// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // VertexDataManager.h: Defines the VertexDataManager, a class that // runs the Buffer translation process. #include "libANGLE/renderer/d3d/VertexDataManager.h" #include "libANGLE/Buffer.h" #include "libANGLE/Program.h" #include "libANGLE/State.h" #include "libANGLE/VertexAttribute.h" #include "libANGLE/VertexArray.h" #include "libANGLE/renderer/d3d/BufferD3D.h" #include "libANGLE/renderer/d3d/VertexBuffer.h" namespace { enum { INITIAL_STREAM_BUFFER_SIZE = 1024*1024 }; // This has to be at least 4k or else it fails on ATI cards. enum { CONSTANT_VERTEX_BUFFER_SIZE = 4096 }; } namespace rx { static int ElementsInBuffer(const gl::VertexAttribute &attrib, unsigned int size) { // Size cannot be larger than a GLsizei if (size > static_cast(std::numeric_limits::max())) { size = static_cast(std::numeric_limits::max()); } GLsizei stride = ComputeVertexAttributeStride(attrib); return (size - attrib.offset % stride + (stride - ComputeVertexAttributeTypeSize(attrib))) / stride; } static int StreamingBufferElementCount(const gl::VertexAttribute &attrib, int vertexDrawCount, int instanceDrawCount) { // For instanced rendering, we draw "instanceDrawCount" sets of "vertexDrawCount" vertices. // // A vertex attribute with a positive divisor loads one instanced vertex for every set of // non-instanced vertices, and the instanced vertex index advances once every "mDivisor" instances. if (instanceDrawCount > 0 && attrib.divisor > 0) { // When instanceDrawCount is not a multiple attrib.divisor, the division must round up. // For instance, with 5 non-instanced vertices and a divisor equal to 3, we need 2 instanced vertices. return (instanceDrawCount + attrib.divisor - 1) / attrib.divisor; } return vertexDrawCount; } VertexDataManager::VertexDataManager(BufferFactoryD3D *factory) : mFactory(factory) { for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { mCurrentValue[i].FloatValues[0] = std::numeric_limits::quiet_NaN(); mCurrentValue[i].FloatValues[1] = std::numeric_limits::quiet_NaN(); mCurrentValue[i].FloatValues[2] = std::numeric_limits::quiet_NaN(); mCurrentValue[i].FloatValues[3] = std::numeric_limits::quiet_NaN(); mCurrentValue[i].Type = GL_FLOAT; mCurrentValueBuffer[i] = NULL; mCurrentValueOffsets[i] = 0; } mStreamingBuffer = new StreamingVertexBufferInterface(factory, INITIAL_STREAM_BUFFER_SIZE); if (!mStreamingBuffer) { ERR("Failed to allocate the streaming vertex buffer."); } } VertexDataManager::~VertexDataManager() { delete mStreamingBuffer; for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { delete mCurrentValueBuffer[i]; } } void VertexDataManager::hintUnmapAllResources(const std::vector &vertexAttributes) { mStreamingBuffer->getVertexBuffer()->hintUnmapResource(); for (size_t i = 0; i < vertexAttributes.size(); i++) { const gl::VertexAttribute &attrib = vertexAttributes[i]; if (attrib.enabled) { gl::Buffer *buffer = attrib.buffer.get(); BufferD3D *storage = buffer ? GetImplAs(buffer) : NULL; StaticVertexBufferInterface *staticBuffer = storage ? storage->getStaticVertexBuffer() : NULL; if (staticBuffer) { staticBuffer->getVertexBuffer()->hintUnmapResource(); } } } for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { if (mCurrentValueBuffer[i] != NULL) { mCurrentValueBuffer[i]->getVertexBuffer()->hintUnmapResource(); } } } gl::Error VertexDataManager::prepareVertexData(const gl::State &state, GLint start, GLsizei count, TranslatedAttribute *translated, GLsizei instances) { if (!mStreamingBuffer) { return gl::Error(GL_OUT_OF_MEMORY, "Internal streaming vertex buffer is unexpectedly NULL."); } const gl::VertexArray *vertexArray = state.getVertexArray(); const std::vector &vertexAttributes = vertexArray->getVertexAttributes(); // Invalidate static buffers that don't contain matching attributes for (int attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++) { translated[attributeIndex].active = (state.getProgram()->getSemanticIndex(attributeIndex) != -1); if (translated[attributeIndex].active && vertexAttributes[attributeIndex].enabled) { invalidateMatchingStaticData(vertexAttributes[attributeIndex], state.getVertexAttribCurrentValue(attributeIndex)); } } // Reserve the required space in the buffers for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { if (translated[i].active && vertexAttributes[i].enabled) { gl::Error error = reserveSpaceForAttrib(vertexAttributes[i], state.getVertexAttribCurrentValue(i), count, instances); if (error.isError()) { return error; } } } // Perform the vertex data translations for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { const gl::VertexAttribute &curAttrib = vertexAttributes[i]; if (translated[i].active) { if (curAttrib.enabled) { gl::Error error = storeAttribute(curAttrib, state.getVertexAttribCurrentValue(i), &translated[i], start, count, instances); if (error.isError()) { hintUnmapAllResources(vertexAttributes); return error; } } else { if (!mCurrentValueBuffer[i]) { mCurrentValueBuffer[i] = new StreamingVertexBufferInterface(mFactory, CONSTANT_VERTEX_BUFFER_SIZE); } gl::Error error = storeCurrentValue(curAttrib, state.getVertexAttribCurrentValue(i), &translated[i], &mCurrentValue[i], &mCurrentValueOffsets[i], mCurrentValueBuffer[i]); if (error.isError()) { hintUnmapAllResources(vertexAttributes); return error; } } } } // Hint to unmap all the resources hintUnmapAllResources(vertexAttributes); for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { const gl::VertexAttribute &curAttrib = vertexAttributes[i]; if (translated[i].active && curAttrib.enabled) { gl::Buffer *buffer = curAttrib.buffer.get(); if (buffer) { BufferD3D *bufferImpl = GetImplAs(buffer); bufferImpl->promoteStaticUsage(count * ComputeVertexAttributeTypeSize(curAttrib)); } } } return gl::Error(GL_NO_ERROR); } void VertexDataManager::invalidateMatchingStaticData(const gl::VertexAttribute &attrib, const gl::VertexAttribCurrentValueData ¤tValue) const { gl::Buffer *buffer = attrib.buffer.get(); if (buffer) { BufferD3D *bufferImpl = GetImplAs(buffer); StaticVertexBufferInterface *staticBuffer = bufferImpl->getStaticVertexBuffer(); if (staticBuffer && staticBuffer->getBufferSize() > 0 && !staticBuffer->lookupAttribute(attrib, NULL) && !staticBuffer->directStoragePossible(attrib, currentValue)) { bufferImpl->invalidateStaticData(); } } } gl::Error VertexDataManager::reserveSpaceForAttrib(const gl::VertexAttribute &attrib, const gl::VertexAttribCurrentValueData ¤tValue, GLsizei count, GLsizei instances) const { gl::Buffer *buffer = attrib.buffer.get(); BufferD3D *bufferImpl = buffer ? GetImplAs(buffer) : NULL; StaticVertexBufferInterface *staticBuffer = bufferImpl ? bufferImpl->getStaticVertexBuffer() : NULL; VertexBufferInterface *vertexBuffer = staticBuffer ? staticBuffer : static_cast(mStreamingBuffer); if (!vertexBuffer->directStoragePossible(attrib, currentValue)) { if (staticBuffer) { if (staticBuffer->getBufferSize() == 0) { int totalCount = ElementsInBuffer(attrib, bufferImpl->getSize()); gl::Error error = staticBuffer->reserveVertexSpace(attrib, totalCount, 0); if (error.isError()) { return error; } } } else { int totalCount = StreamingBufferElementCount(attrib, count, instances); ASSERT(!bufferImpl || ElementsInBuffer(attrib, bufferImpl->getSize()) >= totalCount); gl::Error error = mStreamingBuffer->reserveVertexSpace(attrib, totalCount, instances); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error