// // Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Renderer9.cpp: Implements a back-end specific class for the D3D9 renderer. #include "libANGLE/renderer/d3d/d3d9/Renderer9.h" #include #include #include "common/utilities.h" #include "libANGLE/Buffer.h" #include "libANGLE/Context.h" #include "libANGLE/Display.h" #include "libANGLE/Framebuffer.h" #include "libANGLE/FramebufferAttachment.h" #include "libANGLE/Program.h" #include "libANGLE/Renderbuffer.h" #include "libANGLE/State.h" #include "libANGLE/Surface.h" #include "libANGLE/Texture.h" #include "libANGLE/angletypes.h" #include "libANGLE/features.h" #include "libANGLE/formatutils.h" #include "libANGLE/renderer/d3d/CompilerD3D.h" #include "libANGLE/renderer/d3d/DeviceD3D.h" #include "libANGLE/renderer/d3d/FramebufferD3D.h" #include "libANGLE/renderer/d3d/IndexDataManager.h" #include "libANGLE/renderer/d3d/ProgramD3D.h" #include "libANGLE/renderer/d3d/RenderbufferD3D.h" #include "libANGLE/renderer/d3d/ShaderD3D.h" #include "libANGLE/renderer/d3d/SurfaceD3D.h" #include "libANGLE/renderer/d3d/TextureD3D.h" #include "libANGLE/renderer/d3d/d3d9/Blit9.h" #include "libANGLE/renderer/d3d/d3d9/Buffer9.h" #include "libANGLE/renderer/d3d/d3d9/Context9.h" #include "libANGLE/renderer/d3d/d3d9/Fence9.h" #include "libANGLE/renderer/d3d/d3d9/Framebuffer9.h" #include "libANGLE/renderer/d3d/d3d9/Image9.h" #include "libANGLE/renderer/d3d/d3d9/IndexBuffer9.h" #include "libANGLE/renderer/d3d/d3d9/NativeWindow9.h" #include "libANGLE/renderer/d3d/d3d9/Query9.h" #include "libANGLE/renderer/d3d/d3d9/RenderTarget9.h" #include "libANGLE/renderer/d3d/d3d9/ShaderExecutable9.h" #include "libANGLE/renderer/d3d/d3d9/SwapChain9.h" #include "libANGLE/renderer/d3d/d3d9/TextureStorage9.h" #include "libANGLE/renderer/d3d/d3d9/VertexArray9.h" #include "libANGLE/renderer/d3d/d3d9/VertexBuffer9.h" #include "libANGLE/renderer/d3d/d3d9/formatutils9.h" #include "libANGLE/renderer/d3d/d3d9/renderer9_utils.h" #include "third_party/trace_event/trace_event.h" #if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) #define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 #endif // Enable ANGLE_SUPPORT_SHADER_MODEL_2 if you wish devices with only shader model 2. // Such a device would not be conformant. #ifndef ANGLE_SUPPORT_SHADER_MODEL_2 #define ANGLE_SUPPORT_SHADER_MODEL_2 0 #endif namespace rx { enum { MAX_VERTEX_CONSTANT_VECTORS_D3D9 = 256, MAX_PIXEL_CONSTANT_VECTORS_SM2 = 32, MAX_PIXEL_CONSTANT_VECTORS_SM3 = 224, MAX_VARYING_VECTORS_SM2 = 8, MAX_VARYING_VECTORS_SM3 = 10, MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 = 4 }; Renderer9::Renderer9(egl::Display *display) : RendererD3D(display), mStateManager(this) { mD3d9Module = nullptr; mD3d9 = nullptr; mD3d9Ex = nullptr; mDevice = nullptr; mDeviceEx = nullptr; mDeviceWindow = nullptr; mBlit = nullptr; mAdapter = D3DADAPTER_DEFAULT; const egl::AttributeMap &attributes = display->getAttributeMap(); EGLint requestedDeviceType = static_cast(attributes.get( EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE, EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE)); switch (requestedDeviceType) { case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE: mDeviceType = D3DDEVTYPE_HAL; break; case EGL_PLATFORM_ANGLE_DEVICE_TYPE_REFERENCE_ANGLE: mDeviceType = D3DDEVTYPE_REF; break; case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE: mDeviceType = D3DDEVTYPE_NULLREF; break; default: UNREACHABLE(); } mMaskedClearSavedState = nullptr; mVertexDataManager = nullptr; mIndexDataManager = nullptr; mLineLoopIB = nullptr; mCountingIB = nullptr; mMaxNullColorbufferLRU = 0; for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { mNullColorbufferCache[i].lruCount = 0; mNullColorbufferCache[i].width = 0; mNullColorbufferCache[i].height = 0; mNullColorbufferCache[i].buffer = nullptr; } mAppliedVertexShader = nullptr; mAppliedPixelShader = nullptr; mAppliedProgramSerial = 0; gl::InitializeDebugAnnotations(&mAnnotator); mEGLDevice = nullptr; } Renderer9::~Renderer9() { if (mDevice) { // If the device is lost, reset it first to prevent leaving the driver in an unstable state if (testDeviceLost()) { resetDevice(); } } release(); } void Renderer9::release() { RendererD3D::cleanup(); gl::UninitializeDebugAnnotations(); mTranslatedAttribCache.clear(); releaseDeviceResources(); SafeDelete(mEGLDevice); SafeRelease(mDevice); SafeRelease(mDeviceEx); SafeRelease(mD3d9); SafeRelease(mD3d9Ex); mCompiler.release(); if (mDeviceWindow) { DestroyWindow(mDeviceWindow); mDeviceWindow = nullptr; } mD3d9Module = nullptr; } egl::Error Renderer9::initialize() { TRACE_EVENT0("gpu.angle", "GetModuleHandle_d3d9"); mD3d9Module = GetModuleHandle(TEXT("d3d9.dll")); if (mD3d9Module == nullptr) { return egl::EglNotInitialized(D3D9_INIT_MISSING_DEP) << "No D3D9 module found."; } typedef HRESULT(WINAPI * Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex **); Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex")); // Use Direct3D9Ex if available. Among other things, this version is less // inclined to report a lost context, for example when the user switches // desktop. Direct3D9Ex is available in Windows Vista and later if suitable drivers are // available. if (ANGLE_D3D9EX == ANGLE_ENABLED && Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &mD3d9Ex))) { TRACE_EVENT0("gpu.angle", "D3d9Ex_QueryInterface"); ASSERT(mD3d9Ex); mD3d9Ex->QueryInterface(__uuidof(IDirect3D9), reinterpret_cast(&mD3d9)); ASSERT(mD3d9); } else { TRACE_EVENT0("gpu.angle", "Direct3DCreate9"); mD3d9 = Direct3DCreate9(D3D_SDK_VERSION); } if (!mD3d9) { return egl::EglNotInitialized(D3D9_INIT_MISSING_DEP) << "Could not create D3D9 device."; } if (mDisplay->getNativeDisplayId() != nullptr) { // UNIMPLEMENTED(); // FIXME: Determine which adapter index the device context // corresponds to } HRESULT result; // Give up on getting device caps after about one second. { TRACE_EVENT0("gpu.angle", "GetDeviceCaps"); for (int i = 0; i < 10; ++i) { result = mD3d9->GetDeviceCaps(mAdapter, mDeviceType, &mDeviceCaps); if (SUCCEEDED(result)) { break; } else if (result == D3DERR_NOTAVAILABLE) { Sleep(100); // Give the driver some time to initialize/recover } else if (FAILED(result)) // D3DERR_OUTOFVIDEOMEMORY, E_OUTOFMEMORY, // D3DERR_INVALIDDEVICE, or another error we can't recover // from { return egl::EglNotInitialized(D3D9_INIT_OTHER_ERROR) << "Failed to get device caps, " << gl::FmtHR(result); } } } #if ANGLE_SUPPORT_SHADER_MODEL_2 size_t minShaderModel = 2; #else size_t minShaderModel = 3; #endif if (mDeviceCaps.PixelShaderVersion < D3DPS_VERSION(minShaderModel, 0)) { return egl::EglNotInitialized(D3D9_INIT_UNSUPPORTED_VERSION) << "Renderer does not support PS " << minShaderModel << ".0, aborting!"; } // When DirectX9 is running with an older DirectX8 driver, a StretchRect from a regular texture // to a render target texture is not supported. This is required by // Texture2D::ensureRenderTarget. if ((mDeviceCaps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) == 0) { return egl::EglNotInitialized(D3D9_INIT_UNSUPPORTED_STRETCHRECT) << "Renderer does not support StretctRect from textures."; } { TRACE_EVENT0("gpu.angle", "GetAdapterIdentifier"); mD3d9->GetAdapterIdentifier(mAdapter, 0, &mAdapterIdentifier); } static const TCHAR windowName[] = TEXT("AngleHiddenWindow"); static const TCHAR className[] = TEXT("STATIC"); { TRACE_EVENT0("gpu.angle", "CreateWindowEx"); mDeviceWindow = CreateWindowEx(WS_EX_NOACTIVATE, className, windowName, WS_DISABLED | WS_POPUP, 0, 0, 1, 1, HWND_MESSAGE, nullptr, GetModuleHandle(nullptr), nullptr); } D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters(); DWORD behaviorFlags = D3DCREATE_FPU_PRESERVE | D3DCREATE_NOWINDOWCHANGES | D3DCREATE_MULTITHREADED; { TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice"); result = mD3d9->CreateDevice( mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, &presentParameters, &mDevice); } if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_DEVICELOST) { return egl::EglBadAlloc(D3D9_INIT_OUT_OF_MEMORY) << "CreateDevice failed: device lost of out of memory"; } if (FAILED(result)) { TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice2"); result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &presentParameters, &mDevice); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_NOTAVAILABLE || result == D3DERR_DEVICELOST); return egl::EglBadAlloc(D3D9_INIT_OUT_OF_MEMORY) << "CreateDevice2 failed: device lost, not available, or of out of memory"; } } if (mD3d9Ex) { TRACE_EVENT0("gpu.angle", "mDevice_QueryInterface"); result = mDevice->QueryInterface(__uuidof(IDirect3DDevice9Ex), (void **)&mDeviceEx); ASSERT(SUCCEEDED(result)); } { TRACE_EVENT0("gpu.angle", "ShaderCache initialize"); mVertexShaderCache.initialize(mDevice); mPixelShaderCache.initialize(mDevice); } D3DDISPLAYMODE currentDisplayMode; mD3d9->GetAdapterDisplayMode(mAdapter, ¤tDisplayMode); // Check vertex texture support // Only Direct3D 10 ready devices support all the necessary vertex texture formats. // We test this using D3D9 by checking support for the R16F format. mVertexTextureSupport = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0) && SUCCEEDED(mD3d9->CheckDeviceFormat( mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_VERTEXTEXTURE, D3DRTYPE_TEXTURE, D3DFMT_R16F)); ANGLE_TRY(initializeDevice()); return egl::NoError(); } // do any one-time device initialization // NOTE: this is also needed after a device lost/reset // to reset the scene status and ensure the default states are reset. egl::Error Renderer9::initializeDevice() { // Permanent non-default states mDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE); mDevice->SetRenderState(D3DRS_LASTPIXEL, FALSE); if (mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0)) { mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, (DWORD &)mDeviceCaps.MaxPointSize); } else { mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, 0x3F800000); // 1.0f } const gl::Caps &rendererCaps = getNativeCaps(); mCurVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits); mCurPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits); mCurVertexTextures.resize(rendererCaps.maxVertexTextureImageUnits); mCurPixelTextures.resize(rendererCaps.maxTextureImageUnits); markAllStateDirty(); mSceneStarted = false; ASSERT(!mBlit); mBlit = new Blit9(this); auto result = mBlit->initialize(); ANGLE_TRY(egl::Error(result)); ASSERT(!mVertexDataManager && !mIndexDataManager); mVertexDataManager = new VertexDataManager(this); mIndexDataManager = new IndexDataManager(this); if (mVertexDataManager->initialize().isError()) { return egl::EglBadAlloc() << "Error initializing VertexDataManager"; } mTranslatedAttribCache.resize(getNativeCaps().maxVertexAttributes); mStateManager.initialize(); return egl::NoError(); } D3DPRESENT_PARAMETERS Renderer9::getDefaultPresentParameters() { D3DPRESENT_PARAMETERS presentParameters = {0}; // The default swap chain is never actually used. Surface will create a new swap chain with the // proper parameters. presentParameters.AutoDepthStencilFormat = D3DFMT_UNKNOWN; presentParameters.BackBufferCount = 1; presentParameters.BackBufferFormat = D3DFMT_UNKNOWN; presentParameters.BackBufferWidth = 1; presentParameters.BackBufferHeight = 1; presentParameters.EnableAutoDepthStencil = FALSE; presentParameters.Flags = 0; presentParameters.hDeviceWindow = mDeviceWindow; presentParameters.MultiSampleQuality = 0; presentParameters.MultiSampleType = D3DMULTISAMPLE_NONE; presentParameters.