// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Texture.cpp: Implements the gl::Texture class. [OpenGL ES 2.0.24] section 3.7 page 63. #include "libANGLE/Texture.h" #include "common/mathutil.h" #include "common/utilities.h" #include "libANGLE/Config.h" #include "libANGLE/Context.h" #include "libANGLE/ContextState.h" #include "libANGLE/Image.h" #include "libANGLE/Surface.h" #include "libANGLE/formatutils.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/TextureImpl.h" namespace gl { namespace { bool IsPointSampled(const SamplerState &samplerState) { return (samplerState.magFilter == GL_NEAREST && (samplerState.minFilter == GL_NEAREST || samplerState.minFilter == GL_NEAREST_MIPMAP_NEAREST)); } size_t GetImageDescIndex(GLenum target, size_t level) { return IsCubeMapTextureTarget(target) ? ((level * 6) + CubeMapTextureTargetToLayerIndex(target)) : level; } ImageIndex GetImageIndexFromDescIndex(GLenum target, size_t descIndex) { if (target == GL_TEXTURE_CUBE_MAP) { size_t faceIndex = descIndex % 6; size_t mipIndex = descIndex / 6; return ImageIndex::MakeCube(LayerIndexToCubeMapTextureTarget(faceIndex), static_cast(mipIndex)); } return ImageIndex::MakeGeneric(target, static_cast(descIndex)); } InitState DetermineInitState(const Context *context, const uint8_t *pixels) { // Can happen in tests. if (!context || !context->isRobustResourceInitEnabled()) return InitState::Initialized; const auto &glState = context->getGLState(); return (pixels == nullptr && glState.getTargetBuffer(gl::BufferBinding::PixelUnpack) == nullptr) ? InitState::MayNeedInit : InitState::Initialized; } } // namespace bool IsMipmapFiltered(const SamplerState &samplerState) { switch (samplerState.minFilter) { case GL_NEAREST: case GL_LINEAR: return false; case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: return true; default: UNREACHABLE(); return false; } } SwizzleState::SwizzleState() : swizzleRed(GL_INVALID_INDEX), swizzleGreen(GL_INVALID_INDEX), swizzleBlue(GL_INVALID_INDEX), swizzleAlpha(GL_INVALID_INDEX) { } SwizzleState::SwizzleState(GLenum red, GLenum green, GLenum blue, GLenum alpha) : swizzleRed(red), swizzleGreen(green), swizzleBlue(blue), swizzleAlpha(alpha) { } bool SwizzleState::swizzleRequired() const { return swizzleRed != GL_RED || swizzleGreen != GL_GREEN || swizzleBlue != GL_BLUE || swizzleAlpha != GL_ALPHA; } bool SwizzleState::operator==(const SwizzleState &other) const { return swizzleRed == other.swizzleRed && swizzleGreen == other.swizzleGreen && swizzleBlue == other.swizzleBlue && swizzleAlpha == other.swizzleAlpha; } bool SwizzleState::operator!=(const SwizzleState &other) const { return !(*this == other); } TextureState::TextureState(GLenum target) : mTarget(target), mSwizzleState(GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA), mSamplerState(SamplerState::CreateDefaultForTarget(target)), mBaseLevel(0), mMaxLevel(1000), mDepthStencilTextureMode(GL_DEPTH_COMPONENT), mImmutableFormat(false), mImmutableLevels(0), mUsage(GL_NONE), mImageDescs((IMPLEMENTATION_MAX_TEXTURE_LEVELS + 1) * (target == GL_TEXTURE_CUBE_MAP ? 6 : 1)), mInitState(InitState::MayNeedInit) { } TextureState::~TextureState() { } bool TextureState::swizzleRequired() const { return mSwizzleState.swizzleRequired(); } GLuint TextureState::getEffectiveBaseLevel() const { if (mImmutableFormat) { // GLES 3.0.4 section 3.8.10 return std::min(mBaseLevel, mImmutableLevels - 1); } // Some classes use the effective base level to index arrays with level data. By clamping the // effective base level to max levels these arrays need just one extra item to store properties // that should be returned for all out-of-range base level values, instead of needing special // handling for out-of-range base levels. return std::min(mBaseLevel, static_cast(IMPLEMENTATION_MAX_TEXTURE_LEVELS)); } GLuint TextureState::getEffectiveMaxLevel() const { if (mImmutableFormat) { // GLES 3.0.4 section 3.8.10 GLuint clampedMaxLevel = std::max(mMaxLevel, getEffectiveBaseLevel()); clampedMaxLevel = std::min(clampedMaxLevel, mImmutableLevels - 1); return clampedMaxLevel; } return mMaxLevel; } GLuint TextureState::getMipmapMaxLevel() const { const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); GLuint expectedMipLevels = 0; if (mTarget == GL_TEXTURE_3D) { const int maxDim = std::max(std::max(baseImageDesc.size.width, baseImageDesc.size.height), baseImageDesc.size.depth); expectedMipLevels = static_cast(log2(maxDim)); } else { expectedMipLevels = static_cast( log2(std::max(baseImageDesc.size.width, baseImageDesc.size.height))); } return std::min(getEffectiveBaseLevel() + expectedMipLevels, getEffectiveMaxLevel()); } bool TextureState::setBaseLevel(GLuint baseLevel) { if (mBaseLevel != baseLevel) { mBaseLevel = baseLevel; return true; } return false; } bool TextureState::setMaxLevel(GLuint maxLevel) { if (mMaxLevel != maxLevel) { mMaxLevel = maxLevel; return true; } return false; } // Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81. // According to [OpenGL ES 3.0.5] section 3.8.13 Texture Completeness page 160 any // per-level checks begin at the base-level. // For OpenGL ES2 the base level is always zero. bool TextureState::isCubeComplete() const { ASSERT(mTarget == GL_TEXTURE_CUBE_MAP); const ImageDesc &baseImageDesc = getImageDesc(FirstCubeMapTextureTarget, getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.width != baseImageDesc.size.height) { return false; } for (GLenum face = FirstCubeMapTextureTarget + 1; face <= LastCubeMapTextureTarget; face++) { const ImageDesc &faceImageDesc = getImageDesc(face, getEffectiveBaseLevel()); if (faceImageDesc.size.width != baseImageDesc.size.width || faceImageDesc.size.height != baseImageDesc.size.height || !Format::SameSized(faceImageDesc.format, baseImageDesc.format)) { return false; } } return true; } bool TextureState::computeSamplerCompleteness(const SamplerState &samplerState, const ContextState &data) const { if (mBaseLevel > mMaxLevel) { return false; } const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.height == 0 || baseImageDesc.size.depth == 0) { return false; } // The cases where the texture is incomplete because base level is out of range should be // handled by the above condition. ASSERT(mBaseLevel < IMPLEMENTATION_MAX_TEXTURE_LEVELS || mImmutableFormat); if (mTarget == GL_TEXTURE_CUBE_MAP && baseImageDesc.size.width != baseImageDesc.size.height) { return false; } // According to es 3.1 spec, texture is justified as incomplete if sized internalformat is // unfilterable(table 20.11) and filter is not GL_NEAREST(8.16). The default value of minFilter // is NEAREST_MIPMAP_LINEAR and magFilter is LINEAR(table 20.11,). For multismaple texture, // filter state of multisample texture is ignored(11.1.3.3). So it shouldn't be judged as // incomplete texture. So, we ignore filtering for multisample texture completeness here. if (mTarget != GL_TEXTURE_2D_MULTISAMPLE && !baseImageDesc.format.info->filterSupport(data.getClientVersion(), data.getExtensions()) && !IsPointSampled(samplerState)) { return false; } bool npotSupport = data.getExtensions().textureNPOT || data.getClientMajorVersion() >= 3; if (!npotSupport) { if ((samplerState.wrapS != GL_CLAMP_TO_EDGE && !isPow2(baseImageDesc.size.width)) || (samplerState.wrapT != GL_CLAMP_TO_EDGE && !isPow2(baseImageDesc.size.height))) { return false; } } if (mTarget != GL_TEXTURE_2D_MULTISAMPLE && IsMipmapFiltered(samplerState)) { if (!npotSupport) { if (!isPow2(baseImageDesc.size.width) || !isPow2(baseImageDesc.size.height)) { return false; } } if (!computeMipmapCompleteness()) { return false; } } else { if (mTarget == GL_TEXTURE_CUBE_MAP && !isCubeComplete()) { return false; } } // From GL_OES_EGL_image_external_essl3: If state is present in a sampler object bound to a // texture unit that would have been rejected by a call to TexParameter* for the texture bound // to that unit, the behavior of the implementation is as if the texture were incomplete. For // example, if TEXTURE_WRAP_S or TEXTURE_WRAP_T is set to anything but CLAMP_TO_EDGE on the // sampler object bound to a texture unit and the texture bound to that unit is an external // texture, the texture will be considered incomplete. // Sampler object state which does not affect sampling for the type of texture bound to a // texture unit, such as TEXTURE_WRAP_R for an external texture, does not affect completeness. if (mTarget == GL_TEXTURE_EXTERNAL_OES) { if (samplerState.wrapS != GL_CLAMP_TO_EDGE || samplerState.wrapT != GL_CLAMP_TO_EDGE) { return false; } if (samplerState.minFilter != GL_LINEAR && samplerState.minFilter != GL_NEAREST) { return false; } } // OpenGLES 3.0.2 spec section 3.8.13 states that a texture is not mipmap complete if: // The internalformat specified for the texture arrays is a sized internal depth or // depth and stencil