// // Copyright (c) 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // DynamicHLSL.cpp: Implementation for link and run-time HLSL generation // #include "libANGLE/renderer/d3d/DynamicHLSL.h" #include "common/utilities.h" #include "compiler/translator/blocklayoutHLSL.h" #include "libANGLE/renderer/d3d/ShaderD3D.h" #include "libANGLE/renderer/d3d/RendererD3D.h" #include "libANGLE/Program.h" #include "libANGLE/Shader.h" #include "libANGLE/formatutils.h" // For use with ArrayString, see angleutils.h static_assert(GL_INVALID_INDEX == UINT_MAX, "GL_INVALID_INDEX must be equal to the max unsigned int."); using namespace gl; namespace rx { namespace { std::string HLSLComponentTypeString(GLenum componentType) { switch (componentType) { case GL_UNSIGNED_INT: return "uint"; case GL_INT: return "int"; case GL_UNSIGNED_NORMALIZED: case GL_SIGNED_NORMALIZED: case GL_FLOAT: return "float"; default: UNREACHABLE(); return "not-component-type"; } } std::string HLSLComponentTypeString(GLenum componentType, int componentCount) { return HLSLComponentTypeString(componentType) + (componentCount > 1 ? Str(componentCount) : ""); } std::string HLSLMatrixTypeString(GLenum type) { switch (type) { case GL_FLOAT_MAT2: return "float2x2"; case GL_FLOAT_MAT3: return "float3x3"; case GL_FLOAT_MAT4: return "float4x4"; case GL_FLOAT_MAT2x3: return "float2x3"; case GL_FLOAT_MAT3x2: return "float3x2"; case GL_FLOAT_MAT2x4: return "float2x4"; case GL_FLOAT_MAT4x2: return "float4x2"; case GL_FLOAT_MAT3x4: return "float3x4"; case GL_FLOAT_MAT4x3: return "float4x3"; default: UNREACHABLE(); return "not-matrix-type"; } } std::string HLSLTypeString(GLenum type) { if (gl::IsMatrixType(type)) { return HLSLMatrixTypeString(type); } return HLSLComponentTypeString(gl::VariableComponentType(type), gl::VariableComponentCount(type)); } const PixelShaderOutputVariable *FindOutputAtLocation(const std::vector &outputVariables, unsigned int location) { for (size_t variableIndex = 0; variableIndex < outputVariables.size(); ++variableIndex) { if (outputVariables[variableIndex].outputIndex == location) { return &outputVariables[variableIndex]; } } return NULL; } const std::string VERTEX_ATTRIBUTE_STUB_STRING = "@@ VERTEX ATTRIBUTES @@"; const std::string PIXEL_OUTPUT_STUB_STRING = "@@ PIXEL OUTPUT @@"; } DynamicHLSL::DynamicHLSL(RendererD3D *const renderer) : mRenderer(renderer) { } static bool packVarying(PackedVarying *varying, const int maxVaryingVectors, VaryingPacking packing) { // Make sure we use transposed matrix types to count registers correctly. int registers = 0; int elements = 0; if (varying->isStruct()) { registers = HLSLVariableRegisterCount(*varying, true) * varying->elementCount(); elements = 4; } else { GLenum transposedType = TransposeMatrixType(varying->type); registers = VariableRowCount(transposedType) * varying->elementCount(); elements = VariableColumnCount(transposedType); } if (elements >= 2 && elements <= 4) { for (int r = 0; r <= maxVaryingVectors - registers; r++) { bool available = true; for (int y = 0; y < registers && available; y++) { for (int x = 0; x < elements && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->registerIndex = r; varying->columnIndex = 0; for (int y = 0; y < registers; y++) { for (int x = 0; x < elements; x++) { packing[r + y][x] = &*varying; } } return true; } } if (elements == 2) { for (int r = maxVaryingVectors - registers; r >= 0; r--) { bool available = true; for (int y = 0; y < registers && available; y++) { for (int x = 2; x < 4 && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->registerIndex = r; varying->columnIndex = 2; for (int y = 0; y < registers; y++) { for (int x = 2; x < 4; x++) { packing[r + y][x] = &*varying; } } return true; } } } } else if (elements == 1) { int space[4] = { 0 }; for (int y = 0; y < maxVaryingVectors; y++) { for (int x = 0; x < 4; x++) { space[x] += packing[y][x] ? 