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT; presentParameters.SwapEffect = D3DSWAPEFFECT_DISCARD; presentParameters.Windowed = TRUE; return presentParameters; } egl::ConfigSet Renderer9::generateConfigs() { static const GLenum colorBufferFormats[] = { GL_BGR5_A1_ANGLEX, GL_BGRA8_EXT, GL_RGB565, }; static const GLenum depthStencilBufferFormats[] = { GL_NONE, GL_DEPTH_COMPONENT32_OES, GL_DEPTH24_STENCIL8_OES, GL_DEPTH_COMPONENT24_OES, GL_DEPTH_COMPONENT16, }; const gl::Caps &rendererCaps = getNativeCaps(); const gl::TextureCapsMap &rendererTextureCaps = getNativeTextureCaps(); D3DDISPLAYMODE currentDisplayMode; mD3d9->GetAdapterDisplayMode(mAdapter, ¤tDisplayMode); // Determine the min and max swap intervals int minSwapInterval = 4; int maxSwapInterval = 0; if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE) { minSwapInterval = std::min(minSwapInterval, 0); maxSwapInterval = std::max(maxSwapInterval, 0); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_ONE) { minSwapInterval = std::min(minSwapInterval, 1); maxSwapInterval = std::max(maxSwapInterval, 1); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_TWO) { minSwapInterval = std::min(minSwapInterval, 2); maxSwapInterval = std::max(maxSwapInterval, 2); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_THREE) { minSwapInterval = std::min(minSwapInterval, 3); maxSwapInterval = std::max(maxSwapInterval, 3); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_FOUR) { minSwapInterval = std::min(minSwapInterval, 4); maxSwapInterval = std::max(maxSwapInterval, 4); } egl::ConfigSet configs; for (size_t formatIndex = 0; formatIndex < ArraySize(colorBufferFormats); formatIndex++) { GLenum colorBufferInternalFormat = colorBufferFormats[formatIndex]; const gl::TextureCaps &colorBufferFormatCaps = rendererTextureCaps.get(colorBufferInternalFormat); if (colorBufferFormatCaps.renderable) { for (size_t depthStencilIndex = 0; depthStencilIndex < ArraySize(depthStencilBufferFormats); depthStencilIndex++) { GLenum depthStencilBufferInternalFormat = depthStencilBufferFormats[depthStencilIndex]; const gl::TextureCaps &depthStencilBufferFormatCaps = rendererTextureCaps.get(depthStencilBufferInternalFormat); if (depthStencilBufferFormatCaps.renderable || depthStencilBufferInternalFormat == GL_NONE) { const gl::InternalFormat &colorBufferFormatInfo = gl::GetSizedInternalFormatInfo(colorBufferInternalFormat); const gl::InternalFormat &depthStencilBufferFormatInfo = gl::GetSizedInternalFormatInfo(depthStencilBufferInternalFormat); const d3d9::TextureFormat &d3d9ColorBufferFormatInfo = d3d9::GetTextureFormatInfo(colorBufferInternalFormat); egl::Config config; config.renderTargetFormat = colorBufferInternalFormat; config.depthStencilFormat = depthStencilBufferInternalFormat; config.bufferSize = colorBufferFormatInfo.pixelBytes * 8; config.redSize = colorBufferFormatInfo.redBits; config.greenSize = colorBufferFormatInfo.greenBits; config.blueSize = colorBufferFormatInfo.blueBits; config.luminanceSize = colorBufferFormatInfo.luminanceBits; config.alphaSize = colorBufferFormatInfo.alphaBits; config.alphaMaskSize = 0; config.bindToTextureRGB = (colorBufferFormatInfo.format == GL_RGB); config.bindToTextureRGBA = (colorBufferFormatInfo.format == GL_RGBA || colorBufferFormatInfo.format == GL_BGRA_EXT); config.colorBufferType = EGL_RGB_BUFFER; // Mark as slow if blits to the back-buffer won't be straight forward config.configCaveat = (currentDisplayMode.Format == d3d9ColorBufferFormatInfo.renderFormat) ? EGL_NONE : EGL_SLOW_CONFIG; config.configID = static_cast(configs.size() + 1); config.conformant = EGL_OPENGL_ES2_BIT; config.depthSize = depthStencilBufferFormatInfo.depthBits; config.level = 0; config.matchNativePixmap = EGL_NONE; config.maxPBufferWidth = rendererCaps.max2DTextureSize; config.maxPBufferHeight = rendererCaps.max2DTextureSize; config.maxPBufferPixels = rendererCaps.max2DTextureSize * rendererCaps.max2DTextureSize; config.maxSwapInterval = maxSwapInterval; config.minSwapInterval = minSwapInterval; config.nativeRenderable = EGL_FALSE; config.nativeVisualID = 0; config.nativeVisualType = EGL_NONE; config.renderableType = EGL_OPENGL_ES2_BIT; config.sampleBuffers = 0; // FIXME: enumerate multi-sampling config.samples = 0; config.stencilSize = depthStencilBufferFormatInfo.stencilBits; config.surfaceType = EGL_PBUFFER_BIT | EGL_WINDOW_BIT | EGL_SWAP_BEHAVIOR_PRESERVED_BIT; config.transparentType = EGL_NONE; config.transparentRedValue = 0; config.transparentGreenValue = 0; config.transparentBlueValue = 0; config.colorComponentType = gl_egl::GLComponentTypeToEGLColorComponentType( colorBufferFormatInfo.componentType); configs.add(config); } } } } ASSERT(configs.size() > 0); return configs; } void Renderer9::generateDisplayExtensions(egl::DisplayExtensions *outExtensions) const { outExtensions->createContextRobustness = true; if (getShareHandleSupport()) { outExtensions->d3dShareHandleClientBuffer = true; outExtensions->surfaceD3DTexture2DShareHandle = true; } outExtensions->d3dTextureClientBuffer = true; outExtensions->querySurfacePointer = true; outExtensions->windowFixedSize = true; outExtensions->postSubBuffer = true; outExtensions->deviceQuery = true; outExtensions->image = true; outExtensions->imageBase = true; outExtensions->glTexture2DImage = true; outExtensions->glRenderbufferImage = true; outExtensions->flexibleSurfaceCompatibility = true; // Contexts are virtualized so textures can be shared globally outExtensions->displayTextureShareGroup = true; // D3D9 can be used without an output surface outExtensions->surfacelessContext = true; outExtensions->robustResourceInitialization = true; } void Renderer9::startScene() { if (!mSceneStarted) { long result = mDevice->BeginScene(); if (SUCCEEDED(result)) { // This is defensive checking against the device being // lost at unexpected times. mSceneStarted = true; } } } void Renderer9::endScene() { if (mSceneStarted) { // EndScene can fail if the device was lost, for example due // to a TDR during a draw call. mDevice->EndScene(); mSceneStarted = false; } } gl::Error Renderer9::flush() { IDirect3DQuery9 *query = nullptr; gl::Error error = allocateEventQuery(&query); if (error.isError()) { return error; } HRESULT result = query->Issue(D3DISSUE_END); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to issue event query, " << gl::FmtHR(result); } // Grab the query data once result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH); freeEventQuery(query); if (FAILED(result)) { if (d3d9::isDeviceLostError(result)) { notifyDeviceLost(); } return gl::OutOfMemory() << "Failed to get event query data, " << gl::FmtHR(result); } return gl::NoError(); } gl::Error Renderer9::finish() { IDirect3DQuery9 *query = nullptr; gl::Error error = allocateEventQuery(&query); if (error.isError()) { return error; } HRESULT result = query->Issue(D3DISSUE_END); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to issue event query, " << gl::FmtHR(result); } // Grab the query data once result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH); if (FAILED(result)) { if (d3d9::isDeviceLostError(result)) { notifyDeviceLost(); } freeEventQuery(query); return gl::OutOfMemory() << "Failed to get event query data, " << gl::FmtHR(result); } // Loop until the query completes while (result == S_FALSE) { // Keep polling, but allow other threads to do something useful first ScheduleYield(); result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH); // explicitly check for device loss // some drivers seem to return S_FALSE even if the device is lost // instead of D3DERR_DEVICELOST like they should if (result == S_FALSE && testDeviceLost()) { result = D3DERR_DEVICELOST; } if (FAILED(result)) { if (d3d9::isDeviceLostError(result)) { notifyDeviceLost(); } freeEventQuery(query); return gl::OutOfMemory() << "Failed to get event query data, " << gl::FmtHR(result); } } freeEventQuery(query); return gl::NoError(); } bool Renderer9::isValidNativeWindow(EGLNativeWindowType window) const { return NativeWindow9::IsValidNativeWindow(window); } NativeWindowD3D *Renderer9::createNativeWindow(EGLNativeWindowType window, const egl::Config *, const egl::AttributeMap &) const { return new NativeWindow9(window); } SwapChainD3D *Renderer9::createSwapChain(NativeWindowD3D *nativeWindow, HANDLE shareHandle, IUnknown *d3dTexture, GLenum backBufferFormat, GLenum depthBufferFormat, EGLint orientation, EGLint samples) { return new SwapChain9(this, GetAs(nativeWindow), shareHandle, d3dTexture, backBufferFormat, depthBufferFormat, orientation); } egl::Error Renderer9::getD3DTextureInfo(const egl::Config *config, IUnknown *d3dTexture, EGLint *width, EGLint *height, GLenum *fboFormat) const { IDirect3DTexture9 *texture = nullptr; if (FAILED(d3dTexture->QueryInterface(&texture))) { return egl::EglBadParameter() << "Client buffer is not a IDirect3DTexture9"; } IDirect3DDevice9 *textureDevice = nullptr; texture->GetDevice(&textureDevice); if (textureDevice != mDevice) { SafeRelease(texture); return egl::EglBadParameter() << "Texture's device does not match."; } SafeRelease(textureDevice); D3DSURFACE_DESC desc; texture->GetLevelDesc(0, &desc); SafeRelease(texture); if (width) { *width = static_cast(desc.Width); } if (height) { *height = static_cast(desc.Height); } // From table egl.restrictions in EGL_ANGLE_d3d_texture_client_buffer. switch (desc.Format) { case D3DFMT_R8G8B8: case D3DFMT_A8R8G8B8: case D3DFMT_A16B16G16R16F: case D3DFMT_A32B32G32R32F: break; default: return egl::EglBadParameter() << "Unknown client buffer texture format: " << desc.Format; } if (fboFormat) { const auto &d3dFormatInfo = d3d9::GetD3DFormatInfo(desc.Format); ASSERT(d3dFormatInfo.info().id != angle::Format::ID::NONE); *fboFormat = d3dFormatInfo.info().fboImplementationInternalFormat; } return egl::NoError(); } egl::Error