VertexDataManager::storeAttribute(const gl::VertexAttribute &attrib, const gl::VertexAttribCurrentValueData ¤tValue, TranslatedAttribute *translated, GLint start, GLsizei count, GLsizei instances) { gl::Buffer *buffer = attrib.buffer.get(); ASSERT(buffer || attrib.pointer); BufferD3D *storage = buffer ? GetImplAs(buffer) : NULL; StaticVertexBufferInterface *staticBuffer = storage ? storage->getStaticVertexBuffer() : NULL; VertexBufferInterface *vertexBuffer = staticBuffer ? staticBuffer : static_cast(mStreamingBuffer); bool directStorage = vertexBuffer->directStoragePossible(attrib, currentValue); unsigned int streamOffset = 0; unsigned int outputElementSize = 0; // Instanced vertices do not apply the 'start' offset GLint firstVertexIndex = (instances > 0 && attrib.divisor > 0 ? 0 : start); if (directStorage) { outputElementSize = ComputeVertexAttributeStride(attrib); streamOffset = attrib.offset + outputElementSize * firstVertexIndex; } else if (staticBuffer) { gl::Error error = staticBuffer->getVertexBuffer()->getSpaceRequired(attrib, 1, 0, &outputElementSize); if (error.isError()) { return error; } if (!staticBuffer->lookupAttribute(attrib, &streamOffset)) { // Convert the entire buffer int totalCount = ElementsInBuffer(attrib, storage->getSize()); int startIndex = attrib.offset / ComputeVertexAttributeStride(attrib); error = staticBuffer->storeVertexAttributes(attrib, currentValue, -startIndex, totalCount, 0, &streamOffset); if (error.isError()) { return error; } } unsigned int firstElementOffset = (attrib.offset / ComputeVertexAttributeStride(attrib)) * outputElementSize; unsigned int startOffset = (instances == 0 || attrib.divisor == 0) ? firstVertexIndex * outputElementSize : 0; if (streamOffset + firstElementOffset + startOffset < streamOffset) { return gl::Error(GL_OUT_OF_MEMORY); } streamOffset += firstElementOffset + startOffset; } else { int totalCount = StreamingBufferElementCount(attrib, count, instances); gl::Error error = mStreamingBuffer->getVertexBuffer()->getSpaceRequired(attrib, 1, 0, &outputElementSize); if (error.isError()) { return error; } error = mStreamingBuffer->storeVertexAttributes(attrib, currentValue, firstVertexIndex, totalCount, instances, &streamOffset); if (error.isError()) { return error; } } translated->storage = directStorage ? storage : NULL; translated->vertexBuffer = vertexBuffer->getVertexBuffer(); translated->serial = directStorage ? storage->getSerial() : vertexBuffer->getSerial(); translated->divisor = attrib.divisor; translated->attribute = &attrib; translated->currentValueType = currentValue.Type; translated->stride = outputElementSize; translated->offset = streamOffset; return gl::Error(GL_NO_ERROR); } gl::Error VertexDataManager::storeCurrentValue(const gl::VertexAttribute &attrib, const gl::VertexAttribCurrentValueData ¤tValue, TranslatedAttribute *translated, gl::VertexAttribCurrentValueData *cachedValue, size_t *cachedOffset, StreamingVertexBufferInterface *buffer) { if (*cachedValue != currentValue) { gl::Error error = buffer->reserveVertexSpace(attrib, 1, 0); if (error.isError()) { return error; } unsigned int streamOffset; error = buffer->storeVertexAttributes(attrib, currentValue, 0, 1, 0, &streamOffset); if (error.isError()) { return error; } *cachedValue = currentValue; *cachedOffset = streamOffset; } translated->storage = NULL; translated->vertexBuffer = buffer->getVertexBuffer(); translated->serial = buffer->getSerial(); translated->divisor = 0; translated->attribute = &attrib; translated->currentValueType = currentValue.Type; translated->stride = 0; translated->offset = *cachedOffset; return gl::Error(GL_NO_ERROR); } }