0 : 1; } } int column = 0; for (int x = 0; x < 4; x++) { if (space[x] >= registers && (space[column] < registers || space[x] < space[column])) { column = x; } } if (space[column] >= registers) { for (int r = 0; r < maxVaryingVectors; r++) { if (!packing[r][column]) { varying->registerIndex = r; varying->columnIndex = column; for (int y = r; y < r + registers; y++) { packing[y][column] = &*varying; } break; } } return true; } } else UNREACHABLE(); return false; } // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 // Returns the number of used varying registers, or -1 if unsuccesful int DynamicHLSL::packVaryings(InfoLog &infoLog, VaryingPacking packing, ShaderD3D *fragmentShader, ShaderD3D *vertexShader, const std::vector &transformFeedbackVaryings) { // TODO (geofflang): Use context's caps const int maxVaryingVectors = mRenderer->getRendererCaps().maxVaryingVectors; vertexShader->resetVaryingsRegisterAssignment(); fragmentShader->resetVaryingsRegisterAssignment(); std::set packedVaryings; std::vector &fragmentVaryings = fragmentShader->getVaryings(); std::vector &vertexVaryings = vertexShader->getVaryings(); for (unsigned int varyingIndex = 0; varyingIndex < fragmentVaryings.size(); varyingIndex++) { PackedVarying *varying = &fragmentVaryings[varyingIndex]; // Do not assign registers to built-in or unreferenced varyings if (varying->isBuiltIn() || !varying->staticUse) { continue; } if (packVarying(varying, maxVaryingVectors, packing)) { packedVaryings.insert(varying->name); } else { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } } for (unsigned int feedbackVaryingIndex = 0; feedbackVaryingIndex < transformFeedbackVaryings.size(); feedbackVaryingIndex++) { const std::string &transformFeedbackVarying = transformFeedbackVaryings[feedbackVaryingIndex]; if (transformFeedbackVarying == "gl_Position" || transformFeedbackVarying == "gl_PointSize") { // do not pack builtin XFB varyings continue; } if (packedVaryings.find(transformFeedbackVarying) == packedVaryings.end()) { bool found = false; for (unsigned int varyingIndex = 0; varyingIndex < vertexVaryings.size(); varyingIndex++) { PackedVarying *varying = &vertexVaryings[varyingIndex]; if (transformFeedbackVarying == varying->name) { if (!packVarying(varying, maxVaryingVectors, packing)) { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } found = true; break; } } if (!found) { infoLog.append("Transform feedback varying %s does not exist in the vertex shader.", transformFeedbackVarying.c_str()); return -1; } } } // Return the number of used registers int registers = 0; for (int r = 0; r < maxVaryingVectors; r++) { if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) { registers++; } } return registers; } std::string DynamicHLSL::generateVaryingHLSL(const ShaderD3D *shader) const { std::string varyingSemantic = getVaryingSemantic(shader->mUsesPointSize); std::string varyingHLSL; const std::vector &varyings = shader->getVaryings(); for (unsigned int varyingIndex = 0; varyingIndex < varyings.size(); varyingIndex++) { const PackedVarying &varying = varyings[varyingIndex]; if (varying.registerAssigned()) { ASSERT(!varying.isBuiltIn()); GLenum transposedType = TransposeMatrixType(varying.type); int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType)); for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { for (int row = 0; row < variableRows; row++) { // TODO: Add checks to ensure D3D interpolation modifiers don't result in too many registers being used. // For example, if there are N registers, and we have N vec3 varyings and 1 float varying, then D3D will pack them into N registers. // If the float varying has the 'nointerpolation' modifier on it then we would need N + 1 registers, and D3D compilation will fail. switch (varying.interpolation) { case sh::INTERPOLATION_SMOOTH: varyingHLSL += " "; break; case sh::INTERPOLATION_FLAT: varyingHLSL += " nointerpolation "; break; case sh::INTERPOLATION_CENTROID: varyingHLSL += " centroid "; break; default: UNREACHABLE(); } unsigned int semanticIndex = elementIndex * variableRows + varying.columnIndex * mRenderer->getRendererCaps().maxVaryingVectors + varying.registerIndex + row; std::string n = Str(semanticIndex); std::string typeString; if (varying.isStruct()) { // TODO(jmadill): pass back translated name from the shader translator typeString = decorateVariable(varying.structName); } else { GLenum componentType = VariableComponentType(transposedType); int columnCount = VariableColumnCount(transposedType); typeString = HLSLComponentTypeString(componentType, columnCount); } varyingHLSL += typeString + " v" + n + " : " + varyingSemantic + n + ";\n"; } } } } return varyingHLSL; } std::string DynamicHLSL::generateVertexShaderForInputLayout(const