Renderer9::validateShareHandle(const egl::Config *config, HANDLE shareHandle, const egl::AttributeMap &attribs) const { if (shareHandle == nullptr) { return egl::EglBadParameter() << "NULL share handle."; } EGLint width = attribs.getAsInt(EGL_WIDTH, 0); EGLint height = attribs.getAsInt(EGL_HEIGHT, 0); ASSERT(width != 0 && height != 0); const d3d9::TextureFormat &backBufferd3dFormatInfo = d3d9::GetTextureFormatInfo(config->renderTargetFormat); IDirect3DTexture9 *texture = nullptr; HRESULT result = mDevice->CreateTexture(width, height, 1, D3DUSAGE_RENDERTARGET, backBufferd3dFormatInfo.texFormat, D3DPOOL_DEFAULT, &texture, &shareHandle); if (FAILED(result)) { return egl::EglBadParameter() << "Failed to open share handle, " << gl::FmtHR(result); } DWORD levelCount = texture->GetLevelCount(); D3DSURFACE_DESC desc; texture->GetLevelDesc(0, &desc); SafeRelease(texture); if (levelCount != 1 || desc.Width != static_cast(width) || desc.Height != static_cast(height) || desc.Format != backBufferd3dFormatInfo.texFormat) { return egl::EglBadParameter() << "Invalid texture parameters in share handle texture."; } return egl::NoError(); } ContextImpl *Renderer9::createContext(const gl::ContextState &state) { return new Context9(state, this); } void *Renderer9::getD3DDevice() { return reinterpret_cast(mDevice); } gl::Error Renderer9::allocateEventQuery(IDirect3DQuery9 **outQuery) { if (mEventQueryPool.empty()) { HRESULT result = mDevice->CreateQuery(D3DQUERYTYPE_EVENT, outQuery); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to allocate event query, " << gl::FmtHR(result); } } else { *outQuery = mEventQueryPool.back(); mEventQueryPool.pop_back(); } return gl::NoError(); } void Renderer9::freeEventQuery(IDirect3DQuery9 *query) { if (mEventQueryPool.size() > 1000) { SafeRelease(query); } else { mEventQueryPool.push_back(query); } } gl::Error Renderer9::createVertexShader(const DWORD *function, size_t length, IDirect3DVertexShader9 **outShader) { return mVertexShaderCache.create(function, length, outShader); } gl::Error Renderer9::createPixelShader(const DWORD *function, size_t length, IDirect3DPixelShader9 **outShader) { return mPixelShaderCache.create(function, length, outShader); } HRESULT Renderer9::createVertexBuffer(UINT Length, DWORD Usage, IDirect3DVertexBuffer9 **ppVertexBuffer) { D3DPOOL Pool = getBufferPool(Usage); return mDevice->CreateVertexBuffer(Length, Usage, 0, Pool, ppVertexBuffer, nullptr); } VertexBuffer *Renderer9::createVertexBuffer() { return new VertexBuffer9(this); } HRESULT Renderer9::createIndexBuffer(UINT Length, DWORD Usage, D3DFORMAT Format, IDirect3DIndexBuffer9 **ppIndexBuffer) { D3DPOOL Pool = getBufferPool(Usage); return mDevice->CreateIndexBuffer(Length, Usage, Format, Pool, ppIndexBuffer, nullptr); } IndexBuffer *Renderer9::createIndexBuffer() { return new IndexBuffer9(this); } StreamProducerImpl *Renderer9::createStreamProducerD3DTextureNV12( egl::Stream::ConsumerType consumerType, const egl::AttributeMap &attribs) { // Streams are not supported under D3D9 UNREACHABLE(); return nullptr; } bool Renderer9::supportsFastCopyBufferToTexture(GLenum internalFormat) const { // Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3. return false; } gl::Error Renderer9::fastCopyBufferToTexture(const gl::Context *context, const gl::PixelUnpackState &unpack, unsigned int offset, RenderTargetD3D *destRenderTarget, GLenum destinationFormat, GLenum sourcePixelsType, const gl::Box &destArea) { // Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3. UNREACHABLE(); return gl::InternalError(); } gl::Error Renderer9::setSamplerState(const gl::Context *context, gl::SamplerType type, int index, gl::Texture *texture, const gl::SamplerState &samplerState) { CurSamplerState &appliedSampler = (type == gl::SAMPLER_PIXEL) ? mCurPixelSamplerStates[index] : mCurVertexSamplerStates[index]; // Make sure to add the level offset for our tiny compressed texture workaround TextureD3D *textureD3D = GetImplAs(texture); TextureStorage *storage = nullptr; ANGLE_TRY(textureD3D->getNativeTexture(context, &storage)); // Storage should exist, texture should be complete ASSERT(storage); DWORD baseLevel = texture->getBaseLevel() + storage->getTopLevel(); if (appliedSampler.forceSet || appliedSampler.baseLevel != baseLevel || memcmp(&samplerState, &appliedSampler, sizeof(gl::SamplerState)) != 0) { int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0; int d3dSampler = index + d3dSamplerOffset; mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU, gl_d3d9::ConvertTextureWrap(samplerState.wrapS)); mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV, gl_d3d9::ConvertTextureWrap(samplerState.wrapT)); mDevice->SetSamplerState( d3dSampler, D3DSAMP_MAGFILTER, gl_d3d9::ConvertMagFilter(samplerState.magFilter, samplerState.maxAnisotropy)); D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter; float lodBias; gl_d3d9::ConvertMinFilter(samplerState.minFilter, &d3dMinFilter, &d3dMipFilter, &lodBias, samplerState.maxAnisotropy, baseLevel); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, baseLevel); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPMAPLODBIAS, static_cast(lodBias)); if (getNativeExtensions().textureFilterAnisotropic) { DWORD maxAnisotropy = std::min(mDeviceCaps.MaxAnisotropy, static_cast(samplerState.maxAnisotropy)); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, maxAnisotropy); } } appliedSampler.forceSet = false; appliedSampler.samplerState = samplerState; appliedSampler.baseLevel = baseLevel; return gl::NoError(); } gl::Error Renderer9::setTexture(const gl::Context *context, gl::SamplerType type, int index, gl::Texture *texture) { int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0; int d3dSampler = index + d3dSamplerOffset; IDirect3DBaseTexture9 *d3dTexture = nullptr; bool forceSetTexture = false; std::vector &appliedTextures = (type == gl::SAMPLER_PIXEL) ? mCurPixelTextures : mCurVertexTextures; if (texture) { TextureD3D *textureImpl = GetImplAs(texture); TextureStorage *texStorage = nullptr; ANGLE_TRY(textureImpl->getNativeTexture(context, &texStorage)); // Texture should be complete and have a storage ASSERT(texStorage); TextureStorage9 *storage9 = GetAs(texStorage); ANGLE_TRY(storage9->getBaseTexture(context, &d3dTexture)); // If we get NULL back from getBaseTexture here, something went wrong // in the texture class and we're unexpectedly missing the d3d texture ASSERT(d3dTexture != nullptr); forceSetTexture = textureImpl->hasDirtyImages(); textureImpl->resetDirty(); } if (forceSetTexture || appliedTextures[index] != reinterpret_cast(d3dTexture)) { mDevice->SetTexture(d3dSampler, d3dTexture); } appliedTextures[index] = reinterpret_cast(d3dTexture); return gl::NoError(); } gl::Error Renderer9::updateState(const gl::Context *context, GLenum drawMode) { const auto &glState = context->getGLState(); // Applies the render target surface, depth stencil surface, viewport rectangle and // scissor rectangle to the renderer gl::Framebuffer *framebuffer = glState.getDrawFramebuffer(); ASSERT(framebuffer && !framebuffer->hasAnyDirtyBit() && framebuffer->cachedComplete()); ANGLE_TRY(applyRenderTarget(context, framebuffer)); // Setting viewport state setViewport(glState.getViewport(), glState.getNearPlane(), glState.getFarPlane(), drawMode, glState.getRasterizerState().frontFace, false); // Setting scissors state setScissorRectangle(glState.getScissor(), glState.isScissorTestEnabled()); // Setting blend, depth stencil, and rasterizer states // Since framebuffer->getSamples will return the original samples which may be different with // the sample counts that we set in render target view, here we use renderTarget->getSamples to // get the actual samples. GLsizei samples = 0; const gl::FramebufferAttachment *firstColorAttachment = framebuffer->getFirstColorbuffer(); if (firstColorAttachment) { ASSERT(firstColorAttachment->isAttached()); RenderTarget9 *renderTarget = nullptr; ANGLE_TRY(firstColorAttachment->getRenderTarget(context, &renderTarget)); samples = renderTarget->getSamples(); } gl::RasterizerState rasterizer = glState.getRasterizerState(); rasterizer.pointDrawMode = (drawMode == GL_POINTS); rasterizer.multiSample = (samples != 0); unsigned int mask = GetBlendSampleMask(glState, samples); ANGLE_TRY(setBlendDepthRasterStates(context, mask)); mStateManager.resetDirtyBits(); return gl::NoError(); } void Renderer9::setScissorRectangle(const gl::Rectangle &scissor, bool enabled) { mStateManager.setScissorState(scissor, enabled); } gl::Error Renderer9::setBlendDepthRasterStates(const gl::Context *context, GLenum drawMode) { const auto &glState = context->getGLState(); gl::Framebuffer *drawFramebuffer = glState.getDrawFramebuffer(); ASSERT(!drawFramebuffer->hasAnyDirtyBit()); // Since framebuffer->getSamples will return the original samples which may be different with // the sample counts that we set in render target view, here we use renderTarget->getSamples to // get the actual samples. GLsizei samples = 0; const gl::FramebufferAttachment *firstColorAttachment = drawFramebuffer->getFirstColorbuffer(); if (firstColorAttachment) { ASSERT(firstColorAttachment->isAttached()); RenderTarget9 *renderTarget = nullptr; ANGLE_TRY(firstColorAttachment->getRenderTarget(context, &renderTarget)); samples = renderTarget->getSamples(); } gl::RasterizerState rasterizer = glState.getRasterizerState(); rasterizer.pointDrawMode = (drawMode == GL_POINTS); rasterizer.multiSample = (samples != 0); unsigned int mask = GetBlendSampleMask(glState, samples); return mStateManager.setBlendDepthRasterStates(glState, mask); } void Renderer9::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace, bool ignoreViewport) { mStateManager.setViewportState(viewport, zNear, zFar, drawMode, frontFace, ignoreViewport); } bool Renderer9::applyPrimitiveType(GLenum mode, GLsizei count, bool usesPointSize) { switch (mode) { case GL_POINTS: mPrimitiveType = D3DPT_POINTLIST; mPrimitiveCount = count; break; case GL_LINES: mPrimitiveType = D3DPT_LINELIST; mPrimitiveCount = count / 2; break; case GL_LINE_LOOP: mPrimitiveType = D3DPT_LINESTRIP; mPrimitiveCount = count - 1; // D3D doesn't support line loops, so we draw the last line separately break; case GL_LINE_STRIP: mPrimitiveType = D3DPT_LINESTRIP; mPrimitiveCount = count - 1; break; case GL_TRIANGLES: mPrimitiveType = D3DPT_TRIANGLELIST; mPrimitiveCount = count / 3; break; case GL_TRIANGLE_STRIP: mPrimitiveType = D3DPT_TRIANGLESTRIP; mPrimitiveCount = count - 2; break; case GL_TRIANGLE_FAN: mPrimitiveType = D3DPT_TRIANGLEFAN; mPrimitiveCount = count - 2; break; default: UNREACHABLE(); return false; } return mPrimitiveCount > 0; } gl::Error Renderer9::getNullColorbuffer(const