format (see table 3.13), the value of TEXTURE_COMPARE_- // MODE is NONE, and either the magnification filter is not NEAREST or the mini- // fication filter is neither NEAREST nor NEAREST_MIPMAP_NEAREST. if (mTarget != GL_TEXTURE_2D_MULTISAMPLE && baseImageDesc.format.info->depthBits > 0 && data.getClientMajorVersion() >= 3) { // Note: we restrict this validation to sized types. For the OES_depth_textures // extension, due to some underspecification problems, we must allow linear filtering // for legacy compatibility with WebGL 1. // See http://crbug.com/649200 if (samplerState.compareMode == GL_NONE && baseImageDesc.format.info->sized) { if ((samplerState.minFilter != GL_NEAREST && samplerState.minFilter != GL_NEAREST_MIPMAP_NEAREST) || samplerState.magFilter != GL_NEAREST) { return false; } } } return true; } bool TextureState::computeMipmapCompleteness() const { const GLuint maxLevel = getMipmapMaxLevel(); for (GLuint level = getEffectiveBaseLevel(); level <= maxLevel; level++) { if (mTarget == GL_TEXTURE_CUBE_MAP) { for (GLenum face = FirstCubeMapTextureTarget; face <= LastCubeMapTextureTarget; face++) { if (!computeLevelCompleteness(face, level)) { return false; } } } else { if (!computeLevelCompleteness(mTarget, level)) { return false; } } } return true; } bool TextureState::computeLevelCompleteness(GLenum target, size_t level) const { ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); if (mImmutableFormat) { return true; } const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.height == 0 || baseImageDesc.size.depth == 0) { return false; } const ImageDesc &levelImageDesc = getImageDesc(target, level); if (levelImageDesc.size.width == 0 || levelImageDesc.size.height == 0 || levelImageDesc.size.depth == 0) { return false; } if (!Format::SameSized(levelImageDesc.format, baseImageDesc.format)) { return false; } ASSERT(level >= getEffectiveBaseLevel()); const size_t relativeLevel = level - getEffectiveBaseLevel(); if (levelImageDesc.size.width != std::max(1, baseImageDesc.size.width >> relativeLevel)) { return false; } if (levelImageDesc.size.height != std::max(1, baseImageDesc.size.height >> relativeLevel)) { return false; } if (mTarget == GL_TEXTURE_3D) { if (levelImageDesc.size.depth != std::max(1, baseImageDesc.size.depth >> relativeLevel)) { return false; } } else if (mTarget == GL_TEXTURE_2D_ARRAY) { if (levelImageDesc.size.depth != baseImageDesc.size.depth) { return false; } } return true; } GLenum TextureState::getBaseImageTarget() const { return mTarget == GL_TEXTURE_CUBE_MAP ? FirstCubeMapTextureTarget : mTarget; } ImageDesc::ImageDesc() : ImageDesc(Extents(0, 0, 0), Format::Invalid(), 0, GL_TRUE, InitState::Initialized) { } ImageDesc::ImageDesc(const Extents &size, const Format &format, const InitState initState) : size(size), format(format), samples(0), fixedSampleLocations(GL_TRUE), initState(initState) { } ImageDesc::ImageDesc(const Extents &size, const Format &format, const GLsizei samples, const bool fixedSampleLocations, const InitState initState) : size(size), format(format), samples(samples), fixedSampleLocations(fixedSampleLocations), initState(initState) { } const ImageDesc &TextureState::getImageDesc(GLenum target, size_t level) const { size_t descIndex = GetImageDescIndex(target, level); ASSERT(descIndex < mImageDescs.size()); return mImageDescs[descIndex]; } void TextureState::setImageDesc(GLenum target, size_t level, const ImageDesc &desc) { size_t descIndex = GetImageDescIndex(target, level); ASSERT(descIndex < mImageDescs.size()); mImageDescs[descIndex] = desc; if (desc.initState == InitState::MayNeedInit) { mInitState = InitState::MayNeedInit; } } const ImageDesc &TextureState::getImageDesc(const ImageIndex &imageIndex) const { return getImageDesc(imageIndex.type, imageIndex.mipIndex); } void TextureState::setImageDescChain(GLuint baseLevel, GLuint maxLevel, Extents baseSize, const Format &format, InitState initState) { for (GLuint level = baseLevel; level <= maxLevel; level++) { int relativeLevel = (level - baseLevel); Extents levelSize(std::max(baseSize.width >> relativeLevel, 1), std::max(baseSize.height >> relativeLevel, 1), (mTarget == GL_TEXTURE_2D_ARRAY) ? baseSize.depth : std::max(baseSize.depth >> relativeLevel, 1)); ImageDesc levelInfo(levelSize, format, initState); if (mTarget == GL_TEXTURE_CUBE_MAP) { for (GLenum face = FirstCubeMapTextureTarget; face <= LastCubeMapTextureTarget; face++) { setImageDesc(face, level, levelInfo); } } else { setImageDesc(mTarget, level, levelInfo); } } } void TextureState::setImageDescChainMultisample(Extents baseSize, const Format &format, GLsizei samples, bool fixedSampleLocations, InitState initState) { ASSERT(mTarget == GL_TEXTURE_2D_MULTISAMPLE); ImageDesc levelInfo(baseSize, format, samples, fixedSampleLocations, initState); setImageDesc(mTarget, 0, levelInfo); } void TextureState::clearImageDesc(GLenum target, size_t level) { setImageDesc(target, level, ImageDesc()); } void TextureState::clearImageDescs() { for (size_t descIndex = 0; descIndex < mImageDescs.size(); descIndex++) { mImageDescs[descIndex] = ImageDesc(); } } Texture::Texture(rx::GLImplFactory *factory, GLuint id, GLenum target) : egl::ImageSibling(id), mState(target), mTexture(factory->createTexture(mState)), mLabel(), mBoundSurface(nullptr), mBoundStream(nullptr) { } Error Texture::onDestroy(const Context *context) { if (mBoundSurface) { ANGLE_TRY(mBoundSurface->releaseTexImage(context, EGL_BACK_BUFFER)); mBoundSurface = nullptr; } if (mBoundStream) { mBoundStream->releaseTextures(); mBoundStream = nullptr; } ANGLE_TRY(orphanImages(context)); if (mTexture) { ANGLE_TRY(mTexture->onDestroy(context)); } return NoError(); } Texture::~Texture() { SafeDelete(mTexture); } void Texture::setLabel(const std::string &label) { mLabel = label; mDirtyBits.set(DIRTY_BIT_LABEL); } const std::string &Texture::getLabel() const { return mLabel; } GLenum Texture::getTarget() const { return mState.mTarget; } void Texture::setSwizzleRed(GLenum swizzleRed) { mState.mSwizzleState.swizzleRed = swizzleRed; mDirtyBits.set(DIRTY_BIT_SWIZZLE_RED); } GLenum Texture::getSwizzleRed() const { return mState.mSwizzleState.swizzleRed; } void Texture::setSwizzleGreen(GLenum swizzleGreen) { mState.mSwizzleState.swizzleGreen = swizzleGreen; mDirtyBits.set(DIRTY_BIT_SWIZZLE_GREEN); } GLenum Texture::getSwizzleGreen() const { return mState.mSwizzleState.swizzleGreen; } void Texture::setSwizzleBlue(GLenum swizzleBlue) { mState.mSwizzleState.swizzleBlue = swizzleBlue; mDirtyBits.set(DIRTY_BIT_SWIZZLE_BLUE); } GLenum Texture::getSwizzleBlue() const { return mState.mSwizzleState.swizzleBlue; } void Texture::setSwizzleAlpha(GLenum swizzleAlpha) { mState.mSwizzleState.swizzleAlpha = swizzleAlpha; mDirtyBits.set(DIRTY_BIT_SWIZZLE_ALPHA); } GLenum Texture::getSwizzleAlpha() const { return mState.mSwizzleState.swizzleAlpha; } void Texture::setMinFilter(GLenum minFilter) { mState.mSamplerState.minFilter = minFilter; mDirtyBits.set(DIRTY_BIT_MIN_FILTER); } GLenum Texture::getMinFilter() const { return mState.mSamplerState.minFilter; } void Texture::setMagFilter(GLenum magFilter) { mState.mSamplerState.magFilter = magFilter; mDirtyBits.set(DIRTY_BIT_MAG_FILTER); } GLenum Texture::getMagFilter() const { return mState.mSamplerState.magFilter; } void Texture::setWrapS(GLenum wrapS) { mState.mSamplerState.wrapS = wrapS; mDirtyBits.set(DIRTY_BIT_WRAP_S); } GLenum Texture::getWrapS() const { return mState.mSamplerState.wrapS; } void Texture::setWrapT(GLenum wrapT) { mState.mSamplerState.wrapT = wrapT; mDirtyBits.set(DIRTY_BIT_WRAP_T); } GLenum Texture::getWrapT() const { return mState.mSamplerState.wrapT; } void Texture::setWrapR(GLenum wrapR) { mState.mSamplerState.wrapR = wrapR; mDirtyBits.set(DIRTY_BIT_WRAP_R); } GLenum Texture::getWrapR() const { return mState.mSamplerState.wrapR; } void Texture::setMaxAnisotropy(float maxAnisotropy) { mState.mSamplerState.maxAnisotropy = maxAnisotropy; mDirtyBits.set(DIRTY_BIT_MAX_ANISOTROPY); } float Texture::getMaxAnisotropy() const { return mState.mSamplerState.maxAnisotropy; } void Texture::setMinLod(GLfloat minLod) { mState.mSamplerState.minLod = minLod; mDirtyBits.set(DIRTY_BIT_MIN_LOD); } GLfloat Texture::getMinLod() const { return mState.mSamplerState.minLod; } void Texture::setMaxLod(GLfloat maxLod) { mState.mSamplerState.maxLod = maxLod; mDirtyBits.set(DIRTY_BIT_MAX_LOD); } GLfloat Texture::getMaxLod() const { return mState.mSamplerState.maxLod; } void Texture::setCompareMode(GLenum compareMode) { mState.mSamplerState.compareMode = compareMode; mDirtyBits.set(DIRTY_BIT_COMPARE_MODE); } GLenum Texture::getCompareMode() const { return mState.mSamplerState.compareMode; } void Texture::setCompareFunc(GLenum compareFunc) { mState.mSamplerState.compareFunc = compareFunc; mDirtyBits.set(DIRTY_BIT_COMPARE_FUNC); } GLenum