std::string &sourceShader, const VertexFormat inputLayout[], const sh::Attribute shaderAttributes[]) const { std::string structHLSL, initHLSL; int semanticIndex = 0; unsigned int inputIndex = 0; // If gl_PointSize is used in the shader then pointsprites rendering is expected. // If the renderer does not support Geometry shaders then Instanced PointSprite emulation // must be used. bool usesPointSize = sourceShader.find("GL_USES_POINT_SIZE") != std::string::npos; bool useInstancedPointSpriteEmulation = usesPointSize && mRenderer->getWorkarounds().useInstancedPointSpriteEmulation; // Instanced PointSprite emulation requires additional entries in the // VS_INPUT structure to support the vertices that make up the quad vertices. // These values must be in sync with the cooresponding values added during inputlayout creation // in InputLayoutCache::applyVertexBuffers(). // // The additional entries must appear first in the VS_INPUT layout because // Windows Phone 8 era devices require per vertex data to physically come // before per instance data in the shader. if (useInstancedPointSpriteEmulation) { structHLSL += " float3 spriteVertexPos : SPRITEPOSITION0;\n"; structHLSL += " float2 spriteTexCoord : SPRITETEXCOORD0;\n"; } for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { const sh::Attribute &shaderAttribute = shaderAttributes[attributeIndex]; if (!shaderAttribute.name.empty()) { ASSERT(inputIndex < MAX_VERTEX_ATTRIBS); const VertexFormat &vertexFormat = inputLayout[inputIndex]; // HLSL code for input structure if (IsMatrixType(shaderAttribute.type)) { // Matrix types are always transposed structHLSL += " " + HLSLMatrixTypeString(TransposeMatrixType(shaderAttribute.type)); } else { GLenum componentType = mRenderer->getVertexComponentType(vertexFormat); if (shaderAttribute.name == "gl_InstanceID") { // The input type of the instance ID in HLSL (uint) differs from the one in ESSL (int). structHLSL += " uint"; } else { structHLSL += " " + HLSLComponentTypeString(componentType, VariableComponentCount(shaderAttribute.type)); } } structHLSL += " " + decorateVariable(shaderAttribute.name) + " : "; if (shaderAttribute.name == "gl_InstanceID") { structHLSL += "SV_InstanceID"; } else { structHLSL += "TEXCOORD" + Str(semanticIndex); semanticIndex += VariableRegisterCount(shaderAttribute.type); } structHLSL += ";\n"; // HLSL code for initialization initHLSL += " " + decorateVariable(shaderAttribute.name) + " = "; // Mismatched vertex attribute to vertex input may result in an undefined // data reinterpretation (eg for pure integer->float, float->pure integer) // TODO: issue warning with gl debug info extension, when supported if (IsMatrixType(shaderAttribute.type) || (mRenderer->getVertexConversionType(vertexFormat) & VERTEX_CONVERT_GPU) != 0) { initHLSL += generateAttributeConversionHLSL(vertexFormat, shaderAttribute); } else { initHLSL += "input." + decorateVariable(shaderAttribute.name); } initHLSL += ";\n"; inputIndex += VariableRowCount(TransposeMatrixType(shaderAttribute.type)); } } std::string replacementHLSL = "struct VS_INPUT\n" "{\n" + structHLSL + "};\n" "\n" "void initAttributes(VS_INPUT input)\n" "{\n" + initHLSL + "}\n"; std::string vertexHLSL(sourceShader); size_t copyInsertionPos = vertexHLSL.find(VERTEX_ATTRIBUTE_STUB_STRING); vertexHLSL.replace(copyInsertionPos, VERTEX_ATTRIBUTE_STUB_STRING.length(), replacementHLSL); return vertexHLSL; } std::string DynamicHLSL::generatePixelShaderForOutputSignature(const std::string &sourceShader, const std::vector &outputVariables, bool usesFragDepth, const std::vector &outputLayout) const { const int shaderModel = mRenderer->getMajorShaderModel(); std::string targetSemantic = (shaderModel >= 4) ? "SV_TARGET" : "COLOR"; std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH"; std::string declarationHLSL; std::string copyHLSL; for (size_t layoutIndex = 0; layoutIndex < outputLayout.size(); ++layoutIndex) { GLenum binding = outputLayout[layoutIndex]; if (binding != GL_NONE) { unsigned int location = (binding - GL_COLOR_ATTACHMENT0); const PixelShaderOutputVariable *outputVariable = FindOutputAtLocation(outputVariables, location); // OpenGL ES 3.0 spec $4.2.1 // If [...] not all user-defined output variables are written, the values of fragment colors // corresponding to unwritten variables are