gl::Context *context, const gl::FramebufferAttachment *depthbuffer, const gl::FramebufferAttachment **outColorBuffer) { ASSERT(depthbuffer); const gl::Extents &size = depthbuffer->getSize(); // search cached nullcolorbuffers for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { if (mNullColorbufferCache[i].buffer != nullptr && mNullColorbufferCache[i].width == size.width && mNullColorbufferCache[i].height == size.height) { mNullColorbufferCache[i].lruCount = ++mMaxNullColorbufferLRU; *outColorBuffer = mNullColorbufferCache[i].buffer; return gl::NoError(); } } auto *implFactory = context->getImplementation(); gl::Renderbuffer *nullRenderbuffer = new gl::Renderbuffer(implFactory->createRenderbuffer(), 0); gl::Error error = nullRenderbuffer->setStorage(context, GL_NONE, size.width, size.height); if (error.isError()) { SafeDelete(nullRenderbuffer); return error; } gl::FramebufferAttachment *nullbuffer = new gl::FramebufferAttachment( context, GL_RENDERBUFFER, GL_NONE, gl::ImageIndex::MakeInvalid(), nullRenderbuffer); // add nullbuffer to the cache NullColorbufferCacheEntry *oldest = &mNullColorbufferCache[0]; for (int i = 1; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { if (mNullColorbufferCache[i].lruCount < oldest->lruCount) { oldest = &mNullColorbufferCache[i]; } } delete oldest->buffer; oldest->buffer = nullbuffer; oldest->lruCount = ++mMaxNullColorbufferLRU; oldest->width = size.width; oldest->height = size.height; *outColorBuffer = nullbuffer; return gl::NoError(); } gl::Error Renderer9::applyRenderTarget(const gl::Context *context, const gl::FramebufferAttachment *colorAttachment, const gl::FramebufferAttachment *depthStencilAttachment) { const gl::FramebufferAttachment *renderAttachment = colorAttachment; // if there is no color attachment we must synthesize a NULL colorattachment // to keep the D3D runtime happy. This should only be possible if depth texturing. if (renderAttachment == nullptr) { ANGLE_TRY(getNullColorbuffer(context, depthStencilAttachment, &renderAttachment)); } ASSERT(renderAttachment != nullptr); size_t renderTargetWidth = 0; size_t renderTargetHeight = 0; D3DFORMAT renderTargetFormat = D3DFMT_UNKNOWN; RenderTarget9 *renderTarget = nullptr; ANGLE_TRY(renderAttachment->getRenderTarget(context, &renderTarget)); ASSERT(renderTarget); bool renderTargetChanged = false; unsigned int renderTargetSerial = renderTarget->getSerial(); if (renderTargetSerial != mAppliedRenderTargetSerial) { // Apply the render target on the device IDirect3DSurface9 *renderTargetSurface = renderTarget->getSurface(); ASSERT(renderTargetSurface); mDevice->SetRenderTarget(0, renderTargetSurface); SafeRelease(renderTargetSurface); renderTargetWidth = renderTarget->getWidth(); renderTargetHeight = renderTarget->getHeight(); renderTargetFormat = renderTarget->getD3DFormat(); mAppliedRenderTargetSerial = renderTargetSerial; renderTargetChanged = true; } RenderTarget9 *depthStencilRenderTarget = nullptr; unsigned int depthStencilSerial = 0; if (depthStencilAttachment != nullptr) { ANGLE_TRY(depthStencilAttachment->getRenderTarget(context, &depthStencilRenderTarget)); ASSERT(depthStencilRenderTarget); depthStencilSerial = depthStencilRenderTarget->getSerial(); } if (depthStencilSerial != mAppliedDepthStencilSerial || !mDepthStencilInitialized) { unsigned int depthSize = 0; unsigned int stencilSize = 0; // Apply the depth stencil on the device if (depthStencilRenderTarget) { IDirect3DSurface9 *depthStencilSurface = depthStencilRenderTarget->getSurface(); ASSERT(depthStencilSurface); mDevice->SetDepthStencilSurface(depthStencilSurface); SafeRelease(depthStencilSurface); depthSize = depthStencilAttachment->getDepthSize(); stencilSize = depthStencilAttachment->getStencilSize(); } else { mDevice->SetDepthStencilSurface(nullptr); } mStateManager.updateDepthSizeIfChanged(mDepthStencilInitialized, depthSize); mStateManager.updateStencilSizeIfChanged(mDepthStencilInitialized, stencilSize); mAppliedDepthStencilSerial = depthStencilSerial; mDepthStencilInitialized = true; } if (renderTargetChanged || !mRenderTargetDescInitialized) { mStateManager.forceSetBlendState(); mStateManager.forceSetScissorState(); mStateManager.setRenderTargetBounds(renderTargetWidth, renderTargetHeight); mRenderTargetDescInitialized = true; } return gl::NoError(); } gl::Error Renderer9::applyRenderTarget(const gl::Context *context, const gl::Framebuffer *framebuffer) { return applyRenderTarget(context, framebuffer->getColorbuffer(0), framebuffer->getDepthOrStencilbuffer()); } gl::Error Renderer9::applyVertexBuffer(const gl::Context *context, GLenum mode, GLint first, GLsizei count, GLsizei instances, TranslatedIndexData * /*indexInfo*/) { const gl::State &state = context->getGLState(); gl::Error error = mVertexDataManager->prepareVertexData(context, first, count, &mTranslatedAttribCache, instances); if (error.isError()) { return error; } return mVertexDeclarationCache.applyDeclaration( mDevice, mTranslatedAttribCache, state.getProgram(), first, instances, &mRepeatDraw); } // Applies the indices and element array bindings to the Direct3D 9 device gl::Error Renderer9::applyIndexBuffer(const gl::Context *context, const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) { gl::VertexArray *vao = context->getGLState().getVertexArray(); gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer().get(); const auto &lazyIndexRange = context->getParams(); GLenum dstType = GetIndexTranslationDestType(type, lazyIndexRange, false); ANGLE_TRY(mIndexDataManager->prepareIndexData(context, type, dstType, count, elementArrayBuffer, indices, indexInfo)); // Directly binding the storage buffer is not supported for d3d9 ASSERT(indexInfo->storage == nullptr); if (indexInfo->serial != mAppliedIBSerial) { IndexBuffer9 *indexBuffer = GetAs(indexInfo->indexBuffer); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = indexInfo->serial; } return gl::NoError(); } gl::Error Renderer9::drawArraysImpl(const gl::Context *context, GLenum mode, GLint startVertex, GLsizei count, GLsizei instances) { ASSERT(!context->getGLState().isTransformFeedbackActiveUnpaused()); startScene(); if (mode == GL_LINE_LOOP) { return drawLineLoop(context, count, GL_NONE, nullptr, 0, nullptr); } else if (instances > 0) { StaticIndexBufferInterface *countingIB = nullptr; gl::Error error = getCountingIB(count, &countingIB); if (error.isError()) { return error; } if (mAppliedIBSerial != countingIB->getSerial()) { IndexBuffer9 *indexBuffer = GetAs(countingIB->getIndexBuffer()); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = countingIB->getSerial(); } for (int i = 0; i < mRepeatDraw; i++) { mDevice->DrawIndexedPrimitive(mPrimitiveType, 0, 0, count, 0, mPrimitiveCount); } return gl::NoError(); } else // Regular case { mDevice->DrawPrimitive(mPrimitiveType, 0, mPrimitiveCount); return gl::NoError(); } } gl::Error Renderer9::drawElementsImpl(const gl::Context *context, GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei instances) { TranslatedIndexData indexInfo; ANGLE_TRY(applyIndexBuffer(context, indices, count, mode, type, &indexInfo)); const auto &lazyIndexRange = context->getParams(); const gl::IndexRange &indexRange = lazyIndexRange.getIndexRange().value(); size_t vertexCount = indexRange.vertexCount(); ANGLE_TRY(applyVertexBuffer(context, mode, static_cast(indexRange.start), static_cast(vertexCount), instances, &indexInfo)); startScene(); int minIndex = static_cast(indexRange.start); gl::VertexArray *vao = context->getGLState().getVertexArray(); gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer().get(); if (mode == GL_POINTS) { return drawIndexedPoints(context, count, type, indices, minIndex, elementArrayBuffer); } else if (mode == GL_LINE_LOOP) { return drawLineLoop(context, count, type, indices, minIndex, elementArrayBuffer); } else { for (int i = 0; i < mRepeatDraw; i++) { mDevice->DrawIndexedPrimitive(mPrimitiveType, -minIndex, minIndex, static_cast(vertexCount), indexInfo.startIndex, mPrimitiveCount); } return gl::NoError(); } } gl::Error Renderer9::drawLineLoop(const gl::Context *context, GLsizei count, GLenum type, const void *indices, int minIndex, gl::Buffer *elementArrayBuffer) { // Get the raw indices for an indexed draw if (type != GL_NONE && elementArrayBuffer) { BufferD3D *storage = GetImplAs(elementArrayBuffer); intptr_t offset = reinterpret_cast(indices); const uint8_t *bufferData = nullptr; gl::Error error = storage->getData(context, &bufferData); if (error.isError()) { return error; } indices = bufferData + offset; } unsigned int startIndex = 0; if (getNativeExtensions().elementIndexUint) { if (!mLineLoopIB) { mLineLoopIB = new StreamingIndexBufferInterface(this); gl::Error error = mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT); if (error.isError()) { SafeDelete(mLineLoopIB); return error; } } // Checked by Renderer9::applyPrimitiveType ASSERT(count >= 0); if (static_cast(count) + 1 > (std::numeric_limits::max() / sizeof(unsigned int))) { return gl::OutOfMemory() << "Failed to create a 32-bit looping index buffer for " "GL_LINE_LOOP, too many indices required."; } const unsigned int spaceNeeded = (static_cast(count) + 1) * sizeof(unsigned int); gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT); if (error.isError()) { return error; } void *mappedMemory = nullptr; unsigned int offset = 0; error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset); if (error.isError()) { return error; } startIndex = static_cast(offset) / 4; unsigned int *data = reinterpret_cast(mappedMemory); switch (type) { case GL_NONE: // Non-indexed draw for (int i = 0; i < count; i++) { data[i] = i; } data[count] = 0; break; case GL_UNSIGNED_BYTE: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_SHORT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_INT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; default: UNREACHABLE(); } error = mLineLoopIB->unmapBuffer(); if (error.isError()) { return error; } } else { if (!mLineLoopIB) { mLineLoopIB = new StreamingIndexBufferInterface(this); gl::Error error = mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_SHORT); if (error.isError()) { SafeDelete(mLineLoopIB); return error; } } // Checked by Renderer9::applyPrimitiveType ASSERT(count >= 0); if (static_cast(count) + 1 > (std::numeric_limits::max() / sizeof(unsigned short))) { return gl::OutOfMemory() << "Failed to create a 16-bit looping index buffer for " "GL_LINE_LOOP, too many indices required."; } const unsigned int spaceNeeded = (static_cast(count) + 1) * sizeof(unsigned short); gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT); if (error.isError()) { return error; } void *mappedMemory = nullptr; unsigned