADER, &state.getAttachedFragmentShader()->getUniformBlocks(context)); } if (state.getAttachedComputeShader()) { blockLinker->addShaderBlocks(GL_COMPUTE_SHADER, &state.getAttachedComputeShader()->getUniformBlocks(context)); } } void InitShaderStorageBlockLinker(const gl::Context *context, const ProgramState &state, ShaderStorageBlockLinker *blockLinker) { if (state.getAttachedVertexShader()) { blockLinker->addShaderBlocks( GL_VERTEX_SHADER, &state.getAttachedVertexShader()->getShaderStorageBlocks(context)); } if (state.getAttachedFragmentShader()) { blockLinker->addShaderBlocks( GL_FRAGMENT_SHADER, &state.getAttachedFragmentShader()->getShaderStorageBlocks(context)); } if (state.getAttachedComputeShader()) { blockLinker->addShaderBlocks( GL_COMPUTE_SHADER, &state.getAttachedComputeShader()->getShaderStorageBlocks(context)); } } } // anonymous namespace const char *const g_fakepath = "C:\\fakepath"; InfoLog::InfoLog() { } InfoLog::~InfoLog() { } size_t InfoLog::getLength() const { if (!mLazyStream) { return 0; } const std::string &logString = mLazyStream->str(); return logString.empty() ? 0 : logString.length() + 1; } void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { size_t index = 0; if (bufSize > 0) { const std::string logString(str()); if (!logString.empty()) { index = std::min(static_cast(bufSize) - 1, logString.length()); memcpy(infoLog, logString.c_str(), index); } infoLog[index] = '\0'; } if (length) { *length = static_cast(index); } } // append a santized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void InfoLog::appendSanitized(const char *message) { ensureInitialized(); std::string msg(message); size_t found; do { found = msg.find(g_fakepath); if (found != std::string::npos) { msg.erase(found, strlen(g_fakepath)); } } while (found != std::string::npos); *mLazyStream << message << std::endl; } void InfoLog::reset() { } VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false) { } VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index) : arrayIndex(arrayIndex), index(index), ignored(false) { ASSERT(arrayIndex != GL_INVALID_INDEX); } SamplerBinding::SamplerBinding(GLenum textureTypeIn, size_t elementCount, bool unreferenced) : textureType(textureTypeIn), boundTextureUnits(elementCount, 0), unreferenced(unreferenced) { } SamplerBinding::SamplerBinding(const SamplerBinding &other) = default; SamplerBinding::~SamplerBinding() = default; Program::Bindings::Bindings() { } Program::Bindings::~Bindings() { } void Program::Bindings::bindLocation(GLuint index, const std::string &name) { mBindings[name] = index; } int Program::Bindings::getBinding(const std::string &name) const { auto iter = mBindings.find(name); return (iter != mBindings.end()) ? iter->second : -1; } Program::Bindings::const_iterator Program::Bindings::begin() const { return mBindings.begin(); } Program::Bindings::const_iterator Program::Bindings::end() const { return mBindings.end(); } ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0) { } ImageBinding::ImageBinding(GLuint imageUnit, size_t count) { for (size_t index = 0; index < count; ++index) { boundImageUnits.push_back(imageUnit + static_cast(index)); } } ImageBinding::ImageBinding(const ImageBinding &other) = default; ImageBinding::~ImageBinding() = default; ProgramState::ProgramState() : mLabel(), mAttachedFragmentShader(nullptr), mAttachedVertexShader(nullptr), mAttachedComputeShader(nullptr), mAttachedGeometryShader(nullptr), mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS), mMaxActiveAttribLocation(0), mSamplerUniformRange(0, 0), mImageUniformRange(0, 0), mAtomicCounterUniformRange(0, 0), mBinaryRetrieveableHint(false), mNumViews(-1) { mComputeShaderLocalSize.fill(1); } ProgramState::~ProgramState() { ASSERT(!mAttachedVertexShader && !mAttachedFragmentShader && !mAttachedComputeShader && !mAttachedGeometryShader); } const std::string &ProgramState::getLabel() { return mLabel; } GLuint ProgramState::getUniformIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mUniforms, name); } GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mBufferVariables, name); } GLuint ProgramState::getUniformIndexFromLocation(GLint location) const { ASSERT(location >= 0 && static_cast(location) < mUniformLocations.size()); return mUniformLocations[location].index; } Optional ProgramState::getSamplerIndex(GLint location) const { GLuint index = getUniformIndexFromLocation(location); if (!isSamplerUniformIndex(index)) { return Optional::Invalid(); } return getSamplerIndexFromUniformIndex(index); } bool ProgramState::isSamplerUniformIndex(GLuint index) const { return mSamplerUniformRange.contains(index); } GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const { ASSERT(isSamplerUniformIndex(uniformIndex)); return uniformIndex - mSamplerUniformRange.low(); } GLuint ProgramState::getAttributeLocation(const std::string &name) const { for (const sh::Attribute &attribute : mAttributes) { if (attribute.name == name) { return attribute.location; } } return static_cast(-1); } Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle) : mProgram(factory->createProgram(mState)), mValidated(false), mLinked(false), mDeleteStatus(false), mRefCount(0), mResourceManager(manager), mHandle(handle) { ASSERT(mProgram); unlink(); } Program::~Program() { ASSERT(!mProgram); } void Program::onDestroy(const Context *context) { if (mState.mAttachedVertexShader != nullptr) { mState.mAttachedVertexShader->release(context); mState.mAttachedVertexShader = nullptr; } if (mState.mAttachedFragmentShader != nullptr) { mState.mAttachedFragmentShader->release(context); mState.mAttachedFragmentShader = nullptr; } if (mState.mAttachedComputeShader != nullptr) { mState.mAttachedComputeShader->release(context); mState.mAttachedComputeShader = nullptr; } if (mState.mAttachedGeometryShader != nullptr) { mState.mAttachedGeometryShader->release(context); mState.mAttachedGeometryShader = nullptr; } mProgram->destroy(context); ASSERT(!mState.mAttachedVertexShader && !mState.mAttachedFragmentShader && !mState.mAttachedComputeShader && !mState.mAttachedGeometryShader); SafeDelete(mProgram); delete this; } void Program::setLabel(const std::string &label) { mState.mLabel = label; } const std::string &Program::getLabel() const { return mState.mLabel; } void Program::attachShader(Shader *shader) { switch (shader->getType()) { case GL_VERTEX_SHADER: { ASSERT(!mState.mAttachedVertexShader); mState.mAttachedVertexShader = shader; mState.mAttachedVertexShader->addRef(); break; } case GL_FRAGMENT_SHADER: { ASSERT(!mState.mAttachedFragmentShader); mState.mAttachedFragmentShader = shader; mState.mAttachedFragmentShader->addRef(); break; } case GL_COMPUTE_SHADER: { ASSERT(!mState.mAttachedComputeShader); mState.mAttachedComputeShader = shader; mState.mAttachedComputeShader->addRef(); break; } case GL_GEOMETRY_SHADER_EXT: { ASSERT(!mState.mAttachedGeometryShader); mState.mAttachedGeometryShader = shader; mState.mAttachedGeometryShader->addRef(); break; } default: UNREACHABLE(); } } void Program::detachShader(const Context *context, Shader *shader) { switch (shader->getType()) { case GL_VERTEX_SHADER: { ASSERT(mState.mAttachedVertexShader == shader); shader->release(context); mState.mAttachedVertexShader = nullptr; break; } case GL_FRAGMENT_SHADER: { ASSERT(mState.mAttachedFragmentShader == shader); shader->release(context); mState.mAttachedFragmentShader = nullptr; break; } case GL_COMPUTE_SHADER: { ASSERT(mState.mAttachedComputeShader == shader); shader->release(context); mState.mAttachedComputeShader = nullptr; break; } case GL_GEOMETRY_SHADER_EXT: { ASSERT(mState.mAttachedGeometryShader == shader); shader->release(context); mState.mAttachedGeometryShader = nullptr; break; } default: UNREACHABLE(); } } int Program::getAttachedShadersCount() const { return (mState.mAttachedVertexShader ? 1 : 0) + (mState.mAttachedFragmentShader ? 