similarly undefined. if (outputVariable) { declarationHLSL += " " + HLSLTypeString(outputVariable->type) + " " + outputVariable->name + " : " + targetSemantic + Str(layoutIndex) + ";\n"; copyHLSL += " output." + outputVariable->name + " = " + outputVariable->source + ";\n"; } } } if (usesFragDepth) { declarationHLSL += " float gl_Depth : " + depthSemantic + ";\n"; copyHLSL += " output.gl_Depth = gl_Depth; \n"; } std::string replacementHLSL = "struct PS_OUTPUT\n" "{\n" + declarationHLSL + "};\n" "\n" "PS_OUTPUT generateOutput()\n" "{\n" " PS_OUTPUT output;\n" + copyHLSL + " return output;\n" "}\n"; std::string pixelHLSL(sourceShader); size_t outputInsertionPos = pixelHLSL.find(PIXEL_OUTPUT_STUB_STRING); pixelHLSL.replace(outputInsertionPos, PIXEL_OUTPUT_STUB_STRING.length(), replacementHLSL); return pixelHLSL; } std::string DynamicHLSL::getVaryingSemantic(bool pointSize) const { // SM3 reserves the TEXCOORD semantic for point sprite texcoords (gl_PointCoord) // In D3D11 we manually compute gl_PointCoord in the GS. int shaderModel = mRenderer->getMajorShaderModel(); return ((pointSize && shaderModel < 4) ? "COLOR" : "TEXCOORD"); } struct DynamicHLSL::SemanticInfo { struct BuiltinInfo { BuiltinInfo() : enabled(false), index(0), systemValue(false) {} bool enabled; std::string semantic; unsigned int index; bool systemValue; std::string str() const { return (systemValue ? semantic : (semantic + Str(index))); } void enableSystem(const std::string &systemValueSemantic) { enabled = true; semantic = systemValueSemantic; systemValue = true; } void enable(const std::string &semanticVal, unsigned int indexVal) { enabled = true; semantic = semanticVal; index = indexVal; } }; BuiltinInfo dxPosition; BuiltinInfo glPosition; BuiltinInfo glFragCoord; BuiltinInfo glPointCoord; BuiltinInfo glPointSize; }; DynamicHLSL::SemanticInfo DynamicHLSL::getSemanticInfo(int startRegisters, bool position, bool fragCoord, bool pointCoord, bool pointSize, bool pixelShader) const { SemanticInfo info; bool hlsl4 = (mRenderer->getMajorShaderModel() >= 4); const std::string &varyingSemantic = getVaryingSemantic(pointSize); int reservedRegisterIndex = startRegisters; if (hlsl4) { info.dxPosition.enableSystem("SV_Position"); } else if (pixelShader) { info.dxPosition.enableSystem("VPOS"); } else { info.dxPosition.enableSystem("POSITION"); } if (position) { info.glPosition.enable(varyingSemantic, reservedRegisterIndex++); } if (fragCoord) { info.glFragCoord.enable(varyingSemantic, reservedRegisterIndex++); } if (pointCoord) { // SM3 reserves the TEXCOORD semantic for point sprite texcoords (gl_PointCoord) // In D3D11 we manually compute gl_PointCoord in the GS. if (hlsl4) { info.glPointCoord.enable(varyingSemantic, reservedRegisterIndex++); } else { info.glPointCoord.enable("TEXCOORD", 0); } } // Special case: do not include PSIZE semantic in HLSL 3 pixel shaders if (pointSize && (!pixelShader || hlsl4)) { info.glPointSize.enableSystem("PSIZE"); } return info; } std::string DynamicHLSL::generateVaryingLinkHLSL(const SemanticInfo &info, const std::string &varyingHLSL) const { std::string linkHLSL = "{\n"; ASSERT(info.dxPosition.enabled); linkHLSL += " float4 dx_Position : " + info.dxPosition.str() + ";\n"; if (info.glPosition.enabled) { linkHLSL += " float4 gl_Position : " + info.glPosition.str() + ";\n"; } if (info.glFragCoord.enabled) { linkHLSL += " float4 gl_FragCoord : " + info.glFragCoord.str() + ";\n"; } if (info.glPointCoord.enabled) { linkHLSL += " float2 gl_PointCoord : " + info.glPointCoord.str() + ";\n"; } if (info.glPointSize.enabled) { linkHLSL += " float gl_PointSize : " + info.glPointSize.str() + ";\n"; } // Do this after glPointSize, to potentially combine gl_PointCoord and gl_PointSize into the same register. linkHLSL += varyingHLSL; linkHLSL += "};\n"; return linkHLSL; } void DynamicHLSL::storeBuiltinLinkedVaryings(const SemanticInfo &info, std::vector *linkedVaryings) const { if (info.glPosition.enabled) { linkedVaryings->push_back(LinkedVarying("gl_Position", GL_FLOAT_VEC4, 1, info.glPosition.semantic, info.glPosition.index, 1)); } if (info.glFragCoord.enabled) { linkedVaryings->push_back(LinkedVarying("gl_FragCoord", GL_FLOAT_VEC4, 1, info.glFragCoord.semantic, info.glFragCoord.index, 1)); } if (info.glPointSize.enabled) { linkedVaryings->push_back(LinkedVarying("gl_PointSize", GL_FLOAT, 