int offset; error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset); if (error.isError()) { return error; } startIndex = static_cast(offset) / 2; unsigned short *data = reinterpret_cast(mappedMemory); switch (type) { case GL_NONE: // Non-indexed draw for (int i = 0; i < count; i++) { data[i] = static_cast(i); } data[count] = 0; break; case GL_UNSIGNED_BYTE: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_SHORT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_INT: for (int i = 0; i < count; i++) { data[i] = static_cast(static_cast(indices)[i]); } data[count] = static_cast(static_cast(indices)[0]); break; default: UNREACHABLE(); } error = mLineLoopIB->unmapBuffer(); if (error.isError()) { return error; } } if (mAppliedIBSerial != mLineLoopIB->getSerial()) { IndexBuffer9 *indexBuffer = GetAs(mLineLoopIB->getIndexBuffer()); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = mLineLoopIB->getSerial(); } mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count); return gl::NoError(); } template static gl::Error drawPoints(IDirect3DDevice9 *device, GLsizei count, const void *indices, int minIndex) { for (int i = 0; i < count; i++) { unsigned int indexValue = static_cast(static_cast(indices)[i]) - minIndex; device->DrawPrimitive(D3DPT_POINTLIST, indexValue, 1); } return gl::NoError(); } gl::Error Renderer9::drawIndexedPoints(const gl::Context *context, GLsizei count, GLenum type, const void *indices, int minIndex, gl::Buffer *elementArrayBuffer) { // Drawing index point lists is unsupported in d3d9, fall back to a regular DrawPrimitive call // for each individual point. This call is not expected to happen often. if (elementArrayBuffer) { BufferD3D *storage = GetImplAs(elementArrayBuffer); intptr_t offset = reinterpret_cast(indices); const uint8_t *bufferData = nullptr; gl::Error error = storage->getData(context, &bufferData); if (error.isError()) { return error; } indices = bufferData + offset; } switch (type) { case GL_UNSIGNED_BYTE: return drawPoints(mDevice, count, indices, minIndex); case GL_UNSIGNED_SHORT: return drawPoints(mDevice, count, indices, minIndex); case GL_UNSIGNED_INT: return drawPoints(mDevice, count, indices, minIndex); default: UNREACHABLE(); return gl::InternalError(); } } gl::Error Renderer9::getCountingIB(size_t count, StaticIndexBufferInterface **outIB) { // Update the counting index buffer if it is not large enough or has not been created yet. if (count <= 65536) // 16-bit indices { const unsigned int spaceNeeded = static_cast(count) * sizeof(unsigned short); if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded) { SafeDelete(mCountingIB); mCountingIB = new StaticIndexBufferInterface(this); ANGLE_TRY(mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT)); void *mappedMemory = nullptr; ANGLE_TRY(mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, nullptr)); unsigned short *data = reinterpret_cast(mappedMemory); for (size_t i = 0; i < count; i++) { data[i] = static_cast(i); } ANGLE_TRY(mCountingIB->unmapBuffer()); } } else if (getNativeExtensions().elementIndexUint) { const unsigned int spaceNeeded = static_cast(count) * sizeof(unsigned int); if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded) { SafeDelete(mCountingIB); mCountingIB = new StaticIndexBufferInterface(this); ANGLE_TRY(mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT)); void *mappedMemory = nullptr; ANGLE_TRY(mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, nullptr)); unsigned int *data = reinterpret_cast(mappedMemory); for (unsigned int i = 0; i < count; i++) { data[i] = i; } ANGLE_TRY(mCountingIB->unmapBuffer()); } } else { return gl::OutOfMemory() << "Could not create a counting index buffer for glDrawArraysInstanced."; } *outIB = mCountingIB; return gl::NoError(); } gl::Error Renderer9::applyShaders(const gl::Context *context, GLenum drawMode) { const gl::State &state = context->getContextState().getState(); // This method is called single-threaded. ANGLE_TRY(ensureHLSLCompilerInitialized()); ProgramD3D *programD3D = GetImplAs(state.getProgram()); VertexArray9 *vao = GetImplAs(state.getVertexArray()); programD3D->updateCachedInputLayout(vao->getCurrentStateSerial(), state); ShaderExecutableD3D *vertexExe = nullptr; ANGLE_TRY(programD3D->getVertexExecutableForCachedInputLayout(&vertexExe, nullptr)); const gl::Framebuffer *drawFramebuffer = state.getDrawFramebuffer(); programD3D->updateCachedOutputLayout(context, drawFramebuffer); ShaderExecutableD3D *pixelExe = nullptr; ANGLE_TRY(programD3D->getPixelExecutableForCachedOutputLayout(&pixelExe, nullptr)); IDirect3DVertexShader9 *vertexShader = (vertexExe ? GetAs(vertexExe)->getVertexShader() : nullptr); IDirect3DPixelShader9 *pixelShader = (pixelExe ? GetAs(pixelExe)->getPixelShader() : nullptr); if (vertexShader != mAppliedVertexShader) { mDevice->SetVertexShader(vertexShader); mAppliedVertexShader = vertexShader; } if (pixelShader != mAppliedPixelShader) { mDevice->SetPixelShader(pixelShader); mAppliedPixelShader = pixelShader; } // D3D9 has a quirk where creating multiple shaders with the same content // can return the same shader pointer. Because GL programs store different data // per-program, checking the program serial guarantees we upload fresh // uniform data even if our shader pointers are the same. // https://code.google.com/p/angleproject/issues/detail?id=661 unsigned int programSerial = programD3D->getSerial(); if (programSerial != mAppliedProgramSerial) { programD3D->dirtyAllUniforms(); mStateManager.forceSetDXUniformsState(); mAppliedProgramSerial = programSerial; } ANGLE_TRY(applyUniforms(programD3D)); // Driver uniforms mStateManager.setShaderConstants(); return gl::NoError(); } gl::Error Renderer9::applyUniforms(ProgramD3D *programD3D) { // Skip updates if we're not dirty. Note that D3D9 cannot have compute. if (!programD3D->areVertexUniformsDirty() && !programD3D->areFragmentUniformsDirty()) { return gl::NoError(); } const auto &uniformArray = programD3D->getD3DUniforms(); for (const D3DUniform *targetUniform : uniformArray) { // Built-in uniforms must be skipped. if (!targetUniform->isReferencedByFragmentShader() && !targetUniform->isReferencedByVertexShader()) continue; const GLfloat *f = reinterpret_cast(targetUniform->firstNonNullData()); const GLint *i = reinterpret_cast(targetUniform->firstNonNullData()); switch (targetUniform->typeInfo.type) { case GL_SAMPLER_2D: case GL_SAMPLER_CUBE: case GL_SAMPLER_EXTERNAL_OES: break; case GL_BOOL: case GL_BOOL_VEC2: case GL_BOOL_VEC3: case GL_BOOL_VEC4: applyUniformnbv(targetUniform, i); break; case GL_FLOAT: case GL_FLOAT_VEC2: case GL_FLOAT_VEC3: case GL_FLOAT_VEC4: case GL_FLOAT_MAT2: case GL_FLOAT_MAT3: case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; case GL_INT: case GL_INT_VEC2: case GL_INT_VEC3: case GL_INT_VEC4: applyUniformniv(targetUniform, i); break; default: UNREACHABLE(); } } programD3D->markUniformsClean(); return gl::NoError(); } void Renderer9::applyUniformnfv(const D3DUniform *targetUniform, const GLfloat *v) { if (targetUniform->isReferencedByFragmentShader()) { mDevice->SetPixelShaderConstantF(targetUniform->psRegisterIndex, v, targetUniform->registerCount); } if (targetUniform->isReferencedByVertexShader()) { mDevice->SetVertexShaderConstantF(targetUniform->vsRegisterIndex, v, targetUniform->registerCount); } } void Renderer9::applyUniformniv(const D3DUniform *targetUniform, const GLint *v) { ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9); GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4]; for (unsigned int i = 0; i < targetUniform->registerCount; i++) { vector[i][0] = (GLfloat)v[4 * i + 0]; vector[i][1] = (GLfloat)v[4 * i + 1]; vector[i][2] = (GLfloat)v[4 * i + 2]; vector[i][3] = (GLfloat)v[4 * i + 3]; } applyUniformnfv(targetUniform, (GLfloat *)vector); } void Renderer9::applyUniformnbv(const D3DUniform *targetUniform, const GLint *v) { ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9); GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4]; for (unsigned int i = 0; i < targetUniform->registerCount; i++) { vector[i][0] = (v[4 * i + 0] == GL_FALSE) ? 0.0f : 1.0f; vector[i][1] = (v[4 * i + 1] == GL_FALSE) ? 0.0f : 1.0f; vector[i][2] = (v[4 * i + 2] == GL_FALSE) ? 0.0f : 1.0f; vector[i][3] = (v[4 * i + 3] == GL_FALSE) ? 0.0f : 1.0f; } applyUniformnfv(targetUniform, (GLfloat *)vector); } gl::Error Renderer9::clear(const gl::Context *context, const ClearParameters &clearParams, const gl::FramebufferAttachment *colorBuffer, const gl::FramebufferAttachment *depthStencilBuffer) { if (clearParams.colorType != GL_FLOAT) { // Clearing buffers with non-float values is not supported by Renderer9 and ES 2.0 UNREACHABLE(); return gl::InternalError(); } bool clearColor = clearParams.clearColor[0]; for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { if (clearParams.clearColor[i] != clearColor) { // Clearing individual buffers other than buffer zero is not supported by Renderer9 and // ES 2.0 UNREACHABLE(); return gl::InternalError(); } } float depth = gl::clamp01(clearParams.depthValue); DWORD stencil = clearParams.stencilValue & 0x000000FF; unsigned int stencilUnmasked = 0x0; if (clearParams.clearStencil && depthStencilBuffer->getStencilSize() > 0) { ASSERT(depthStencilBuffer != nullptr); RenderTargetD3D *stencilRenderTarget = nullptr; gl::Error error = depthStencilBuffer->getRenderTarget(context, &stencilRenderTarget); if (error.isError()) { return error; } RenderTarget9 *stencilRenderTarget9 = GetAs(stencilRenderTarget); ASSERT(stencilRenderTarget9); const d3d9::D3DFormat &d3dFormatInfo = d3d9::GetD3DFormatInfo(stencilRenderTarget9->getD3DFormat()); stencilUnmasked = (0x1 << d3dFormatInfo.stencilBits) - 1; } const bool needMaskedStencilClear = clearParams.clearStencil && (clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked; bool needMaskedColorClear = false; D3DCOLOR color = D3DCOLOR_ARGB(255, 0, 0, 0); if (clearColor) { ASSERT(colorBuffer != nullptr); RenderTargetD3D *colorRenderTarget = nullptr; gl::Error error = colorBuffer->getRenderTarget(context, &colorRenderTarget); if (error.isError()) { return error; } RenderTarget9 *colorRenderTarget9 = GetAs(colorRenderTarget); ASSERT(colorRenderTarget9); const gl::InternalFormat &formatInfo = *colorBuffer->getFormat().info; const d3d9::D3DFormat &d3dFormatInfo = d3d9::GetD3DFormatInfo(colorRenderTarget9->getD3DFormat()); color = D3DCOLOR_ARGB(gl::unorm<8>((formatInfo.alphaBits == 0 && d3dFormatInfo.alphaBits > 0) ? 1.0f : clearParams.colorF.alpha), gl::unorm<8>((formatInfo.redBits == 0 && d3dFormatInfo.redBits > 0) ? 0.0f : clearParams.colorF.red), gl::unorm<8>((formatInfo.greenBits == 0 && d3dFormatInfo.greenBits > 0) ? 