Texture::getCompareFunc() const { return mState.mSamplerState.compareFunc; } void Texture::setSRGBDecode(GLenum sRGBDecode) { mState.mSamplerState.sRGBDecode = sRGBDecode; mDirtyBits.set(DIRTY_BIT_SRGB_DECODE); } GLenum Texture::getSRGBDecode() const { return mState.mSamplerState.sRGBDecode; } const SamplerState &Texture::getSamplerState() const { return mState.mSamplerState; } Error Texture::setBaseLevel(const Context *context, GLuint baseLevel) { if (mState.setBaseLevel(baseLevel)) { ANGLE_TRY(mTexture->setBaseLevel(context, mState.getEffectiveBaseLevel())); mDirtyBits.set(DIRTY_BIT_BASE_LEVEL); invalidateCompletenessCache(); } return NoError(); } GLuint Texture::getBaseLevel() const { return mState.mBaseLevel; } void Texture::setMaxLevel(GLuint maxLevel) { if (mState.setMaxLevel(maxLevel)) { mDirtyBits.set(DIRTY_BIT_MAX_LEVEL); invalidateCompletenessCache(); } } GLuint Texture::getMaxLevel() const { return mState.mMaxLevel; } void Texture::setDepthStencilTextureMode(GLenum mode) { if (mode != mState.mDepthStencilTextureMode) { // Changing the mode from the default state (GL_DEPTH_COMPONENT) is not implemented yet UNIMPLEMENTED(); } // TODO(geofflang): add dirty bits mState.mDepthStencilTextureMode = mode; } GLenum Texture::getDepthStencilTextureMode() const { return mState.mDepthStencilTextureMode; } bool Texture::getImmutableFormat() const { return mState.mImmutableFormat; } GLuint Texture::getImmutableLevels() const { return mState.mImmutableLevels; } void Texture::setUsage(GLenum usage) { mState.mUsage = usage; mDirtyBits.set(DIRTY_BIT_USAGE); } GLenum Texture::getUsage() const { return mState.mUsage; } const TextureState &Texture::getTextureState() const { return mState; } size_t Texture::getWidth(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).size.width; } size_t Texture::getHeight(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).size.height; } size_t Texture::getDepth(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).size.depth; } const Format &Texture::getFormat(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).format; } GLsizei Texture::getSamples(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).samples; } bool Texture::getFixedSampleLocations(GLenum target, size_t level) const { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); return mState.getImageDesc(target, level).fixedSampleLocations; } GLuint Texture::getMipmapMaxLevel() const { return mState.getMipmapMaxLevel(); } bool Texture::isMipmapComplete() const { return mState.computeMipmapCompleteness(); } egl::Surface *Texture::getBoundSurface() const { return mBoundSurface; } egl::Stream *Texture::getBoundStream() const { return mBoundStream; } void Texture::signalDirty(InitState initState) const { mDirtyChannel.signal(initState); invalidateCompletenessCache(); } Error Texture::setImage(const Context *context, const PixelUnpackState &unpackState, GLenum target, size_t level, GLenum internalFormat, const Extents &size, GLenum format, GLenum type, const uint8_t *pixels) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setImage(context, target, level, internalFormat, size, format, type, unpackState, pixels)); InitState initState = DetermineInitState(context, pixels); mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormat, type), initState)); signalDirty(initState); return NoError(); } Error Texture::setSubImage(const Context *context, const PixelUnpackState &unpackState, GLenum target, size_t level, const Box &area, GLenum format, GLenum type, const uint8_t *pixels) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); ANGLE_TRY(ensureSubImageInitialized(context, target, level, area)); return mTexture->setSubImage(context, target, level, area, format, type, unpackState, pixels); } Error Texture::setCompressedImage(const Context *context, const PixelUnpackState &unpackState, GLenum target, size_t level, GLenum internalFormat, const Extents &size, size_t imageSize, const uint8_t *pixels) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setCompressedImage(context, target, level, internalFormat, size, unpackState, imageSize, pixels)); InitState initState = DetermineInitState(context, pixels); mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormat), initState)); signalDirty(initState); return NoError(); } Error Texture::setCompressedSubImage(const Context *context, const PixelUnpackState &unpackState, GLenum target, size_t