1, "PSIZE", 0, 1)); } } void DynamicHLSL::storeUserLinkedVaryings(const ShaderD3D *vertexShader, std::vector *linkedVaryings) const { const std::string &varyingSemantic = getVaryingSemantic(vertexShader->mUsesPointSize); const std::vector &varyings = vertexShader->getVaryings(); for (unsigned int varyingIndex = 0; varyingIndex < varyings.size(); varyingIndex++) { const PackedVarying &varying = varyings[varyingIndex]; if (varying.registerAssigned()) { ASSERT(!varying.isBuiltIn()); GLenum transposedType = TransposeMatrixType(varying.type); int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType)); linkedVaryings->push_back(LinkedVarying(varying.name, varying.type, varying.elementCount(), varyingSemantic, varying.registerIndex, variableRows * varying.elementCount())); } } } bool DynamicHLSL::generateShaderLinkHLSL(const gl::Data &data, InfoLog &infoLog, int registers, const VaryingPacking packing, std::string &pixelHLSL, std::string &vertexHLSL, ShaderD3D *fragmentShader, ShaderD3D *vertexShader, const std::vector &transformFeedbackVaryings, std::vector *linkedVaryings, std::map *programOutputVars, std::vector *outPixelShaderKey, bool *outUsesFragDepth) const { if (pixelHLSL.empty() || vertexHLSL.empty()) { return false; } bool usesMRT = fragmentShader->mUsesMultipleRenderTargets; bool usesFragColor = fragmentShader->mUsesFragColor; bool usesFragData = fragmentShader->mUsesFragData; bool usesFragCoord = fragmentShader->mUsesFragCoord; bool usesPointCoord = fragmentShader->mUsesPointCoord; bool usesPointSize = vertexShader->mUsesPointSize; bool useInstancedPointSpriteEmulation = usesPointSize && mRenderer->getWorkarounds().useInstancedPointSpriteEmulation; if (usesFragColor && usesFragData) { infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader."); return false; } // Write the HLSL input/output declarations const int shaderModel = mRenderer->getMajorShaderModel(); const int registersNeeded = registers + (usesFragCoord ? 1 : 0) + (usesPointCoord ? 1 : 0); // Two cases when writing to gl_FragColor and using ESSL 1.0: // - with a 3.0 context, the output color is copied to channel 0 // - with a 2.0 context, the output color is broadcast to all channels const bool broadcast = (fragmentShader->mUsesFragColor && data.clientVersion < 3); const unsigned int numRenderTargets = (broadcast || usesMRT ? data.caps->maxDrawBuffers : 1); // gl_Position only needs to be outputted from the vertex shader if transform feedback is active. // This isn't supported on D3D11 Feature Level 9_3, so we don't output gl_Position from the vertex shader in this case. // This saves us 1 output vector. bool outputPositionFromVS = !(shaderModel >= 4 && mRenderer->getShaderModelSuffix() != ""); int shaderVersion = vertexShader->getShaderVersion(); if (static_cast(registersNeeded) > data.caps->maxVaryingVectors) { infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord"); return false; } const std::string &varyingHLSL = generateVaryingHLSL(vertexShader); // Instanced PointSprite emulation requires that gl_PointCoord is present in the vertex shader VS_OUTPUT // structure to ensure compatibility with the generated PS_INPUT of the pixel shader. // GeometryShader PointSprite emulation does not require this additional entry because the // GS_OUTPUT of the Geometry shader contains the pointCoord value and already matches the PS_INPUT of the // generated pixel shader. // The Geometry Shader point sprite implementation needs gl_PointSize to be in VS_OUTPUT and GS_INPUT. // Instanced point sprites doesn't need gl_PointSize in VS_OUTPUT. const SemanticInfo &vertexSemantics = getSemanticInfo(registers, outputPositionFromVS, usesFragCoord, (useInstancedPointSpriteEmulation && usesPointCoord), (!useInstancedPointSpriteEmulation && usesPointSize), false); storeUserLinkedVaryings(vertexShader, linkedVaryings); storeBuiltinLinkedVaryings(vertexSemantics, linkedVaryings); // Instanced PointSprite emulation requires additional entries originally generated in the // GeometryShader HLSL. These include pointsize clamp values. if (useInstancedPointSpriteEmulation) { vertexHLSL += "static float minPointSize = " + Str((int)mRenderer->getRendererCaps().minAliasedPointSize) + ".0f;\n" "static float maxPointSize = " + Str((int)mRenderer->getRendererCaps().maxAliasedPointSize) + ".0f;\n"; } // Add stub string to be replaced when shader is dynamically defined by its layout vertexHLSL += "\n" + VERTEX_ATTRIBUTE_STUB_STRING + "\n" "struct VS_OUTPUT\n" + generateVaryingLinkHLSL(vertexSemantics, varyingHLSL) + "\n" "VS_OUTPUT main(VS_INPUT input)\n" "{\n" " initAttributes(input);\n"; if (vertexShader->usesDeferredInit()) { vertexHLSL += "\n" " initializeDeferredGlobals();\n"; } vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n"; if (outputPositionFromVS) { vertexHLSL += " output.gl_Position = gl_Position;\n"; } // On D3D9 or D3D11 Feature Level 9, we need to emulate large viewports using dx_ViewAdjust. if (shaderModel >= 4 && mRenderer->getShaderModelSuffix() == "") { vertexHLSL += " output.dx_Position.x = gl_Position.x;\n" " output.dx_Position.y = -gl_Position.y;\n" " output.dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.dx_Position.w = gl_Position.w;\n"; } else { vertexHLSL += " output.dx_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n" " output.dx_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n" " output.dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.dx_Position.w = gl_Position.w;\n"; } // We don't need to output gl_PointSize if we use are emulating point sprites via instancing. if (usesPointSize && shaderModel >= 3 && !useInstancedPointSpriteEmulation) { vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; } if (usesFragCoord) { vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; } const std::vector &vertexVaryings = vertexShader->getVaryings(); for (unsigned int vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++) { const PackedVarying &varying = vertexVaryings[vertVaryingIndex]; if (varying.registerAssigned()) { for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { int variableRows = (varying.isStruct() ? 1 : VariableRowCount(TransposeMatrixType(varying.type))); for (int row = 0; row < variableRows; row++) { int r = varying.registerIndex + varying.columnIndex * data.caps->maxVaryingVectors + elementIndex * variableRows + row; vertexHLSL += " output.v" + Str(r); vertexHLSL += " = _" + varying.name; if (varying.isArray()) { vertexHLSL += ArrayString(elementIndex); } if (variableRows > 1) { vertexHLSL += ArrayString(row); } vertexHLSL += ";\n"; } } } } // Instanced PointSprite emulation requires additional entries to calculate // the final output vertex positions of the quad that represents each sprite. if (useInstancedPointSpriteEmulation) { vertexHLSL += "\n" " gl_PointSize = clamp(gl_PointSize, minPointSize, maxPointSize);\n" " output.dx_Position.xyz += float3(input.spriteVertexPos.x * gl_PointSize / (dx_ViewCoords.x*2), input.spriteVertexPos.y * gl_PointSize / (dx_ViewCoords.y*2), input.spriteVertexPos.z) * output.dx_Position.w;\n"; if (usesPointCoord) { vertexHLSL += "\n" " output.gl_PointCoord = input.spriteTexCoord;\n"; } } vertexHLSL += "\n" " return output;\n" "}\n"; const SemanticInfo &pixelSemantics = getSemanticInfo(registers, outputPositionFromVS, usesFragCoord, usesPointCoord, (!useInstancedPointSpriteEmulation && usesPointSize), true); pixelHLSL += "struct PS_INPUT\n" + generateVaryingLinkHLSL(pixelSemantics, varyingHLSL) + "\n"; if (shaderVersion < 300) { for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) { PixelShaderOutputVariable outputKeyVariable; outputKeyVariable.type = GL_FLOAT_VEC4; outputKeyVariable.name = "gl_Color" + Str(renderTargetIndex); outputKeyVariable.source = broadcast ? "gl_Color[0]" : "gl_Color[" + Str(renderTargetIndex) + "]"; outputKeyVariable.outputIndex = renderTargetIndex; outPixelShaderKey->push_back(outputKeyVariable); } *outUsesFragDepth = fragmentShader->mUsesFragDepth; } else { defineOutputVariables(fragmentShader, programOutputVars); const std::vector &shaderOutputVars = fragmentShader->getActiveOutputVariables(); for (auto locationIt = programOutputVars->begin(); locationIt != programOutputVars->end(); locationIt++) { const VariableLocation &outputLocation = locationIt->second; const sh::ShaderVariable &outputVariable = shaderOutputVars[outputLocation.index]; const std::string &variableName = "out_" + outputLocation.name; const std::string &elementString = (outputLocation.element == GL_INVALID_INDEX ? "" : Str(outputLocation.element)); ASSERT(outputVariable.staticUse); PixelShaderOutputVariable