0.0f : clearParams.colorF.green), gl::unorm<8>((formatInfo.blueBits == 0 && d3dFormatInfo.blueBits > 0) ? 0.0f : clearParams.colorF.blue)); if ((formatInfo.redBits > 0 && !clearParams.colorMaskRed) || (formatInfo.greenBits > 0 && !clearParams.colorMaskGreen) || (formatInfo.blueBits > 0 && !clearParams.colorMaskBlue) || (formatInfo.alphaBits > 0 && !clearParams.colorMaskAlpha)) { needMaskedColorClear = true; } } if (needMaskedColorClear || needMaskedStencilClear) { // State which is altered in all paths from this point to the clear call is saved. // State which is altered in only some paths will be flagged dirty in the case that // that path is taken. HRESULT hr; if (mMaskedClearSavedState == nullptr) { hr = mDevice->BeginStateBlock(); ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY); mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_ZENABLE, FALSE); mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE); mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0); mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); mDevice->SetPixelShader(nullptr); mDevice->SetVertexShader(nullptr); mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE); mDevice->SetStreamSource(0, nullptr, 0, 0); mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR); mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR); mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color); mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF); for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { mDevice->SetStreamSourceFreq(i, 1); } hr = mDevice->EndStateBlock(&mMaskedClearSavedState); ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY); } ASSERT(mMaskedClearSavedState != nullptr); if (mMaskedClearSavedState != nullptr) { hr = mMaskedClearSavedState->Capture(); ASSERT(SUCCEEDED(hr)); } mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_ZENABLE, FALSE); mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE); mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0); if (clearColor) { mDevice->SetRenderState( D3DRS_COLORWRITEENABLE, gl_d3d9::ConvertColorMask(clearParams.colorMaskRed, clearParams.colorMaskGreen, clearParams.colorMaskBlue, clearParams.colorMaskAlpha)); } else { mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); } if (stencilUnmasked != 0x0 && clearParams.clearStencil) { mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE); mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE); mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_STENCILREF, stencil); mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, clearParams.stencilWriteMask); mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE); mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE); mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE); } else { mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); } mDevice->SetPixelShader(nullptr); mDevice->SetVertexShader(nullptr); mDevice->SetFVF(D3DFVF_XYZRHW); mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR); mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR); mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color); mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF); for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { mDevice->SetStreamSourceFreq(i, 1); } int renderTargetWidth = mStateManager.getRenderTargetWidth(); int renderTargetHeight = mStateManager.getRenderTargetHeight(); float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges quad[0][0] = -0.5f; quad[0][1] = renderTargetHeight - 0.5f; quad[0][2] = 0.0f; quad[0][3] = 1.0f; quad[1][0] = renderTargetWidth - 0.5f; quad[1][1] = renderTargetHeight - 0.5f; quad[1][2] = 0.0f; quad[1][3] = 1.0f; quad[2][0] = -0.5f; quad[2][1] = -0.5f; quad[2][2] = 0.0f; quad[2][3] = 1.0f; quad[3][0] = renderTargetWidth - 0.5f; quad[3][1] = -0.5f; quad[3][2] = 0.0f; quad[3][3] = 1.0f; startScene(); mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4])); if (clearParams.clearDepth) { mDevice->SetRenderState(D3DRS_ZENABLE, TRUE); mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE); mDevice->Clear(0, nullptr, D3DCLEAR_ZBUFFER, color, depth, stencil); } if (mMaskedClearSavedState != nullptr) { mMaskedClearSavedState->Apply(); } } else if (clearColor || clearParams.clearDepth || clearParams.clearStencil) { DWORD dxClearFlags = 0; if (clearColor) { dxClearFlags |= D3DCLEAR_TARGET; } if (clearParams.clearDepth) { dxClearFlags |= D3DCLEAR_ZBUFFER; } if (clearParams.clearStencil) { dxClearFlags |= D3DCLEAR_STENCIL; } mDevice->Clear(0, nullptr, dxClearFlags, color, depth, stencil); } return gl::NoError(); } void Renderer9::markAllStateDirty() { mAppliedRenderTargetSerial = 0; mAppliedDepthStencilSerial = 0; mDepthStencilInitialized = false; mRenderTargetDescInitialized = false; mStateManager.forceSetRasterState(); mStateManager.forceSetDepthStencilState(); mStateManager.forceSetBlendState(); mStateManager.forceSetScissorState(); mStateManager.forceSetViewportState(); ASSERT(mCurVertexSamplerStates.size() == mCurVertexTextures.size()); for (unsigned int i = 0; i < mCurVertexTextures.size(); i++) { mCurVertexSamplerStates[i].forceSet = true; mCurVertexTextures[i] = angle::DirtyPointer; } ASSERT(mCurPixelSamplerStates.size() == mCurPixelTextures.size()); for (unsigned int i = 0; i < mCurPixelSamplerStates.size(); i++) { mCurPixelSamplerStates[i].forceSet = true; mCurPixelTextures[i] = angle::DirtyPointer; } mAppliedIBSerial = 0; mAppliedVertexShader = nullptr; mAppliedPixelShader = nullptr; mAppliedProgramSerial = 0; mStateManager.forceSetDXUniformsState(); mVertexDeclarationCache.markStateDirty(); } void Renderer9::releaseDeviceResources() { for (size_t i = 0; i < mEventQueryPool.size(); i++) { SafeRelease(mEventQueryPool[i]); } mEventQueryPool.clear(); SafeRelease(mMaskedClearSavedState); mVertexShaderCache.clear(); mPixelShaderCache.clear(); SafeDelete(mBlit); SafeDelete(mVertexDataManager); SafeDelete(mIndexDataManager); SafeDelete(mLineLoopIB); SafeDelete(mCountingIB); for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { if (mNullColorbufferCache[i].buffer) { mNullColorbufferCache[i].buffer->detach(mDisplay->getProxyContext()); } SafeDelete(mNullColorbufferCache[i].buffer); } } // set notify to true to broadcast a message to all contexts of the device loss bool Renderer9::testDeviceLost() { HRESULT status = getDeviceStatusCode(); return FAILED(status); } HRESULT Renderer9::getDeviceStatusCode() { HRESULT status = D3D_OK; if (mDeviceEx) { status = mDeviceEx->CheckDeviceState(nullptr); } else if (mDevice) { status = mDevice->TestCooperativeLevel(); } return status; } bool Renderer9::testDeviceResettable() { // On D3D9Ex, DEVICELOST represents a hung device that needs to be restarted // DEVICEREMOVED indicates the device has been stopped and must be recreated switch (getDeviceStatusCode()) { case D3DERR_DEVICENOTRESET: case D3DERR_DEVICEHUNG: return true; case D3DERR_DEVICELOST: return (mDeviceEx != nullptr); case D3DERR_DEVICEREMOVED: ASSERT(mDeviceEx != nullptr); return isRemovedDeviceResettable(); default: return false; } } bool Renderer9::resetDevice() { releaseDeviceResources(); D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters(); HRESULT result = D3D_OK; bool lost = testDeviceLost(); bool removedDevice = (getDeviceStatusCode() == D3DERR_DEVICEREMOVED); // Device Removed is a feature which is only present with D3D9Ex ASSERT(mDeviceEx != nullptr || !removedDevice); for (int attempts = 3; lost && attempts > 0; attempts--) { if (removedDevice) { // Device removed, which may trigger on driver reinstallation, // may cause a longer wait other reset attempts before the // system is ready to handle creating a new device. Sleep(800); lost = !resetRemovedDevice(); } else if (mDeviceEx) { Sleep(500); // Give the graphics driver some CPU time result = mDeviceEx->ResetEx(&presentParameters, nullptr); lost = testDeviceLost(); } else { result = mDevice->TestCooperativeLevel(); while (result == D3DERR_DEVICELOST) { Sleep(100); // Give the graphics driver some CPU time result = mDevice->TestCooperativeLevel(); } if (result == D3DERR_DEVICENOTRESET) { result = mDevice->Reset(&presentParameters); } lost = testDeviceLost(); } } if (FAILED(result)) { ERR() << "Reset/ResetEx failed multiple times, " << gl::FmtHR(result); return false; } if (removedDevice && lost) { ERR() << "Device lost reset failed multiple times"; return false; } // If the device was removed, we already finished re-initialization in resetRemovedDevice if (!removedDevice) { // reset device defaults if (initializeDevice().isError()) { return false; } } return true; } bool Renderer9::isRemovedDeviceResettable() const { bool success = false; #if ANGLE_D3D9EX == ANGLE_ENABLED IDirect3D9Ex *d3d9Ex = nullptr; typedef HRESULT(WINAPI * Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex **); Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex")); if (Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &d3d9Ex))) { D3DCAPS9 deviceCaps; HRESULT result = d3d9Ex->GetDeviceCaps(mAdapter, mDeviceType, &deviceCaps); success = SUCCEEDED(result); } SafeRelease(d3d9Ex); #else ASSERT(UNREACHABLE()); #endif return success; } bool Renderer9::resetRemovedDevice() { // From http://msdn.microsoft.com/en-us/library/windows/desktop/bb172554(v=vs.85).aspx: // The hardware adapter has been removed. Application must destroy the device, do enumeration of // adapters and create another Direct3D device. If application continues rendering without // calling Reset, the rendering calls will succeed. Applies to Direct3D 9Ex only. release(); return !initialize().isError(); } VendorID Renderer9::getVendorId() const { return static_cast(mAdapterIdentifier.VendorId); } std::string Renderer9::getRendererDescription() const { std::ostringstream rendererString; rendererString << mAdapterIdentifier.Description; if (getShareHandleSupport()) { rendererString << " Direct3D9Ex"; } else { rendererString << " Direct3D9"; } rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion); rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion); return rendererString.str(); } DeviceIdentifier Renderer9::getAdapterIdentifier() const { DeviceIdentifier deviceIdentifier = {0}; deviceIdentifier.VendorId = static_cast(mAdapterIdentifier.VendorId); deviceIdentifier.DeviceId = static_cast(mAdapterIdentifier.DeviceId); deviceIdentifier.SubSysId = static_cast(mAdapterIdentifier.SubSysId); deviceIdentifier.Revision = static_cast(mAdapterIdentifier.Revision); deviceIdentifier.FeatureLevel = 0; return deviceIdentifier; } unsigned int Renderer9::getReservedVertexUniformVectors() const { return d3d9_gl::GetReservedVertexUniformVectors(); } unsigned int Renderer9::getReservedFragmentUniformVectors() const { return d3d9_gl::GetReservedFragmentUniformVectors(); } bool Renderer9::getShareHandleSupport() const { // PIX doesn't seem to support using share handles, so disable them. return (mD3d9Ex != nullptr) && !gl::DebugAnnotationsActive(); } int Renderer9::getMajorShaderModel() const { return D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion); } int Renderer9::getMinorShaderModel() const { return D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion); } std::string Renderer9::getShaderModelSuffix() const { return ""; } DWORD Renderer9::getCapsDeclTypes() const { return mDeviceCaps.DeclTypes; } D3DPOOL Renderer9::getBufferPool(DWORD usage) const { if (mD3d9Ex != nullptr) { return D3DPOOL_DEFAULT; } else { if (!