level, const Box &area, GLenum format, size_t imageSize, const uint8_t *pixels) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); ANGLE_TRY(ensureSubImageInitialized(context, target, level, area)); return mTexture->setCompressedSubImage(context, target, level, area, format, unpackState, imageSize, pixels); } Error Texture::copyImage(const Context *context, GLenum target, size_t level, const Rectangle &sourceArea, GLenum internalFormat, Framebuffer *source) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); // Ensure source FBO is initialized. ANGLE_TRY(source->ensureReadAttachmentInitialized(context, GL_COLOR_BUFFER_BIT)); // Use the source FBO size as the init image area. Box destBox(0, 0, 0, sourceArea.width, sourceArea.height, 1); ANGLE_TRY(ensureSubImageInitialized(context, target, level, destBox)); ANGLE_TRY(mTexture->copyImage(context, target, level, sourceArea, internalFormat, source)); const InternalFormat &internalFormatInfo = GetInternalFormatInfo(internalFormat, GL_UNSIGNED_BYTE); mState.setImageDesc(target, level, ImageDesc(Extents(sourceArea.width, sourceArea.height, 1), Format(internalFormatInfo), InitState::Initialized)); // We need to initialize this texture only if the source attachment is not initialized. signalDirty(InitState::Initialized); return NoError(); } Error Texture::copySubImage(const Context *context, GLenum target, size_t level, const Offset &destOffset, const Rectangle &sourceArea, Framebuffer *source) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Ensure source FBO is initialized. ANGLE_TRY(source->ensureReadAttachmentInitialized(context, GL_COLOR_BUFFER_BIT)); Box destBox(destOffset.x, destOffset.y, destOffset.y, sourceArea.width, sourceArea.height, 1); ANGLE_TRY(ensureSubImageInitialized(context, target, level, destBox)); return mTexture->copySubImage(context, target, level, destOffset, sourceArea, source); } Error Texture::copyTexture(const Context *context, GLenum target, size_t level, GLenum internalFormat, GLenum type, size_t sourceLevel, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha, Texture *source) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); // Initialize source texture. // Note: we don't have a way to notify which portions of the image changed currently. ANGLE_TRY(source->ensureInitialized(context)); ANGLE_TRY(mTexture->copyTexture(context, target, level, internalFormat, type, sourceLevel, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha, source)); const auto &sourceDesc = source->mState.getImageDesc(source->getTarget(), 0); const InternalFormat &internalFormatInfo = GetInternalFormatInfo(internalFormat, type); mState.setImageDesc( target, level, ImageDesc(sourceDesc.size, Format(internalFormatInfo), InitState::Initialized)); signalDirty(InitState::Initialized); return NoError(); } Error Texture::copySubTexture(const Context *context, GLenum target, size_t level, const Offset &destOffset, size_t sourceLevel, const Rectangle &sourceArea, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha, Texture *source) { ASSERT(target == mState.mTarget || (mState.mTarget == GL_TEXTURE_CUBE_MAP && IsCubeMapTextureTarget(target))); // Ensure source is initialized. ANGLE_TRY(source->ensureInitialized(context)); Box destBox(destOffset.x, destOffset.y, destOffset.y, sourceArea.width, sourceArea.height, 1); ANGLE_TRY(ensureSubImageInitialized(context, target, level, destBox)); return mTexture->copySubTexture(context, target, level, destOffset, sourceLevel, sourceArea, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha, source); } Error Texture::copyCompressedTexture(const Context *context, const Texture *source) { // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->copyCompressedTexture(context, source)); ASSERT(source->getTarget() != GL_TEXTURE_CUBE_MAP && getTarget() != GL_TEXTURE_CUBE_MAP); const auto &sourceDesc = source->mState.getImageDesc(source->getTarget(), 0); mState.setImageDesc(getTarget(), 0, sourceDesc); return NoError(); } Error Texture::setStorage(const Context *context, GLenum target, GLsizei levels, GLenum internalFormat, const Extents &size) { ASSERT(target == mState.mTarget); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setStorage(context, target, levels, internalFormat, size)); mState.mImmutableFormat = true; mState.mImmutableLevels = static_cast(levels); mState.clearImageDescs(); mState.setImageDescChain(0, static_cast(levels - 1), size, Format(internalFormat), InitState::MayNeedInit); // Changing the texture to immutable can trigger a change in the base and max levels: // GLES 3.0.4 section 3.8.10 pg 158: // "For immutable-format textures, levelbase is clamped to the range[0;levels],levelmax is then // clamped to the range[levelbase;levels]. mDirtyBits.set(DIRTY_BIT_BASE_LEVEL); mDirtyBits.set(DIRTY_BIT_MAX_LEVEL); signalDirty(InitState::MayNeedInit); return NoError(); } Error Texture::setStorageMultisample(const Context *context, GLenum target, GLsizei samples, GLint internalFormat, const Extents &size, bool fixedSampleLocations) { ASSERT(target == mState.mTarget); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setStorageMultisample(context, target, samples, internalFormat, size, fixedSampleLocations)); mState.mImmutableFormat = true; mState.mImmutableLevels = static_cast(1); mState.clearImageDescs(); mState.setImageDescChainMultisample(size, Format(internalFormat), samples, fixedSampleLocations, InitState::MayNeedInit); signalDirty(InitState::MayNeedInit); return NoError(); } Error Texture::generateMipmap(const Context *context) { // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); // EGL_KHR_gl_image states that images are only orphaned when generating mipmaps if the texture // is not mip complete. if (!isMipmapComplete()) { ANGLE_TRY(orphanImages(context)); } const GLuint baseLevel = mState.getEffectiveBaseLevel(); const GLuint maxLevel = mState.getMipmapMaxLevel(); if (maxLevel > baseLevel) { syncState(); const ImageDesc &baseImageInfo = mState.getImageDesc(mState.getBaseImageTarget(), baseLevel); // Clear the base image immediately if necessary. if (context->isRobustResourceInitEnabled() && baseImageInfo.initState == InitState::MayNeedInit) { ANGLE_TRY(initializeContents( context, GetImageIndexFromDescIndex(mState.getBaseImageTarget(), baseLevel))); } ANGLE_TRY(mTexture->generateMipmap(context)); mState.setImageDescChain(baseLevel, maxLevel, baseImageInfo.size, baseImageInfo.format, InitState::Initialized); } signalDirty(InitState::Initialized); return NoError(); } Error Texture::bindTexImageFromSurface(const Context *context, egl::Surface *surface) { ASSERT(surface); if (mBoundSurface) { ANGLE_TRY(releaseTexImageFromSurface(context)); } ANGLE_TRY(mTexture->bindTexImage(context, surface)); mBoundSurface = surface; // Set the image info to the size and format of the surface ASSERT(mState.mTarget == GL_TEXTURE_2D || mState.mTarget == GL_TEXTURE_RECTANGLE_ANGLE); Extents size(surface->getWidth(), surface->getHeight(), 1); ImageDesc desc(size, Format(surface->getConfig()->renderTargetFormat), InitState::Initialized); mState.setImageDesc(mState.mTarget, 0, desc); signalDirty(InitState::Initialized); return NoError(); } Error Texture::releaseTexImageFromSurface(const Context *context) { ASSERT(mBoundSurface); mBoundSurface = nullptr; ANGLE_TRY(mTexture->releaseTexImage(context)); // Erase the image info for level 0 ASSERT(mState.mTarget == GL_TEXTURE_2D || mState.mTarget == GL_TEXTURE_RECTANGLE_ANGLE); mState.clearImageDesc(mState.mTarget, 0); signalDirty(InitState::Initialized); return NoError(); } void Texture::bindStream(egl::Stream *stream) { ASSERT(stream); // It should not be possible to bind a texture already bound to another stream ASSERT(mBoundStream == nullptr); mBoundStream = stream; ASSERT(mState.mTarget == GL_TEXTURE_EXTERNAL_OES); } void Texture::releaseStream() { ASSERT(mBoundStream); mBoundStream = nullptr; } Error Texture::acquireImageFromStream(const Context *context, const egl::Stream::GLTextureDescription &desc) { ASSERT(mBoundStream != nullptr); ANGLE_TRY(mTexture->setImageExternal(context, mState.mTarget, mBoundStream, desc)); Extents size(desc.width, desc.height, 1); mState.setImageDesc(mState.mTarget, 0, ImageDesc(size, Format(desc.internalFormat), InitState::Initialized)); signalDirty(InitState::Initialized); return NoError(); } Error Texture::releaseImageFromStream(const Context *context) { ASSERT(mBoundStream != nullptr); ANGLE_TRY(mTexture->setImageExternal(context, mState.mTarget, nullptr, egl::Stream::GLTextureDescription())); // Set to incomplete mState.clearImageDesc(mState.mTarget, 0); signalDirty(InitState::Initialized); return NoError(); } Error Texture::releaseTexImageInternal(const Context *context) { if (mBoundSurface) { // Notify the surface mBoundSurface->releaseTexImageFromTexture(context); // Then, call