outputKeyVariable; outputKeyVariable.type = outputVariable.type; outputKeyVariable.name = variableName + elementString; outputKeyVariable.source = variableName + ArrayString(outputLocation.element); outputKeyVariable.outputIndex = locationIt->first; outPixelShaderKey->push_back(outputKeyVariable); } *outUsesFragDepth = false; } pixelHLSL += PIXEL_OUTPUT_STUB_STRING + "\n"; if (fragmentShader->mUsesFrontFacing) { if (shaderModel >= 4) { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n" "{\n"; } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n" "{\n"; } } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n" "{\n"; } if (usesFragCoord) { pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; // Certain Shader Models (4_0+ and 3_0) allow reading from dx_Position in the pixel shader. // Other Shader Models (4_0_level_9_3 and 2_x) don't support this, so we emulate it using dx_ViewCoords. if (shaderModel >= 4 && mRenderer->getShaderModelSuffix() == "") { pixelHLSL += " gl_FragCoord.x = input.dx_Position.x;\n" " gl_FragCoord.y = input.dx_Position.y;\n"; } else if (shaderModel == 3) { pixelHLSL += " gl_FragCoord.x = input.dx_Position.x + 0.5;\n" " gl_FragCoord.y = input.dx_Position.y + 0.5;\n"; } else { // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport() pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n" " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n"; } pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n" " gl_FragCoord.w = rhw;\n"; } if (usesPointCoord && shaderModel >= 3) { pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; } if (fragmentShader->mUsesFrontFacing) { if (shaderModel <= 3) { pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n"; } else { pixelHLSL += " gl_FrontFacing = isFrontFace;\n"; } } const std::vector &fragmentVaryings = fragmentShader->getVaryings(); for (unsigned int varyingIndex = 0; varyingIndex < fragmentVaryings.size(); varyingIndex++) { const PackedVarying &varying = fragmentVaryings[varyingIndex]; if (varying.registerAssigned()) { ASSERT(!varying.isBuiltIn()); for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { GLenum transposedType = TransposeMatrixType(varying.type); int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType)); for (int row = 0; row < variableRows; row++) { std::string n = Str(varying.registerIndex + varying.columnIndex * data.caps->maxVaryingVectors + elementIndex * variableRows + row); pixelHLSL += " _" + varying.name; if (varying.isArray()) { pixelHLSL += ArrayString(elementIndex); } if (variableRows > 1) { pixelHLSL += ArrayString(row); } if (varying.isStruct()) { pixelHLSL += " = input.v" + n + ";\n"; break; } else { switch (VariableColumnCount(transposedType)) { case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break; case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break; case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break; case 4: pixelHLSL += " = input.v" + n + ";\n"; break; default: UNREACHABLE(); } } } } } else { ASSERT(varying.isBuiltIn() || !varying.staticUse); } } if (fragmentShader->usesDeferredInit()) { pixelHLSL += "\n" " initializeDeferredGlobals();\n"; } pixelHLSL += "\n" " gl_main();\n" "\n" " return generateOutput();\n" "}\n"; return true; } void DynamicHLSL::defineOutputVariables(ShaderD3D *fragmentShader, std::map *programOutputVars) const { const std::vector &shaderOutputVars = fragmentShader->getActiveOutputVariables(); for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size(); outputVariableIndex++) { const sh::Attribute &outputVariable = shaderOutputVars[outputVariableIndex]; const int baseLocation = outputVariable.location == -1 ? 