(usage & D3DUSAGE_DYNAMIC)) { return D3DPOOL_MANAGED; } } return D3DPOOL_DEFAULT; } gl::Error Renderer9::copyImage2D(const gl::Context *context, const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, const gl::Offset &destOffset, TextureStorage *storage, GLint level) { RECT rect; rect.left = sourceRect.x; rect.top = sourceRect.y; rect.right = sourceRect.x + sourceRect.width; rect.bottom = sourceRect.y + sourceRect.height; return mBlit->copy2D(context, framebuffer, rect, destFormat, destOffset, storage, level); } gl::Error Renderer9::copyImageCube(const gl::Context *context, const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, const gl::Offset &destOffset, TextureStorage *storage, GLenum target, GLint level) { RECT rect; rect.left = sourceRect.x; rect.top = sourceRect.y; rect.right = sourceRect.x + sourceRect.width; rect.bottom = sourceRect.y + sourceRect.height; return mBlit->copyCube(context, framebuffer, rect, destFormat, destOffset, storage, target, level); } gl::Error Renderer9::copyImage3D(const gl::Context *context, const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, const gl::Offset &destOffset, TextureStorage *storage, GLint level) { // 3D textures are not available in the D3D9 backend. UNREACHABLE(); return gl::InternalError(); } gl::Error Renderer9::copyImage2DArray(const gl::Context *context, const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, const gl::Offset &destOffset, TextureStorage *storage, GLint level) { // 2D array textures are not available in the D3D9 backend. UNREACHABLE(); return gl::InternalError(); } gl::Error Renderer9::copyTexture(const gl::Context *context, const gl::Texture *source, GLint sourceLevel, const gl::Rectangle &sourceRect, GLenum destFormat, const gl::Offset &destOffset, TextureStorage *storage, GLenum destTarget, GLint destLevel, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha) { RECT rect; rect.left = sourceRect.x; rect.top = sourceRect.y; rect.right = sourceRect.x + sourceRect.width; rect.bottom = sourceRect.y + sourceRect.height; return mBlit->copyTexture(context, source, sourceLevel, rect, destFormat, destOffset, storage, destTarget, destLevel, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha); } gl::Error Renderer9::copyCompressedTexture(const gl::Context *context, const gl::Texture *source, GLint sourceLevel, TextureStorage *storage, GLint destLevel) { UNIMPLEMENTED(); return gl::InternalError(); } gl::Error Renderer9::createRenderTarget(int width, int height, GLenum format, GLsizei samples, RenderTargetD3D **outRT) { const d3d9::TextureFormat &d3d9FormatInfo = d3d9::GetTextureFormatInfo(format); const gl::TextureCaps &textureCaps = getNativeTextureCaps().get(format); GLuint supportedSamples = textureCaps.getNearestSamples(samples); IDirect3DTexture9 *texture = nullptr; IDirect3DSurface9 *renderTarget = nullptr; if (width > 0 && height > 0) { bool requiresInitialization = false; HRESULT result = D3DERR_INVALIDCALL; const gl::InternalFormat &formatInfo = gl::GetSizedInternalFormatInfo(format); if (formatInfo.depthBits > 0 || formatInfo.stencilBits > 0) { result = mDevice->CreateDepthStencilSurface( width, height, d3d9FormatInfo.renderFormat, gl_d3d9::GetMultisampleType(supportedSamples), 0, FALSE, &renderTarget, nullptr); } else { requiresInitialization = (d3d9FormatInfo.dataInitializerFunction != nullptr); if (supportedSamples > 0) { result = mDevice->CreateRenderTarget(width, height, d3d9FormatInfo.renderFormat, gl_d3d9::GetMultisampleType(supportedSamples), 0, FALSE, &renderTarget, nullptr); } else { result = mDevice->CreateTexture( width, height, 1, D3DUSAGE_RENDERTARGET, d3d9FormatInfo.texFormat, getTexturePool(D3DUSAGE_RENDERTARGET), &texture, nullptr); if (!FAILED(result)) { result = texture->GetSurfaceLevel(0, &renderTarget); } } } if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to create render target, " << gl::FmtHR(result); } if (requiresInitialization) { // This format requires that the data be initialized before the render target can be // used Unfortunately this requires a Get call on the d3d device but it is far better // than having to mark the render target as lockable and copy data to the gpu. IDirect3DSurface9 *prevRenderTarget = nullptr; mDevice->GetRenderTarget(0, &prevRenderTarget); mDevice->SetRenderTarget(0, renderTarget); mDevice->Clear(0, nullptr, D3DCLEAR_TARGET, D3DCOLOR_RGBA(0, 0, 0, 255), 0.0f, 0); mDevice->SetRenderTarget(0, prevRenderTarget); } } *outRT = new TextureRenderTarget9(texture, 0, renderTarget, format, width, height, 1, supportedSamples); return gl::NoError(); } gl::Error Renderer9::createRenderTargetCopy(RenderTargetD3D *source, RenderTargetD3D **outRT) { ASSERT(source != nullptr); RenderTargetD3D *newRT = nullptr; gl::Error error = createRenderTarget(source->getWidth(), source->getHeight(), source->getInternalFormat(), source->getSamples(), &newRT); if (error.isError()) { return error; } RenderTarget9 *source9 = GetAs(source); RenderTarget9 *dest9 = GetAs(newRT); HRESULT result = mDevice->StretchRect(source9->getSurface(), nullptr, dest9->getSurface(), nullptr, D3DTEXF_NONE); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to copy render target, " << gl::FmtHR(result); } *outRT = newRT; return gl::NoError(); } gl::Error Renderer9::loadExecutable(const uint8_t *function, size_t length, gl::ShaderType type, const std::vector &streamOutVaryings, bool separatedOutputBuffers, ShaderExecutableD3D **outExecutable) { // Transform feedback is not supported in ES2 or D3D9 ASSERT(streamOutVaryings.empty()); switch (type) { case gl::SHADER_VERTEX: { IDirect3DVertexShader9 *vshader = nullptr; gl::Error error = createVertexShader((DWORD *)function, length, &vshader); if (error.isError()) { return error; } *outExecutable = new ShaderExecutable9(function, length, vshader); } break; case gl::SHADER_FRAGMENT: { IDirect3DPixelShader9 *pshader = nullptr; gl::Error error = createPixelShader((DWORD *)function, length, &pshader); if (error.isError()) { return error; } *outExecutable = new ShaderExecutable9(function, length, pshader); } break; default: UNREACHABLE(); return gl::InternalError(); } return gl::NoError(); } gl::Error Renderer9::compileToExecutable(gl::InfoLog &infoLog, const std::string &shaderHLSL, gl::ShaderType type, const std::vector &streamOutVaryings, bool separatedOutputBuffers, const angle::CompilerWorkaroundsD3D &workarounds, ShaderExecutableD3D **outExectuable) { // Transform feedback is not supported in ES2 or D3D9 ASSERT(streamOutVaryings.empty()); std::stringstream profileStream; switch (type) { case gl::SHADER_VERTEX: profileStream << "vs"; break; case gl::SHADER_FRAGMENT: profileStream << "ps"; break; default: UNREACHABLE(); return gl::InternalError(); } profileStream << "_" << ((getMajorShaderModel() >= 3) ? 3 : 2); profileStream << "_" << "0"; std::string profile = profileStream.str(); UINT flags = ANGLE_COMPILE_OPTIMIZATION_LEVEL; if (workarounds.skipOptimization) { flags = D3DCOMPILE_SKIP_OPTIMIZATION; } else if (workarounds.useMaxOptimization) { flags = D3DCOMPILE_OPTIMIZATION_LEVEL3; } if (gl::DebugAnnotationsActive()) { #ifndef NDEBUG flags = D3DCOMPILE_SKIP_OPTIMIZATION; #endif flags |= D3DCOMPILE_DEBUG; } // Sometimes D3DCompile will fail with the default compilation flags for complicated shaders // when it would otherwise pass with alternative options. Try the default flags first and if // compilation fails, try some alternatives. std::vector configs; configs.push_back(CompileConfig(flags, "default")); configs.push_back(CompileConfig(flags | D3DCOMPILE_AVOID_FLOW_CONTROL, "avoid flow control")); configs.push_back(CompileConfig(flags | D3DCOMPILE_PREFER_FLOW_CONTROL, "prefer flow control")); ID3DBlob *binary = nullptr; std::string debugInfo; gl::Error error = mCompiler.compileToBinary(infoLog, shaderHLSL, profile, configs, nullptr, &binary, &debugInfo); if (error.isError()) { return error; } // It's possible that binary is NULL if the compiler failed in all configurations. Set the // executable to NULL and return GL_NO_ERROR to signify that there was a link error but the // internal state is still OK. if (!binary) { *outExectuable = nullptr; return gl::NoError(); } error = loadExecutable(reinterpret_cast(binary->GetBufferPointer()), binary->GetBufferSize(), type, streamOutVaryings, separatedOutputBuffers, outExectuable); SafeRelease(binary); if (error.isError()) { return error; } if (!debugInfo.empty()) { (*outExectuable)->appendDebugInfo(debugInfo); } return gl::NoError(); } gl::Error Renderer9::ensureHLSLCompilerInitialized() { return mCompiler.ensureInitialized(); } UniformStorageD3D *Renderer9::createUniformStorage(size_t storageSize) { return new UniformStorageD3D(storageSize); } gl::Error Renderer9::boxFilter(IDirect3DSurface9 *source, IDirect3DSurface9 *dest) { return mBlit->boxFilter(source, dest); } D3DPOOL Renderer9::getTexturePool(DWORD usage) const { if (mD3d9Ex != nullptr) { return D3DPOOL_DEFAULT; } else { if (!