1 : 0) + (mState.mAttachedComputeShader ? 1 : 0) + (mState.mAttachedGeometryShader ? 1 : 0); } void Program::bindAttributeLocation(GLuint index, const char *name) { mAttributeBindings.bindLocation(index, name); } void Program::bindUniformLocation(GLuint index, const char *name) { mUniformLocationBindings.bindLocation(index, name); } void Program::bindFragmentInputLocation(GLint index, const char *name) { mFragmentInputBindings.bindLocation(index, name); } BindingInfo Program::getFragmentInputBindingInfo(const Context *context, GLint index) const { BindingInfo ret; ret.type = GL_NONE; ret.valid = false; Shader *fragmentShader = mState.getAttachedFragmentShader(); ASSERT(fragmentShader); // Find the actual fragment shader varying we're interested in const std::vector &inputs = fragmentShader->getInputVaryings(context); for (const auto &binding : mFragmentInputBindings) { if (binding.second != static_cast(index)) continue; ret.valid = true; size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex); for (const auto &in : inputs) { if (in.name.length() == nameLengthWithoutArrayIndex && angle::BeginsWith(in.name, binding.first, nameLengthWithoutArrayIndex)) { if (in.isArray()) { // The client wants to bind either "name" or "name[0]". // GL ES 3.1 spec refers to active array names with language such as: // "if the string identifies the base name of an active array, where the // string would exactly match the name of the variable if the suffix "[0]" // were appended to the string". if (arrayIndex == GL_INVALID_INDEX) arrayIndex = 0; ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]"; } else { ret.name = in.mappedName; } ret.type = in.type; return ret; } } } return ret; } void Program::pathFragmentInputGen(const Context *context, GLint index, GLenum genMode, GLint components, const GLfloat *coeffs) { // If the location is -1 then the command is silently ignored if (index == -1) return; const auto &binding = getFragmentInputBindingInfo(context, index); // If the input doesn't exist then then the command is silently ignored // This could happen through optimization for example, the shader translator // decides that a variable is not actually being used and optimizes it away. if (binding.name.empty()) return; mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs); } // The attached shaders are checked for linking errors by matching up their variables. // Uniform, input and output variables get collected. // The code gets compiled into binaries. Error Program::link(const gl::Context *context) { const auto &data = context->getContextState(); auto *platform = ANGLEPlatformCurrent(); double startTime = platform->currentTime(platform); unlink(); ProgramHash programHash; auto *cache = context->getMemoryProgramCache(); if (cache) { ANGLE_TRY_RESULT(cache->getProgram(context, this, &mState, &programHash), mLinked); ANGLE_HISTOGRAM_BOOLEAN("GPU.ANGLE.ProgramCache.LoadBinarySuccess", mLinked); } if (mLinked) { double delta = platform->currentTime(platform) - startTime; int us = static_cast(delta * 1000000.0); ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us); return NoError(); } // Cache load failed, fall through to normal linking. unlink(); mInfoLog.reset(); const Caps &caps = data.getCaps(); Shader *vertexShader = mState.mAttachedVertexShader; Shader *fragmentShader = mState.mAttachedFragmentShader; Shader *computeShader = mState.mAttachedComputeShader; bool isComputeShaderAttached = (computeShader != nullptr); bool nonComputeShadersAttached = (vertexShader != nullptr || fragmentShader != nullptr); // Check whether we both have a compute and non-compute shaders attached. // If there are of both types attached, then linking should fail. // OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram if (isComputeShaderAttached == true && nonComputeShadersAttached == true) { mInfoLog << "Both a compute and non-compute shaders are attached to the same program."; return NoError(); } if (computeShader) { if (!computeShader->isCompiled(context)) { mInfoLog << "Attached compute shader is not compiled."; return NoError(); } ASSERT(computeShader->getType() == GL_COMPUTE_SHADER); mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize(context); // GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs // If the work group size is not specified, a link time error should occur. if (!mState.mComputeShaderLocalSize.isDeclared()) { mInfoLog << "Work group size is not specified."; return NoError(); } if (!linkUniforms(context, mInfoLog, mUniformLocationBindings)) { return NoError(); } if (!linkInterfaceBlocks(context, mInfoLog)) { return NoError(); } ProgramLinkedResources resources = { {0, PackMode::ANGLE_RELAXED}, {&mState.mUniformBlocks, &mState.mUniforms}, {&mState.mShaderStorageBlocks, &mState.mBufferVariables}}; InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker); InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker); ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked); if (!mLinked) { return NoError(); } } else { if (!fragmentShader || !fragmentShader->isCompiled(context)) { return NoError(); } ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER); if (!vertexShader || !vertexShader->isCompiled(context)) { return NoError(); } ASSERT(vertexShader->getType() == GL_VERTEX_SHADER); if (fragmentShader->getShaderVersion(context) != vertexShader->getShaderVersion(context)) { mInfoLog << "Fragment shader version does not match vertex shader version."; return NoError(); } if (!linkAttributes(context, mInfoLog)) { return NoError(); } if (!linkVaryings(context, mInfoLog)) { return NoError(); } if (!linkUniforms(context, mInfoLog, mUniformLocationBindings)) { return NoError(); } if (!linkInterfaceBlocks(context, mInfoLog)) { return NoError(); } if (!linkValidateGlobalNames(context, mInfoLog)) { return NoError(); } const auto &mergedVaryings = getMergedVaryings(context); mState.mNumViews = vertexShader->getNumViews(context); linkOutputVariables(context); // Map the varyings to the register file // In WebGL, we use a slightly different handling for packing variables. auto packMode = data.getExtensions().webglCompatibility ? PackMode::WEBGL_STRICT : PackMode::ANGLE_RELAXED; ProgramLinkedResources resources = { {data.getCaps().maxVaryingVectors, packMode}, {&mState.mUniformBlocks, &mState.mUniforms}, {&mState.mShaderStorageBlocks, &mState.mBufferVariables}}; InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker); InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker); if (!linkValidateTransformFeedback(context, mInfoLog, mergedVaryings, caps)) { return NoError(); } if (!resources.varyingPacking.collectAndPackUserVaryings( mInfoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames())) { return NoError(); } ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked); if (!mLinked) { return NoError(); } gatherTransformFeedbackVaryings(mergedVaryings); } gatherAtomicCounterBuffers(); initInterfaceBlockBindings(); setUniformValuesFromBindingQualifiers(); ASSERT(mLinked); updateLinkedShaderStages(); // Mark implementation-specific unreferenced uniforms as ignored. mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings); // Save to the program cache. if (cache && (mState.mLinkedTransformFeedbackVaryings.empty() || !context->getWorkarounds().disableProgramCachingForTransformFeedback)) { cache->putProgram(programHash, context, this); } double delta = platform->currentTime(platform) - startTime; int us = static_cast(delta * 1000000.0); ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheMissTimeUS", us); return NoError(); } void Program::updateLinkedShaderStages() { if (mState.mAttachedVertexShader) { mState.mLinkedShaderStages.set(SHADER_VERTEX); } if (mState.mAttachedFragmentShader) { mState.mLinkedShaderStages.set(SHADER_FRAGMENT); } if (mState.mAttachedComputeShader) { mState.mLinkedShaderStages.set(SHADER_COMPUTE); } } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink() { mState.mAttributes.clear(); mState.mActiveAttribLocationsMask.reset(); mState.mMaxActiveAttribLocation = 0; mState.mLinkedTransformFeedbackVaryings.clear(); mState.mUniforms.clear(); mState.mUniformLocations.clear(); mState.mUniformBlocks.clear(); mState.mActiveUniformBlockBindings.reset(); mState.mAtomicCounterBuffers.clear(); mState.mOutputVariables.clear(); mState.mOutputLocations.clear(); mState.mOutputVariableTypes.clear(); mState.mActiveOutputVariables.reset(); mState.mComputeShaderLocalSize.fill(1); mState.mSamplerBindings.clear(); mState.mImageBindings.clear(); mState.mNumViews = -1; mState.mLinkedShaderStages.reset(); mValidated = false; mLinked = false; } bool Program::isLinked() const { return mLinked; } Error Program::loadBinary(const Context *context, GLenum binaryFormat, const void *binary, GLsizei length) { unlink(); #if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED return NoError(); #else ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE); if (binaryFormat != GL_PROGRAM_BINARY_ANGLE) { mInfoLog << "Invalid program binary format."; return NoError(); } const uint8_t *bytes = reinterpret_cast(binary); ANGLE_TRY_RESULT( MemoryProgramCache::Deserialize(context, this, &mState, bytes, length, mInfoLog), mLinked); // Currently we require the full shader text to compute the program hash. // TODO(jmadill): Store the binary in the internal program cache. return NoError(); #endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED } Error Program::saveBinary(const Context *context, GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const { if (binaryFormat) { *binaryFormat = GL_PROGRAM_BINARY_ANGLE; } angle::MemoryBuffer memoryBuf; MemoryProgramCache::Serialize(context, this, &memoryBuf); GLsizei streamLength = static_cast(memoryBuf.size()); const uint8_t *streamState = memoryBuf.data(); if (streamLength > bufSize) { if (length) { *length = 0; } // TODO: This should be moved to the validation layer but computing the size of the binary before saving // it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate // sizes and then copy it. return InternalError(); } if (binary) { char *ptr = reinterpret_cast(binary); memcpy(ptr, streamState, streamLength); ptr += streamLength; ASSERT(ptr - streamLength == binary); } if (length) { *length = streamLength; } return NoError(); } GLint Program::getBinaryLength(const Context *context) const { GLint length; Error error = saveBinary(context, nullptr, nullptr, std::numeric_limits::max(), &length); if (error.isError()) { return 0; } return length; } void Program::setBinaryRetrievableHint(bool retrievable) { // TODO(jmadill) : replace with dirty bits mProgram->setBinaryRetrievableHint(retrievable); mState.mBinaryRetrieveableHint = retrievable; } bool Program::getBinaryRetrievableHint() const { return mState.mBinaryRetrieveableHint; } void Program::setSeparable(bool separable) { // TODO(yunchao) : replace with dirty bits if (mState.mSeparable != separable) { mProgram->setSeparable(separable); mState.mSeparable = separable; } } bool Program::isSeparable() const { return mState.mSeparable; } void Program::release(const Context *context) { mRefCount--; if (mRefCount == 0 && mDeleteStatus) { mResourceManager->deleteProgram(context, mHandle); } } void Program::addRef() { mRefCount++; } unsigned int Program::getRefCount() const { return mRefCount; } int Program::getInfoLogLength() const { return static_cast(mInfoLog.getLength()); } void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { return mInfoLog.getLog(bufSize, length, infoLog); } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const { int total = 0; if (mState.mAttachedComputeShader) { if (total < maxCount) { shaders[total] = mState.mAttachedComputeShader->getHandle(); total++; } } if (mState.mAttachedVertexShader) { if (total < maxCount) { shaders[total] = mState.mAttachedVertexShader->getHandle(); total++; } } if (mState.mAttachedFragmentShader) { if (total < maxCount) { shaders[total] = mState.mAttachedFragmentShader->getHandle(); total++; } } if (mState.mAttachedGeometryShader) { if (total < maxCount) { shaders[total] = mState.mAttachedGeometryShader->getHandle(); total++; } } if (count) { *count = total; } } GLuint Program::getAttributeLocation(const std::string &name) const { return mState.getAttributeLocation(name); } bool Program::isAttribLocationActive(size_t attribLocation) const { ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size()); return mState.mActiveAttribLocationsMask[attribLocation]; } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { if (!mLinked) { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *type = GL_NONE; *size = 1; return; } ASSERT(index < mState.mAttributes.size()); const sh::Attribute &attrib = mState.mAttributes[index]; if (bufsize > 0) { CopyStringToBuffer(name, attrib.name, bufsize, length); } // Always a single 'type' instance *size = 1; *type = attrib.type; } GLint Program::getActiveAttributeCount() const { if (!mLinked) { return 0; } return static_cast(mState.mAttributes.size()); } GLint Program::getActiveAttributeMaxLength() const { if (!mLinked) { return 0; } size_t maxLength = 0; for (const sh::Attribute &attrib : mState.mAttributes) { maxLength = std::max(attrib.name.length() + 1, maxLength); } return static_cast(maxLength); } GLuint Program::getInputResourceIndex(const GLchar *name) const { return GetResourceIndexFromName(mState.mAttributes, std::string(name)); } GLuint Program::getOutputResourceIndex(const GLchar *name) const { return GetResourceIndexFromName(mState.mOutputVariables, std::string(name)); } size_t Program::getOutputResourceCount() const { return (mLinked ? mState.mOutputVariables.size() : 0); } template void Program::getResourceName(GLuint index, const std::vector &resources, GLsizei bufSize, GLsizei *length, GLchar *name) const { if (length) { *length = 0; } if (!mLinked) { if (bufSize > 0) { name[0] = '\0'; } return; } ASSERT(index < resources.size()); const auto &resource = resources[index]; if (bufSize > 0) { CopyStringToBuffer(name, resource.name, bufSize, length); } } void Program::getInputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { getResourceName(index, mState.mAttributes, bufSize, length, name); } void Program::getOutputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { getResourceName(index, mState.mOutputVariables, bufSize, length, name); } void Program::getUniformResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { getResourceName(index, mState.mUniforms, bufSize, length, name); } void Program::getBufferVariableResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { getResourceName(index, mState.mBufferVariables, bufSize, length, name); } const sh::Attribute &Program::getInputResource(GLuint index) const { ASSERT(index < mState.mAttributes.size()); return mState.mAttributes[index]; } const sh::OutputVariable &Program::getOutputResource(GLuint index) const { ASSERT(index < mState.mOutputVariables.size()); return mState.mOutputVariables[index]; } GLint Program::getFragDataLocation(const std::string &name) const { return GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name); } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { if (mLinked) { // index must be smaller than getActiveUniformCount() ASSERT(index < mState.mUniforms.size()); const LinkedUniform &uniform = mState.mUniforms[index]; if (bufsize > 0) { std::string string = uniform.name; CopyStringToBuffer(name, string, bufsize, length); } *size = clampCast(uniform.getBasicTypeElementCount()); *type = uniform.type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *size = 0; *type = GL_NONE; } } GLint Program::getActiveUniformCount() const { if (mLinked) { return static_cast(mState.mUniforms.size()); } else { return 0; } } size_t Program::getActiveBufferVariableCount() const { return mLinked ? mState.mBufferVariables.size() : 0; } GLint Program::getActiveUniformMaxLength() const { size_t maxLength = 0; if (mLinked) { for (const LinkedUniform &uniform : mState.mUniforms) { if (!uniform.name.empty()) { size_t length = uniform.name.length() + 1u; if (uniform.isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } } return static_cast(maxLength); } bool Program::isValidUniformLocation(GLint location) const { ASSERT(angle::IsValueInRangeForNumericType(mState.mUniformLocations.size())); return (location >= 0 && static_cast(location) < mState.mUniformLocations.size() && mState.mUniformLocations[static_cast(location)].used()); } const LinkedUniform &Program::getUniformByLocation(GLint location) const { ASSERT(location >= 0 && static_cast(location) < mState.mUniformLocations.size()); return mState.mUniforms[mState.getUniformIndexFromLocation(location)]; } const VariableLocation &Program::getUniformLocation(GLint location) const { ASSERT(location >= 0 && static_cast(location) < mState.mUniformLocations.size()); return mState.mUniformLocations[location]; } const std::vector &Program::getUniformLocations() const { return mState.mUniformLocations; } const LinkedUniform &Program::getUniformByIndex(GLuint index) const { ASSERT(index < static_cast(mState.mUniforms.size())); return mState.mUniforms[index]; } const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const { ASSERT(index < static_cast(mState.mBufferVariables.size())); return mState.mBufferVariables[index]; } GLint Program::getUniformLocation(const std::string &name) const { return GetVariableLocation(mState.mUniforms, mState.mUniformLocations, name); } GLuint Program::getUniformIndex(const std::string &name) const { return mState.getUniformIndexFromName(name); } void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1fv(location, clampedCount, v); } void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2fv(location, clampedCount, v); } void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3fv(location, clampedCount, v); } void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4fv(location, clampedCount, v); } Program::SetUniformResult Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1iv(location, clampedCount, v); if (mState.isSamplerUniformIndex(locationInfo.index)) { updateSamplerUniform(locationInfo, clampedCount, v); return SetUniformResult::SamplerChanged; } return SetUniformResult::NoSamplerChange; } void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2iv(location, clampedCount, v); } void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3iv(location, clampedCount, v); } void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4iv(location, clampedCount, v); } void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1uiv(location, clampedCount, v); } void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v); mProgram->setUniform2uiv(location, clampedCount, v); } void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v); mProgram->setUniform3uiv(location, clampedCount, v); } void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v); mProgram->setUniform4uiv(location, clampedCount, v); } void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v); mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v); mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v); mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v); mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v); mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v); mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v); mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v); mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v); } void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) { GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v); mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v); } void Program::getUniformfv(const Context *context, GLint location, GLfloat *v) const { const auto &uniformLocation = mState.getUniformLocations()[location]; const auto &uniform = mState.getUniforms()[uniformLocation.index]; GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_FLOAT) { mProgram->getUniformfv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, gl::VariableComponentCount(uniform.type)); } } void Program::getUniformiv(const Context *context, GLint location, GLint *v) const { const auto &uniformLocation = mState.getUniformLocations()[location]; const auto &uniform = mState.getUniforms()[uniformLocation.index]; GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_INT || nativeType == GL_BOOL) { mProgram->getUniformiv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, gl::VariableComponentCount(uniform.type)); } } void Program::getUniformuiv(const Context *context, GLint location, GLuint *v) const { const auto &uniformLocation = mState.getUniformLocations()[location]; const auto &uniform = mState.getUniforms()[uniformLocation.index]; GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_UNSIGNED_INT) { mProgram->getUniformuiv(context, location, v); } else { getUniformInternal(context, v, location, nativeType, gl::VariableComponentCount(uniform.type)); } } void Program::flagForDeletion() { mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { return mDeleteStatus; } void Program::validate(const Caps &caps) { mInfoLog.reset(); if (mLinked) { mValidated = ConvertToBool(mProgram->validate(caps, &mInfoLog)); } else { mInfoLog << "Program has not been successfully linked."; } } bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps) { // Skip cache if we're using an infolog, so we get the full error. // Also skip the cache if the sample mapping has changed, or if we haven't ever validated. if (infoLog == nullptr && mCachedValidateSamplersResult.valid()) { return mCachedValidateSamplersResult.value(); } if (mTextureUnitTypesCache.empty()) { mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, GL_NONE); } else { std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE); } // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. for (const auto &samplerBinding : mState.mSamplerBindings) { if (samplerBinding.unreferenced) continue; GLenum textureType = samplerBinding.textureType; for (GLuint textureUnit : samplerBinding.boundTextureUnits) { if (textureUnit >= caps.maxCombinedTextureImageUnits) { if (infoLog) { (*infoLog) << "Sampler uniform (" << textureUnit << ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (" << caps.maxCombinedTextureImageUnits << ")"; } mCachedValidateSamplersResult = false; return false; } if (mTextureUnitTypesCache[textureUnit] != GL_NONE) { if (textureType != mTextureUnitTypesCache[textureUnit]) { if (infoLog) { (*infoLog) << "Samplers of conflicting types refer to the same texture " "image unit (" << textureUnit << ")."; } mCachedValidateSamplersResult = false; return false; } } else { mTextureUnitTypesCache[textureUnit] = textureType; } } } mCachedValidateSamplersResult = true; return true; } bool Program::isValidated() const { return mValidated; } GLuint Program::getActiveUniformBlockCount() const { return static_cast(mState.mUniformBlocks.size()); } GLuint Program::getActiveAtomicCounterBufferCount() const { return static_cast(mState.mAtomicCounterBuffers.size()); } GLuint Program::getActiveShaderStorageBlockCount() const { return static_cast(mState.mShaderStorageBlocks.size()); } void Program::getActiveUniformBlockName(const GLuint blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { GetInterfaceBlockName(blockIndex, mState.mUniformBlocks, bufSize, length, blockName); } void Program::getActiveShaderStorageBlockName(const GLuint blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { GetInterfaceBlockName(blockIndex, mState.mShaderStorageBlocks, bufSize, length, blockName); } GLint Program::getActiveUniformBlockMaxLength() const { int maxLength = 0; if (mLinked) { unsigned int numUniformBlocks = static_cast(mState.mUniformBlocks.size()); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++) { const InterfaceBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex]; if (!uniformBlock.name.empty()) { int length = static_cast(uniformBlock.nameWithArrayIndex().length()); maxLength = std::max(length + 1, maxLength); } } } return maxLength; } GLuint Program::getUniformBlockIndex(const std::string &name) const { return GetInterfaceBlockIndex(mState.mUniformBlocks, name); } GLuint Program::getShaderStorageBlockIndex(const std::string &name) const { return GetInterfaceBlockIndex(mState.mShaderStorageBlocks, name); } const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const { ASSERT(index < static_cast(mState.mUniformBlocks.size())); return mState.mUniformBlocks[index]; } const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const { ASSERT(index < static_cast(mState.mShaderStorageBlocks.size())); return mState.mShaderStorageBlocks[index]; } void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding) { mState.mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding; mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0); mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding); } GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const { return mState.getUniformBlockBinding(uniformBlockIndex); } GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const { return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex); } void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) { mState.mTransformFeedbackVaryingNames.resize(count); for (GLsizei i = 0; i < count; i++) { mState.mTransformFeedbackVaryingNames[i] = varyings[i]; } mState.mTransformFeedbackBufferMode = bufferMode; } void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const { if (mLinked) { ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size()); const auto &var = mState.mLinkedTransformFeedbackVaryings[index]; std::string varName = var.nameWithArrayIndex(); GLsizei lastNameIdx = std::min(bufSize - 1, static_cast(varName.length())); if (length) { *length = lastNameIdx; } if (size) { *size = var.size(); } if (type) { *type = var.type; } if (name) { memcpy(name, varName.c_str(), lastNameIdx); name[lastNameIdx] = '\0'; } } } GLsizei Program::getTransformFeedbackVaryingCount() const { if (mLinked) { return static_cast(mState.mLinkedTransformFeedbackVaryings.size()); } else { return 0; } } GLsizei Program::getTransformFeedbackVaryingMaxLength() const { if (mLinked) { GLsizei maxSize = 0; for (const auto &var : mState.mLinkedTransformFeedbackVaryings) { maxSize = std::max(maxSize, static_cast(var.nameWithArrayIndex().length() + 1)); } return maxSize; } else { return 0; } } GLenum Program::getTransformFeedbackBufferMode() const { return mState.mTransformFeedbackBufferMode; } bool Program::linkVaryings(const Context *context, InfoLog &infoLog) const { Shader *vertexShader = mState.mAttachedVertexShader; Shader *fragmentShader = mState.mAttachedFragmentShader; ASSERT(vertexShader->getShaderVersion(context) == fragmentShader->getShaderVersion(context)); const std::vector &vertexVaryings = vertexShader->getOutputVaryings(context); const std::vector &fragmentVaryings = fragmentShader->getInputVaryings(context); std::map staticFragmentInputLocations; for (const sh::Varying &output : fragmentVaryings) { bool matched = false; // Built-in varyings obey special rules if (output.isBuiltIn()) { continue; } for (const sh::Varying &input : vertexVaryings) { if (output.name == input.name) { ASSERT(!input.isBuiltIn()); if (!linkValidateVaryings(infoLog, output.name, input, output, vertexShader->getShaderVersion(context))) { return false; } matched = true; break; } } // We permit unmatched, unreferenced varyings if (!matched && output.staticUse) { infoLog << "Fragment varying " << output.name << " does not match any vertex varying"; return false; } // Check for aliased path rendering input bindings (if any). // If more than one binding refer statically to the same // location the link must fail. if (!output.staticUse) continue; const auto inputBinding = mFragmentInputBindings.getBinding(output.name); if (inputBinding == -1) continue; const auto it = staticFragmentInputLocations.find(inputBinding); if (it == std::end(staticFragmentInputLocations)) { staticFragmentInputLocations.insert(std::make_pair(inputBinding, output.name)); } else { infoLog << "Binding for fragment input " << output.name << " conflicts with " << it->second; return false; } } if (!linkValidateBuiltInVaryings(context, infoLog)) { return false; } // TODO(jmadill): verify no unmatched vertex varyings? return true; } bool Program::linkUniforms(const Context *context, InfoLog &infoLog, const Bindings &uniformLocationBindings) { UniformLinker linker(mState); if (!linker.link(context, infoLog, uniformLocationBindings)) { return false; } linker.getResults(&mState.mUniforms, &mState.mUniformLocations); linkSamplerAndImageBindings(); if (!linkAtomicCounterBuffers()) { return false; } return true; } void Program::linkSamplerAndImageBindings() { unsigned int high = static_cast(mState.mUniforms.size()); unsigned int low = high; for (auto counterIter = mState.mUniforms.rbegin(); counterIter != mState.mUniforms.rend() && counterIter->isAtomicCounter(); ++counterIter) { --low; } mState.mAtomicCounterUniformRange = RangeUI(low, high); high = low; for (auto imageIter = mState.mUniforms.rbegin(); imageIter != mState.mUniforms.rend() && imageIter->isImage(); ++imageIter) { --low; } mState.mImageUniformRange = RangeUI(low, high); // If uniform is a image type, insert it into the mImageBindings array. for (unsigned int imageIndex : mState.mImageUniformRange) { // ES3.1 (section 7.6.1) and GLSL ES3.1 (section 4.4.5), Uniform*i{v} commands // cannot load values into a uniform defined as an image. if declare without a // binding qualifier, any uniform image variable (include all elements of // unbound image array) shoud be bound to unit zero. auto &imageUniform = mState.mUniforms[imageIndex]; if (imageUniform.binding == -1) { mState.mImageBindings.emplace_back( ImageBinding(imageUniform.getBasicTypeElementCount())); } else { mState.mImageBindings.emplace_back( ImageBinding(imageUniform.binding, imageUniform.getBasicTypeElementCount())); } } high = low; for (auto samplerIter = mState.mUniforms.rbegin() + mState.mImageUniformRange.length(); samplerIter != mState.mUniforms.rend() && samplerIter->isSampler(); ++samplerIter) { --low; } mState.mSamplerUniformRange = RangeUI(low, high); // If uniform is a sampler type, insert it into the mSamplerBindings array. for (unsigned int samplerIndex : mState.mSamplerUniformRange) { const auto &samplerUniform = mState.mUniforms[samplerIndex]; GLenum textureType = SamplerTypeToTextureType(samplerUniform.type); mState.mSamplerBindings.emplace_back( SamplerBinding(textureType, samplerUniform.getBasicTypeElementCount(), false)); } } bool Program::linkAtomicCounterBuffers() { for (unsigned int index : mState.mAtomicCounterUniformRange) { auto &uniform = mState.mUniforms[index]; bool found = false; for (unsigned int bufferIndex = 0; bufferIndex < mState.mAtomicCounterBuffers.size(); ++bufferIndex) { auto &buffer = mState.mAtomicCounterBuffers[bufferIndex]; if (buffer.binding == uniform.binding) { buffer.memberIndexes.push_back(index); uniform.bufferIndex = bufferIndex; found = true; buffer.unionReferencesWith(uniform); break; } } if (!found) { AtomicCounterBuffer atomicCounterBuffer; atomicCounterBuffer.binding = uniform.binding; atomicCounterBuffer.memberIndexes.push_back(index); atomicCounterBuffer.unionReferencesWith(uniform); mState.mAtomicCounterBuffers.push_back(atomicCounterBuffer); uniform.bufferIndex = static_cast(mState.mAtomicCounterBuffers.size() - 1); } } // TODO(jie.a.chen@intel.com): Count each atomic counter buffer to