0 : outputVariable.location; ASSERT(outputVariable.staticUse); if (outputVariable.arraySize > 0) { for (unsigned int elementIndex = 0; elementIndex < outputVariable.arraySize; elementIndex++) { const int location = baseLocation + elementIndex; ASSERT(programOutputVars->count(location) == 0); (*programOutputVars)[location] = VariableLocation(outputVariable.name, elementIndex, outputVariableIndex); } } else { ASSERT(programOutputVars->count(baseLocation) == 0); (*programOutputVars)[baseLocation] = VariableLocation(outputVariable.name, GL_INVALID_INDEX, outputVariableIndex); } } } std::string DynamicHLSL::generateGeometryShaderHLSL(int registers, ShaderD3D *fragmentShader, ShaderD3D *vertexShader) const { // for now we only handle point sprite emulation ASSERT(vertexShader->mUsesPointSize && mRenderer->getMajorShaderModel() >= 4); return generatePointSpriteHLSL(registers, fragmentShader, vertexShader); } std::string DynamicHLSL::generatePointSpriteHLSL(int registers, ShaderD3D *fragmentShader, ShaderD3D *vertexShader) const { ASSERT(registers >= 0); ASSERT(vertexShader->mUsesPointSize); ASSERT(mRenderer->getMajorShaderModel() >= 4); std::string geomHLSL; const SemanticInfo &inSemantics = getSemanticInfo(registers, true, fragmentShader->mUsesFragCoord, false, true, false); const SemanticInfo &outSemantics = getSemanticInfo(registers, true, fragmentShader->mUsesFragCoord, fragmentShader->mUsesPointCoord, true, false); std::string varyingHLSL = generateVaryingHLSL(vertexShader); std::string inLinkHLSL = generateVaryingLinkHLSL(inSemantics, varyingHLSL); std::string outLinkHLSL = generateVaryingLinkHLSL(outSemantics, varyingHLSL); // TODO(geofflang): use context's caps geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n" "\n" "struct GS_INPUT\n" + inLinkHLSL + "\n" + "struct GS_OUTPUT\n" + outLinkHLSL + "\n" + "\n" "static float2 pointSpriteCorners[] = \n" "{\n" " float2( 0.5f, -0.5f),\n" " float2( 0.5f, 0.5f),\n" " float2(-0.5f, -0.5f),\n" " float2(-0.5f, 0.5f)\n" "};\n" "\n" "static float2 pointSpriteTexcoords[] = \n" "{\n" " float2(1.0f, 1.0f),\n" " float2(1.0f, 0.0f),\n" " float2(0.0f, 1.0f),\n" " float2(0.0f, 0.0f)\n" "};\n" "\n" "static float minPointSize = " + Str(mRenderer->getRendererCaps().minAliasedPointSize) + ".0f;\n" "static float maxPointSize = " + Str(mRenderer->getRendererCaps().maxAliasedPointSize) + ".0f;\n" "\n" "[maxvertexcount(4)]\n" "void main(point GS_INPUT input[1], inout TriangleStream outStream)\n" "{\n" " GS_OUTPUT output = (GS_OUTPUT)0;\n" " output.gl_Position = input[0].gl_Position;\n" " output.gl_PointSize = input[0].gl_PointSize;\n"; for (int r = 0; r < registers; r++) { geomHLSL += " output.v" + Str(r) + " = input[0].v" + Str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n"; } geomHLSL += " \n" " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n" " float4 dx_Position = input[0].dx_Position;\n" " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * dx_Position.w;\n"; for (int corner = 0; corner < 4; corner++) { geomHLSL += " \n" " output.dx_Position = dx_Position + float4(pointSpriteCorners[" + Str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n"; if (fragmentShader->mUsesPointCoord) { geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + Str(corner) + "];\n"; } geomHLSL += " outStream.Append(output);\n"; } geomHLSL += " \n" " outStream.RestartStrip();\n" "}\n"; return geomHLSL; } // This method needs to match OutputHLSL::decorate std::string DynamicHLSL::decorateVariable(const std::string &name) { if (name.compare(0, 3, "gl_") != 0) { return "_" + name; } return name; } std::string DynamicHLSL::generateAttributeConversionHLSL(const VertexFormat &vertexFormat, const sh::ShaderVariable &shaderAttrib) const { std::string attribString = "input." + decorateVariable(shaderAttrib.name); // Matrix if (IsMatrixType(shaderAttrib.type)) { return "transpose(" + attribString + ")"; } GLenum shaderComponentType = VariableComponentType(shaderAttrib.type); int shaderComponentCount = VariableComponentCount(shaderAttrib.type); // Perform integer to float conversion (if necessary) bool requiresTypeConversion = (shaderComponentType == GL_FLOAT && vertexFormat.mType != GL_FLOAT); if (requiresTypeConversion) { // TODO: normalization for 32-bit integer formats ASSERT(!vertexFormat.mNormalized && !vertexFormat.mPureInteger); return "float" + Str(shaderComponentCount) + "(" + attribString + ")"; } // No conversion necessary return attribString; } void DynamicHLSL::getInputLayoutSignature(const VertexFormat inputLayout[], GLenum signature[]) const { for (size_t inputIndex = 0; inputIndex < MAX_VERTEX_ATTRIBS; inputIndex++) { const VertexFormat &vertexFormat = inputLayout[inputIndex]; if (vertexFormat.mType == GL_NONE) { signature[inputIndex] = GL_NONE; } else { bool gpuConverted = ((mRenderer->getVertexConversionType(vertexFormat) & VERTEX_CONVERT_GPU) != 0); signature[inputIndex] = (gpuConverted ? GL_TRUE : GL_FALSE); } } } }