(usage & (D3DUSAGE_DEPTHSTENCIL | D3DUSAGE_RENDERTARGET))) { return D3DPOOL_MANAGED; } } return D3DPOOL_DEFAULT; } gl::Error Renderer9::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged) { ASSERT(source && dest); HRESULT result = D3DERR_OUTOFVIDEOMEMORY; if (fromManaged) { D3DSURFACE_DESC desc; source->GetDesc(&desc); IDirect3DSurface9 *surf = 0; result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &surf, nullptr); if (SUCCEEDED(result)) { ANGLE_TRY(Image9::copyLockableSurfaces(surf, source)); result = mDevice->UpdateSurface(surf, nullptr, dest, nullptr); SafeRelease(surf); } } else { endScene(); result = mDevice->StretchRect(source, nullptr, dest, nullptr, D3DTEXF_NONE); } if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return gl::OutOfMemory() << "Failed to blit internal texture, " << gl::FmtHR(result); } return gl::NoError(); } RendererClass Renderer9::getRendererClass() const { return RENDERER_D3D9; } ImageD3D *Renderer9::createImage() { return new Image9(this); } gl::Error Renderer9::generateMipmap(const gl::Context *context, ImageD3D *dest, ImageD3D *src) { Image9 *src9 = GetAs(src); Image9 *dst9 = GetAs(dest); return Image9::generateMipmap(dst9, src9); } gl::Error Renderer9::generateMipmapUsingD3D(const gl::Context *context, TextureStorage *storage, const gl::TextureState &textureState) { UNREACHABLE(); return gl::NoError(); } gl::Error Renderer9::copyImage(const gl::Context *context, ImageD3D *dest, ImageD3D *source, const gl::Rectangle &sourceRect, const gl::Offset &destOffset, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha) { Image9 *dest9 = GetAs(dest); Image9 *src9 = GetAs(source); return Image9::CopyImage(context, dest9, src9, sourceRect, destOffset, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha); } TextureStorage *Renderer9::createTextureStorage2D(SwapChainD3D *swapChain) { SwapChain9 *swapChain9 = GetAs(swapChain); return new TextureStorage9_2D(this, swapChain9); } TextureStorage *Renderer9::createTextureStorageEGLImage(EGLImageD3D *eglImage, RenderTargetD3D *renderTargetD3D) { return new TextureStorage9_EGLImage(this, eglImage, GetAs(renderTargetD3D)); } TextureStorage *Renderer9::createTextureStorageExternal( egl::Stream *stream, const egl::Stream::GLTextureDescription &desc) { UNIMPLEMENTED(); return nullptr; } TextureStorage *Renderer9::createTextureStorage2D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, int levels, bool hintLevelZeroOnly) { return new TextureStorage9_2D(this, internalformat, renderTarget, width, height, levels); } TextureStorage *Renderer9::createTextureStorageCube(GLenum internalformat, bool renderTarget, int size, int levels, bool hintLevelZeroOnly) { return new TextureStorage9_Cube(this, internalformat, renderTarget, size, levels, hintLevelZeroOnly); } TextureStorage *Renderer9::createTextureStorage3D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels) { // 3D textures are not supported by the D3D9 backend. UNREACHABLE(); return nullptr; } TextureStorage *Renderer9::createTextureStorage2DArray(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels) { // 2D array textures are not supported by the D3D9 backend. UNREACHABLE(); return nullptr; } TextureStorage *Renderer9::createTextureStorage2DMultisample(GLenum internalformat, GLsizei width, GLsizei height, int levels, int samples, bool fixedSampleLocations) { // 2D multisampled textures are not supported by the D3D9 backend. UNREACHABLE(); return NULL; } bool Renderer9::getLUID(LUID *adapterLuid) const { adapterLuid->HighPart = 0; adapterLuid->LowPart = 0; if (mD3d9Ex) { mD3d9Ex->GetAdapterLUID(mAdapter, adapterLuid); return true; } return false; } VertexConversionType Renderer9::getVertexConversionType(gl::VertexFormatType vertexFormatType) const { return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).conversionType; } GLenum Renderer9::getVertexComponentType(gl::VertexFormatType vertexFormatType) const { return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).componentType; } gl::ErrorOrResult Renderer9::getVertexSpaceRequired(const gl::VertexAttribute &attrib, const gl::VertexBinding &binding, GLsizei count, GLsizei instances) const { if (!attrib.enabled) { return 16u; } gl::VertexFormatType vertexFormatType = gl::GetVertexFormatType(attrib, GL_FLOAT); const d3d9::VertexFormat &d3d9VertexInfo = d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType); unsigned int elementCount = 0; const unsigned int divisor = binding.getDivisor(); if (instances == 0 || divisor == 0) { elementCount = static_cast(count); } else { // Round up to divisor, if possible elementCount = UnsignedCeilDivide(static_cast(instances), divisor); } if (d3d9VertexInfo.outputElementSize > std::numeric_limits::max() / elementCount) { return gl::OutOfMemory() << "New vertex buffer size would result in an overflow."; } return static_cast(d3d9VertexInfo.outputElementSize) * elementCount; } void Renderer9::generateCaps(gl::Caps *outCaps, gl::TextureCapsMap *outTextureCaps, gl::Extensions *outExtensions, gl::Limitations *outLimitations) const { d3d9_gl::GenerateCaps(mD3d9, mDevice, mDeviceType, mAdapter, outCaps, outTextureCaps, outExtensions, outLimitations); } angle::WorkaroundsD3D Renderer9::generateWorkarounds() const { return d3d9::GenerateWorkarounds(); } egl::Error Renderer9::getEGLDevice(DeviceImpl **device) { if (mEGLDevice == nullptr) { ASSERT(mDevice != nullptr); mEGLDevice = new DeviceD3D(); egl::Error error = mEGLDevice->initialize(reinterpret_cast(mDevice), EGL_D3D9_DEVICE_ANGLE, EGL_FALSE); if (error.isError()) { SafeDelete(mEGLDevice); return error; } } *device = static_cast(mEGLDevice); return egl::NoError(); } Renderer9::CurSamplerState::CurSamplerState() : forceSet(true), baseLevel(std::numeric_limits::max()), samplerState() { } gl::Error Renderer9::genericDrawElements(const gl::Context *context, GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei instances) { const auto &data = context->getContextState(); gl::Program *program = context->getGLState().getProgram(); ASSERT(program != nullptr); ProgramD3D *programD3D = GetImplAs(program); bool usesPointSize = programD3D->usesPointSize(); programD3D->updateSamplerMapping(); if (!applyPrimitiveType(mode, count, usesPointSize)) { return gl::NoError(); } ANGLE_TRY(updateState(context, mode)); ANGLE_TRY(applyTextures(context)); ANGLE_TRY(applyShaders(context, mode)); if (!skipDraw(data.getState(), mode)) { ANGLE_TRY(drawElementsImpl(context, mode, count, type, indices, instances)); } return gl::NoError(); } gl::Error Renderer9::genericDrawArrays(const gl::Context *context, GLenum mode, GLint first, GLsizei count, GLsizei instances) { gl::Program *program = context->getGLState().getProgram(); ASSERT(program != nullptr); ProgramD3D *programD3D = GetImplAs(program); bool usesPointSize = programD3D->usesPointSize(); programD3D->updateSamplerMapping(); if (!applyPrimitiveType(mode, count, usesPointSize)) { return gl::NoError(); } ANGLE_TRY(updateState(context, mode)); ANGLE_TRY(applyVertexBuffer(context, mode, first, count, instances, nullptr)); ANGLE_TRY(applyTextures(context)); ANGLE_TRY(applyShaders(context, mode)); if (!skipDraw(context->getGLState(), mode)) { ANGLE_TRY(drawArraysImpl(context, mode, first, count, instances)); } return gl::NoError(); } FramebufferImpl *Renderer9::createDefaultFramebuffer(const gl::FramebufferState &state) { return new Framebuffer9(state, this); } gl::Version Renderer9::getMaxSupportedESVersion() const { return gl::Version(2, 0); } gl::Error Renderer9::clearRenderTarget(RenderTargetD3D *renderTarget, const gl::ColorF &clearColorValue, const float clearDepthValue, const unsigned int clearStencilValue) { D3DCOLOR color = D3DCOLOR_ARGB(gl::unorm<8>(clearColorValue.alpha), gl::unorm<8>(clearColorValue.red), gl::unorm<8>(clearColorValue.green), gl::unorm<8>(clearColorValue.blue)); float depth = clearDepthValue; DWORD stencil = clearStencilValue & 0x000000FF; unsigned int renderTargetSerial = renderTarget->getSerial(); RenderTarget9 *renderTarget9 = GetAs(renderTarget); IDirect3DSurface9 *renderTargetSurface = renderTarget9->getSurface(); ASSERT(renderTargetSurface); DWORD dxClearFlags = 0; const gl::InternalFormat &internalFormatInfo = gl::GetSizedInternalFormatInfo(renderTarget->getInternalFormat()); if (internalFormatInfo.depthBits > 0 || internalFormatInfo.stencilBits > 0) { dxClearFlags = D3DCLEAR_ZBUFFER | D3DCLEAR_STENCIL; if (mAppliedDepthStencilSerial != renderTargetSerial) { mDevice->SetDepthStencilSurface(renderTargetSurface); } } else { dxClearFlags = D3DCLEAR_TARGET; if (mAppliedRenderTargetSerial != renderTargetSerial) { mDevice->SetRenderTarget(0, renderTargetSurface); } } SafeRelease(renderTargetSurface); D3DVIEWPORT9 viewport; viewport.X = 0; viewport.Y = 0; viewport.Width = renderTarget->getWidth(); viewport.Height = renderTarget->getHeight(); mDevice->SetViewport(&viewport); mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE); mDevice->Clear(0, nullptr, dxClearFlags, color, depth, stencil); markAllStateDirty(); return gl::NoError(); } bool Renderer9::canSelectViewInVertexShader() const { return false; } // For each Direct3D sampler of either the pixel or vertex stage, // looks up the corresponding OpenGL texture image unit and texture type, // and sets the texture and its addressing/filtering state (or NULL when inactive). // Sampler mapping needs to be up-to-date on the program object before this is called. gl::Error Renderer9::applyTextures(const gl::Context *context, gl::SamplerType shaderType) { const auto &glState = context->getGLState(); const auto &caps = context->getCaps(); ProgramD3D *programD3D = GetImplAs(glState.getProgram()); ASSERT(!programD3D->isSamplerMappingDirty()); // TODO(jmadill): Use the Program's sampler bindings. const auto &completeTextures = glState.getCompleteTextureCache(); unsigned int samplerRange = programD3D->getUsedSamplerRange(shaderType); for (unsigned int samplerIndex = 0; samplerIndex < samplerRange; samplerIndex++) { GLint textureUnit = programD3D->getSamplerMapping(shaderType, samplerIndex, caps); ASSERT(textureUnit != -1); gl::Texture *texture = completeTextures[textureUnit]; // A nullptr texture indicates incomplete. if (texture) { gl::Sampler *samplerObject = glState.getSampler(textureUnit); const gl::SamplerState &samplerState = samplerObject ? samplerObject->getSamplerState() : texture->getSamplerState(); ANGLE_TRY(setSamplerState(context, shaderType, samplerIndex, texture, samplerState)); ANGLE_TRY(setTexture(context, shaderType, samplerIndex, texture)); } else { GLenum textureType = programD3D->getSamplerTextureType(shaderType, samplerIndex); // Texture is not sampler complete or it is in use by the framebuffer. Bind the // incomplete texture. gl::Texture *incompleteTexture = nullptr; ANGLE_TRY(getIncompleteTexture(context, textureType, &incompleteTexture)); ANGLE_TRY(setSamplerState(context, shaderType, samplerIndex, incompleteTexture, incompleteTexture->getSamplerState())); ANGLE_TRY(setTexture(context, shaderType, samplerIndex, incompleteTexture)); } } // Set all the remaining textures to NULL size_t samplerCount = (shaderType == gl::SAMPLER_PIXEL) ? caps.maxTextureImageUnits : caps.maxVertexTextureImageUnits; // TODO(jmadill): faster way? for (size_t samplerIndex = samplerRange; samplerIndex < samplerCount; samplerIndex++) { ANGLE_TRY(setTexture(context, shaderType, static_cast(samplerIndex), nullptr)); } return gl::NoError(); } gl::Error Renderer9::applyTextures(const gl::Context *context) { ANGLE_TRY(applyTextures(context, gl::SAMPLER_VERTEX)); ANGLE_TRY(applyTextures(context, gl::SAMPLER_PIXEL)); return gl::NoError(); } } // namespace rx