validate against // gl_Max[Vertex|Fragment|Compute|Combined]AtomicCounterBuffers. return true; } bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform, bool webglCompatibility) { // If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287. if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, webglCompatibility)) { return false; } if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout) { infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders"; return false; } return true; } // Assigns locations to all attributes from the bindings and program locations. bool Program::linkAttributes(const Context *context, InfoLog &infoLog) { const ContextState &data = context->getContextState(); auto *vertexShader = mState.getAttachedVertexShader(); unsigned int usedLocations = 0; mState.mAttributes = vertexShader->getActiveAttributes(context); GLuint maxAttribs = data.getCaps().maxVertexAttributes; // TODO(jmadill): handle aliasing robustly if (mState.mAttributes.size() > maxAttribs) { infoLog << "Too many vertex attributes."; return false; } std::vector usedAttribMap(maxAttribs, nullptr); // Link attributes that have a binding location for (sh::Attribute &attribute : mState.mAttributes) { // GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or // structures, so we don't need to worry about adjusting their names or generating entries // for each member/element (unlike uniforms for example). ASSERT(!attribute.isArray() && !attribute.isStruct()); int bindingLocation = mAttributeBindings.getBinding(attribute.name); if (attribute.location == -1 && bindingLocation != -1) { attribute.location = bindingLocation; } if (attribute.location != -1) { // Location is set by glBindAttribLocation or by location layout qualifier const int regs = VariableRegisterCount(attribute.type); if (static_cast(regs + attribute.location) > maxAttribs) { infoLog << "Active attribute (" << attribute.name << ") at location " << attribute.location << " is too big to fit"; return false; } for (int reg = 0; reg < regs; reg++) { const int regLocation = attribute.location + reg; sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation]; // In GLSL 3.00, attribute aliasing produces a link error // In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug if (linkedAttribute) { // TODO(jmadill): fix aliasing on ES2 // if (mProgram->getShaderVersion() >= 300) { infoLog << "Attribute '" << attribute.name << "' aliases attribute '" << linkedAttribute->name << "' at location " << regLocation; return false; } } else { usedAttribMap[regLocation] = &attribute; } usedLocations |= 1 << regLocation; } } } // Link attributes that don't have a binding location for (sh::Attribute &attribute : mState.mAttributes) { // Not set by glBindAttribLocation or by location layout qualifier if (attribute.location == -1) { int regs = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs); if (availableIndex == -1 || static_cast(availableIndex + regs) > maxAttribs) { infoLog << "Too many active attributes (" << attribute.name << ")"; return false; } attribute.location = availableIndex; } } for (const sh::Attribute &attribute : mState.mAttributes) { ASSERT(attribute.location != -1); unsigned int regs = static_cast(VariableRegisterCount(attribute.type)); for (unsigned int r = 0; r < regs; r++) { unsigned int location = static_cast(attribute.location) + r; mState.mActiveAttribLocationsMask.set(location); mState.mMaxActiveAttribLocation = std::max(mState.mMaxActiveAttribLocation, location + 1); } } return true; } bool Program::validateVertexAndFragmentInterfaceBlocks( const std::vector &vertexInterfaceBlocks, const std::vector &fragmentInterfaceBlocks, InfoLog &infoLog, bool webglCompatibility) const { // Check that interface blocks defined in the vertex and fragment shaders are identical typedef std::map InterfaceBlockMap; InterfaceBlockMap linkedInterfaceBlocks; for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks) { linkedInterfaceBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock; } for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks) { auto entry = linkedInterfaceBlocks.find(fragmentInterfaceBlock.name); if (entry != linkedInterfaceBlocks.end()) { const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second; if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock, webglCompatibility)) { return false; } } // TODO(jiajia.qin@intel.com): Add // MAX_COMBINED_UNIFORM_BLOCKS/MAX_COMBINED_SHADER_STORAGE_BLOCKS validation. } return true; } bool Program::linkInterfaceBlocks(const Context *context, InfoLog &infoLog) { const auto &caps = context->getCaps(); if (mState.mAttachedComputeShader) { Shader &computeShader = *mState.mAttachedComputeShader; const auto &computeUniformBlocks = computeShader.getUniformBlocks(context); if (!validateInterfaceBlocksCount( caps.maxComputeUniformBlocks, computeUniformBlocks, "Compute shader uniform block count exceeds GL_MAX_COMPUTE_UNIFORM_BLOCKS (", infoLog)) { return false; } const auto &computeShaderStorageBlocks = computeShader.getShaderStorageBlocks(context); if (!validateInterfaceBlocksCount(caps.maxComputeShaderStorageBlocks, computeShaderStorageBlocks, "Compute shader shader storage block count exceeds " "GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS (", infoLog)) { return false; } return true; } Shader &vertexShader = *mState.mAttachedVertexShader; Shader &fragmentShader = *mState.mAttachedFragmentShader; const auto &vertexUniformBlocks = vertexShader.getUniformBlocks(context); const auto &fragmentUniformBlocks = fragmentShader.getUniformBlocks(context); if (!validateInterfaceBlocksCount( caps.maxVertexUniformBlocks, vertexUniformBlocks, "Vertex shader uniform block count exceeds GL_MAX_VERTEX_UNIFORM_BLOCKS (", infoLog)) { return false; } if (!validateInterfaceBlocksCount( caps.maxFragmentUniformBlocks, fragmentUniformBlocks, "Fragment shader uniform block count exceeds GL_MAX_FRAGMENT_UNIFORM_BLOCKS (", infoLog)) { return false; } bool webglCompatibility = context->getExtensions().webglCompatibility; if (!validateVertexAndFragmentInterfaceBlocks(vertexUniformBlocks, fragmentUniformBlocks, infoLog, webglCompatibility)) { return false; } if (context->getClientVersion() >= Version(3, 1)) { const auto &vertexShaderStorageBlocks = vertexShader.getShaderStorageBlocks(context); const auto &fragmentShaderStorageBlocks = fragmentShader.getShaderStorageBlocks(context); if (!validateInterfaceBlocksCount(caps.maxVertexShaderStorageBlocks, vertexShaderStorageBlocks, "Vertex shader shader storage block count exceeds " "GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS (", infoLog)) { return false; } if (!validateInterfaceBlocksCount(caps.maxFragmentShaderStorageBlocks, fragmentShaderStorageBlocks, "Fragment shader shader storage block count exceeds " "GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS (", infoLog)) { return false; } if (!validateVertexAndFragmentInterfaceBlocks(vertexShaderStorageBlocks, fragmentShaderStorageBlocks, infoLog, webglCompatibility)) { return false; } } return true; } bool Program::areMatchingInterfaceBlocks(InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock, bool webglCompatibility) const { const char* blockName = vertexInterfaceBlock.name.c_str(); // validate blocks for the same member types if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size()) { infoLog << "Types for interface block '" << blockName << "' differ between vertex and fragment shaders"; return false; } if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize) { infoLog << "Array sizes differ for interface block '" << blockName << "' between vertex and fragment shaders"; return false; } if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout || vertexInterfaceBlock.binding != fragmentInterfaceBlock.binding) { infoLog << "Layout qualifiers differ for interface block '" << blockName << "' between vertex and fragment shaders"; return false; } const unsigned int numBlockMembers = static_cast(vertexInterfaceBlock.fields.size()); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) { const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex]; const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog << "Name mismatch for field " << blockMemberIndex << " of interface block '" << blockName << "': (in vertex: '" << vertexMember.name << "', in fragment: '" << fragmentMember.name << "')"; return false; } std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'"; if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember, webglCompatibility)) { return false; } } return true; } bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable, const sh::ShaderVariable &fragmentVariable, bool validatePrecision) { if (vertexVariable.type != fragmentVariable.type) { infoLog << "Types for " << variableName << " differ between vertex and fragment shaders"; return false; } if (vertexVariable.arraySizes != fragmentVariable.arraySizes) { infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders"; return false; } if (validatePrecision && vertexVariable.precision != fragmentVariable.precision) { infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders"; return false; } if (vertexVariable.structName != fragmentVariable.structName) { infoLog << "Structure names for " << variableName << " differ between vertex and fragment shaders"; return false; } if (vertexVariable.fields.size() != fragmentVariable.fields.size()) { infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders"; return false; } const unsigned int numMembers = static_cast(vertexVariable.fields.size()); for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++) { const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex]; const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog << "Name mismatch for field '" << memberIndex << "' of " << variableName << ": (in vertex: '" << vertexMember.name << "', in fragment: '" << fragmentMember.name << "')"; return false; } const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." + vertexMember.name + "'"; if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision)) { return false; } } return true; } bool Program::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying, int shaderVersion) { if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false)) { return false; } if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation)) { infoLog << "Interpolation types for " << varyingName << " differ between vertex and fragment shaders."; return false; } if (shaderVersion == 100 && vertexVarying.isInvariant != fragmentVarying.isInvariant) { infoLog << "Invariance for " << varyingName << " differs between vertex and fragment shaders."; return false; } return true; } bool Program::linkValidateBuiltInVaryings(const Context *context, InfoLog &infoLog) const { Shader *vertexShader = mState.mAttachedVertexShader; Shader *fragmentShader = mState.mAttachedFragmentShader; const auto &vertexVaryings = vertexShader->getOutputVaryings(context); const auto &fragmentVaryings = fragmentShader->getInputVaryings(context); int shaderVersion = vertexShader->getShaderVersion(context); if (shaderVersion != 100) { // Only ESSL 1.0 has restrictions on matching input and output invariance return true; } bool glPositionIsInvariant = false; bool glPointSizeIsInvariant = false; bool glFragCoordIsInvariant = false; bool glPointCoordIsInvariant = false; for (const sh::Varying &varying : vertexVaryings) { if (!varying.isBuiltIn()) { continue; } if (varying.name.compare("gl_Position") == 0) { glPositionIsInvariant = varying.isInvariant; } else if (varying.name.compare("gl_PointSize") == 0) { glPointSizeIsInvariant = varying.isInvariant; } } for (const sh::Varying &varying : fragmentVaryings) { if (!varying.isBuiltIn()) { continue; } if (varying.name.compare("gl_FragCoord") == 0) { glFragCoordIsInvariant = varying.isInvariant; } else if (varying.name.compare("gl_PointCoord") == 0) { glPointCoordIsInvariant = varying.isInvariant; } } // There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation, // for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842. // Not requiring invariance to match is supported by: // dEQP, WebGL CTS, Nexus 5X GLES if (glFragCoordIsInvariant && !glPositionIsInvariant) { infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is " "declared invariant."; return false; } if (glPointCoordIsInvariant && !glPointSizeIsInvariant) { infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is " "declared invariant."; return false; } return true; } bool Program::linkValidateTransformFeedback(const gl::Context *context, InfoLog &infoLog, const Program::MergedVaryings &varyings, const Caps &caps) const { size_t totalComponents = 0; std::set uniqueNames; for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { bool found = false; std::vector subscripts; std::string baseName = ParseResourceName(tfVaryingName, &subscripts); for (const auto &ref : varyings) { const sh::Varying *varying = ref.second.get(); if (baseName == varying->name) { if (uniqueNames.count(tfVaryingName) > 0) { infoLog << "Two transform feedback varyings specify the same output variable (" << tfVaryingName << ")."; return false; } if (context->getClientVersion() >= Version(3, 1)) { if (IncludeSameArrayElement(uniqueNames, tfVaryingName)) { infoLog << "Two transform feedback varyings include the same array element (" << tfVaryingName << ")."; return false; } } else if (varying->isArray()) { infoLog << "Capture of arrays is undefined and not supported."; return false; } uniqueNames.insert(tfVaryingName); // TODO(jmadill): Investigate implementation limits on D3D11 // GLSL ES 3.10 section 4.3.6: A vertex output can't be an array of arrays. ASSERT(!varying->isArrayOfArrays()); size_t elementCount = ((varying->isArray() && subscripts.empty()) ? varying->getOutermostArraySize() : 1); size_t componentCount = VariableComponentCount(varying->type) * elementCount; if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && componentCount > caps.maxTransformFeedbackSeparateComponents) { infoLog << "Transform feedback varying's " << varying->name << " components (" << componentCount << ") exceed the maximum separate components (" << caps.maxTransformFeedbackSeparateComponents << ")."; return false; } totalComponents += componentCount; found = true; break; } } if (context->getClientVersion() < Version(3, 1) && tfVaryingName.find('[') != std::string::npos) { infoLog << "Capture of array elements is undefined and not supported."; return false; } if (!found) { infoLog << "Transform feedback varying " << tfVaryingName << " does not exist in the vertex shader."; return false; } } if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents) { infoLog << "Transform feedback varying total components (" << totalComponents << ") exceed the maximum interleaved components (" << caps.maxTransformFeedbackInterleavedComponents << ")."; return false; } return true; } bool Program::linkValidateGlobalNames(const Context *context, InfoLog &infoLog) const { const std::vector &vertexUniforms = mState.mAttachedVertexShader->getUniforms(context); const std::vector &fragmentUniforms = mState.mAttachedFragmentShader->getUniforms(context); const std::vector &attributes = mState.mAttachedVertexShader->getActiveAttributes(context); for (const auto &attrib : attributes) { for (const auto &uniform : vertexUniforms) { if (uniform.name == attrib.name) { infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name; return false; } } for (const auto &uniform : fragmentUniforms) { if (uniform.name == attrib.name) { infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name; return false; } } } return true; } void Program::gatherTransformFeedbackVaryings(const Program::MergedVaryings &varyings) { // Gather the linked varyings that are used for transform feedback, they should all exist. mState.mLinkedTransformFeedbackVaryings.clear(); for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames) { std::vector subscripts; std::string baseName = ParseResourceName(tfVaryingName, &subscripts); size_t subscript = GL_INVALID_INDEX; if (!subscripts.empty()) { subscript = subscripts.back(); } for (const auto &ref : varyings) { const sh::Varying *varying = ref.second.get(); if (baseName == varying->name) { mState.mLinkedTransformFeedbackVaryings.emplace_back( *varying, static_cast(subscript)); break; } } } } Program::MergedVaryings Program::getMergedVaryings(const Context *context) const { MergedVaryings merged; for (const sh::Varying &varying : mState.mAttachedVertexShader->getOutputVaryings(context)) { merged[varying.name].vertex = &varying; } for (const sh::Varying &varying : mState.mAttachedFragmentShader->getInputVaryings(context)) { merged[varying.name].fragment = &varying; } return merged; } void Program::linkOutputVariables(const Context *context) { Shader *fragmentShader = mState.mAttachedFragmentShader; ASSERT(fragmentShader != nullptr); ASSERT(mState.mOutputVariableTypes.empty()); ASSERT(mState.mActiveOutputVariables.none()); // Gather output variable types for (const auto &outputVariable : fragmentShader->getActiveOutputVariables(context)) { if (outputVariable.isBuiltIn() && outputVariable.name != "gl_FragColor" && outputVariable.name != "gl_FragData") { continue; } unsigned int baseLocation = (outputVariable.location == -1 ? 0u : static_cast(outputVariable.location)); // GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of // structures, so we may use getBasicTypeElementCount(). unsigned int elementCount = outputVariable.getBasicTypeElementCount(); for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++) { const unsigned int location = baseLocation + elementIndex; if (location >= mState.mOutputVariableTypes.size()) { mState.mOutputVariableTypes.resize(location + 1, GL_NONE); } ASSERT(location < mState.mActiveOutputVariables.size()); mState.mActiveOutputVariables.set(location); mState.mOutputVariableTypes[location] = VariableComponentType(outputVariable.type); } } // Skip this step for GLES2 shaders. if (fragmentShader->getShaderVersion(context) == 100) return; mState.mOutputVariables = fragmentShader->getActiveOutputVariables(context); // TODO(jmadill): any caps validation here? for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size(); outputVariableIndex++) { const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex]; if (outputVariable.isArray()) { // We're following the GLES 3.1 November 2016 spec section 7.3.1.1 Naming Active // Resources and including [0] at the end of array variable names. mState.mOutputVariables[outputVariableIndex].name += "[0]"; mState.mOutputVariables[outputVariableIndex].mappedName += "[0]"; } // Don't store outputs for gl_FragDepth, gl_FragColor, etc. if (outputVariable.isBuiltIn()) continue; // Since multiple output locations must be specified, use 0 for non-specified locations. unsigned int baseLocation = (outputVariable.location == -1 ? 0u : static_cast(outputVariable.location)); // GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of // structures, so we may use getBasicTypeElementCount(). unsigned int elementCount = outputVariable.getBasicTypeElementCount(); for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++) { const unsigned int location = baseLocation + elementIndex; if (location >= mState.mOutputLocations.size()) { mState.mOutputLocations.resize(location + 1); } ASSERT(!mState.mOutputLocations.at(location).used()); if (outputVariable.isArray()) { mState.mOutputLocations[location] = VariableLocation(elementIndex, outputVariableIndex); } else { VariableLocation locationInfo; locationInfo.index = outputVariableIndex; mState.mOutputLocations[location] = locationInfo; } } } } void Program::setUniformValuesFromBindingQualifiers() { for (unsigned int samplerIndex : mState.mSamplerUniformRange) { const auto &samplerUniform = mState.mUniforms[samplerIndex]; if (samplerUniform.binding != -1) { GLint location = getUniformLocation(samplerUniform.name); ASSERT(location != -1); std::vector boundTextureUnits; for (unsigned int elementIndex = 0; elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex) { boundTextureUnits.push_back(samplerUniform.binding + elementIndex); } setUniform1iv(location, static_cast(boundTextureUnits.size()), boundTextureUnits.data()); } } } void Program::gatherAtomicCounterBuffers() { for (unsigned int index : mState.mAtomicCounterUniformRange) { auto &uniform = mState.mUniforms[index]; uniform.blockInfo.offset = uniform.offset; uniform.blockInfo.arrayStride = (uniform.isArray() ? 4 : 0); uniform.blockInfo.matrixStride = 0; uniform.blockInfo.isRowMajorMatrix = false; } // TODO(jie.a.chen@intel.com): Get the actual BUFFER_DATA_SIZE from backend for each buffer. } void Program::initInterfaceBlockBindings() { // Set initial bindings from shader. for (unsigned int blockIndex = 0; blockIndex < mState.mUniformBlocks.size(); blockIndex++) { InterfaceBlock &uniformBlock = mState.mUniformBlocks[blockIndex]; bindUniformBlock(blockIndex, uniformBlock.binding); } } void Program::updateSamplerUniform(const VariableLocation &locationInfo, GLsizei clampedCount, const GLint *v) { ASSERT(mState.isSamplerUniformIndex(locationInfo.index)); GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index); std::vector *boundTextureUnits = &mState.mSamplerBindings[samplerIndex].boundTextureUnits; std::copy(v, v + clampedCount, boundTextureUnits->begin() + locationInfo.arrayIndex); // Invalidate the validation cache. mCachedValidateSamplersResult.reset(); } template GLsizei Program::clampUniformCount(const VariableLocation &locationInfo, GLsizei count, int vectorSize, const T *v) { if (count == 1) return 1; const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; GLsizei maxElementCount = static_cast(remainingElements * linkedUniform.getElementComponents()); if (count * vectorSize > maxElementCount) { return maxElementCount / vectorSize; } return count; } template GLsizei Program::clampMatrixUniformCount(GLint location, GLsizei count, GLboolean transpose, const T *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location]; if (!transpose) { return clampUniformCount(locationInfo, count, cols * rows, v); } const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; return std::min(count, static_cast(remainingElements)); } // Driver differences mean that doing the uniform value cast ourselves gives consistent results. // EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT. template void Program::getUniformInternal(const Context *context, DestT *dataOut, GLint location, GLenum nativeType, int components) const { switch (nativeType) { case GL_BOOL: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } case GL_INT: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_UNSIGNED_INT: { GLuint tempValue[16] = {0}; mProgram->getUniformuiv(context, location, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_FLOAT: { GLfloat tempValue[16] = {0}; mProgram->getUniformfv(context, location, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } default: UNREACHABLE(); break; } } bool Program::samplesFromTexture(const gl::State &state, GLuint textureID) const { // Must be called after samplers are validated. ASSERT(mCachedValidateSamplersResult.valid() && mCachedValidateSamplersResult.value()); for (const auto &binding : mState.mSamplerBindings) { GLenum textureType = binding.textureType; for (const auto &unit : binding.boundTextureUnits) { GLenum programTextureID = state.getSamplerTextureId(unit, textureType); if (programTextureID == textureID) { // TODO(jmadill): Check for appropriate overlap. return true; } } } return false; } } // namespace gl