the same method as from the surface ANGLE_TRY(releaseTexImageFromSurface(context)); } return NoError(); } Error Texture::setEGLImageTarget(const Context *context, GLenum target, egl::Image *imageTarget) { ASSERT(target == mState.mTarget); ASSERT(target == GL_TEXTURE_2D || target == GL_TEXTURE_EXTERNAL_OES); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setEGLImageTarget(context, target, imageTarget)); setTargetImage(context, imageTarget); Extents size(static_cast(imageTarget->getWidth()), static_cast(imageTarget->getHeight()), 1); auto initState = imageTarget->sourceInitState(); mState.clearImageDescs(); mState.setImageDesc(target, 0, ImageDesc(size, imageTarget->getFormat(), initState)); signalDirty(initState); return NoError(); } Extents Texture::getAttachmentSize(const ImageIndex &imageIndex) const { return mState.getImageDesc(imageIndex).size; } const Format &Texture::getAttachmentFormat(GLenum /*binding*/, const ImageIndex &imageIndex) const { return mState.getImageDesc(imageIndex).format; } GLsizei Texture::getAttachmentSamples(const ImageIndex &imageIndex) const { return getSamples(imageIndex.type, 0); } void Texture::onAttach(const Context *context) { addRef(); } void Texture::onDetach(const Context *context) { release(context); } GLuint Texture::getId() const { return id(); } void Texture::syncState() { mTexture->syncState(mDirtyBits); mDirtyBits.reset(); } rx::FramebufferAttachmentObjectImpl *Texture::getAttachmentImpl() const { return mTexture; } bool Texture::isSamplerComplete(const Context *context, const Sampler *optionalSampler) { const auto &samplerState = optionalSampler ? optionalSampler->getSamplerState() : mState.mSamplerState; const auto &contextState = context->getContextState(); if (contextState.getContextID() != mCompletenessCache.context || mCompletenessCache.samplerState != samplerState) { mCompletenessCache.context = context->getContextState().getContextID(); mCompletenessCache.samplerState = samplerState; mCompletenessCache.samplerComplete = mState.computeSamplerCompleteness(samplerState, contextState); } return mCompletenessCache.samplerComplete; } Texture::SamplerCompletenessCache::SamplerCompletenessCache() : context(0), samplerState(), samplerComplete(false) { } void Texture::invalidateCompletenessCache() const { mCompletenessCache.context = 0; } Error Texture::ensureInitialized(const Context *context) { if (!context->isRobustResourceInitEnabled() || mState.mInitState == InitState::Initialized) { return NoError(); } bool anyDirty = false; for (size_t descIndex = 0; descIndex < mState.mImageDescs.size(); ++descIndex) { auto &imageDesc = mState.mImageDescs[descIndex]; if (imageDesc.initState == InitState::MayNeedInit) { ASSERT(mState.mInitState == InitState::MayNeedInit); const auto &imageIndex = GetImageIndexFromDescIndex(mState.mTarget, descIndex); ANGLE_TRY(initializeContents(context, imageIndex)); imageDesc.initState = InitState::Initialized; anyDirty = true; } } if (anyDirty) { signalDirty(InitState::Initialized); } mState.mInitState = InitState::Initialized; return NoError(); } InitState Texture::initState(const ImageIndex &imageIndex) const { return mState.getImageDesc(imageIndex).initState; } InitState Texture::initState() const { return mState.mInitState; } void Texture::setInitState(const ImageIndex &imageIndex, InitState initState) { ImageDesc newDesc = mState.getImageDesc(imageIndex); newDesc.initState = initState; mState.setImageDesc(imageIndex.type, imageIndex.mipIndex, newDesc); } Error Texture::ensureSubImageInitialized(const Context *context, GLenum target, size_t level, const gl::Box &area) { if (!context->isRobustResourceInitEnabled() || mState.mInitState == InitState::Initialized) { return NoError(); } // Pre-initialize the texture contents if necessary. // TODO(jmadill): Check if area overlaps the entire texture. const auto &imageIndex = GetImageIndexFromDescIndex(target, level); const auto &desc = mState.getImageDesc(imageIndex); if (desc.initState == InitState::MayNeedInit) { ASSERT(mState.mInitState == InitState::MayNeedInit); bool coversWholeImage = area.x == 0 && area.y == 0 && area.z == 0 && area.width == desc.size.width && area.height == desc.size.height && area.depth == desc.size.depth; if (!coversWholeImage) { ANGLE_TRY(initializeContents(context, imageIndex)); } setInitState(imageIndex, InitState::Initialized); } return NoError(); } } // namespace gl