#include "precompiled.h" // // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "libGLESv2/Context.h" #include "libGLESv2/main.h" #include "common/utilities.h" #include "libGLESv2/formatutils.h" #include "libGLESv2/Buffer.h" #include "libGLESv2/Fence.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/FramebufferAttachment.h" #include "libGLESv2/Renderbuffer.h" #include "libGLESv2/Program.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/Query.h" #include "libGLESv2/Texture.h" #include "libGLESv2/ResourceManager.h" #include "libGLESv2/renderer/d3d/IndexDataManager.h" #include "libGLESv2/renderer/RenderTarget.h" #include "libGLESv2/renderer/Renderer.h" #include "libGLESv2/VertexArray.h" #include "libGLESv2/Sampler.h" #include "libGLESv2/validationES.h" #include "libGLESv2/TransformFeedback.h" #include "libEGL/Surface.h" #undef near #undef far namespace gl { Context::Context(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer) { ASSERT(robustAccess == false); // Unimplemented initCaps(clientVersion); mClientVersion = clientVersion; mFenceNVHandleAllocator.setBaseHandle(0); if (shareContext != NULL) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(mRenderer); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero.set(new Texture2D(mRenderer->createTexture2D(), 0)); mTextureCubeMapZero.set(new TextureCubeMap(mRenderer->createTextureCube(), 0)); mTexture3DZero.set(new Texture3D(mRenderer->createTexture3D(), 0)); mTexture2DArrayZero.set(new Texture2DArray(mRenderer->createTexture2DArray(), 0)); bindVertexArray(0); bindArrayBuffer(0); bindElementArrayBuffer(0); bindTextureCubeMap(0); bindTexture2D(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); bindGenericUniformBuffer(0); for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++) { bindIndexedUniformBuffer(0, i, 0, -1); } bindGenericTransformFeedbackBuffer(0); for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { bindIndexedTransformFeedbackBuffer(0, i, 0, -1); } bindCopyReadBuffer(0); bindCopyWriteBuffer(0); bindPixelPackBuffer(0); bindPixelUnpackBuffer(0); // [OpenGL ES 3.0.2] section 2.14.1 pg 85: // In the initial state, a default transform feedback object is bound and treated as // a transform feedback object with a name of zero. That object is bound any time // BindTransformFeedback is called with id of zero mTransformFeedbackZero.set(new TransformFeedback(0)); bindTransformFeedback(0); mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mHasBeenCurrent = false; mContextLost = false; mResetStatus = GL_NO_ERROR; mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT); mRobustAccess = robustAccess; mNumCompressedTextureFormats = 0; mState.setContext(this); } Context::~Context() { GLuint currentProgram = mState.getCurrentProgramId(); if (currentProgram != 0) { Program *programObject = mResourceManager->getProgram(currentProgram); if (programObject) { programObject->release(); } currentProgram = 0; } mState.setCurrentProgram(0, NULL); while (!mFramebufferMap.empty()) { deleteFramebuffer(mFramebufferMap.begin()->first); } while (!mFenceNVMap.empty()) { deleteFenceNV(mFenceNVMap.begin()->first); } while (!mQueryMap.empty()) { deleteQuery(mQueryMap.begin()->first); } while (!mVertexArrayMap.empty()) { deleteVertexArray(mVertexArrayMap.begin()->first); } mTransformFeedbackZero.set(NULL); while (!mTransformFeedbackMap.empty()) { deleteTransformFeedback(mTransformFeedbackMap.begin()->first); } for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { mIncompleteTextures[type].set(NULL); } mTexture2DZero.set(NULL); mTextureCubeMapZero.set(NULL); mTexture3DZero.set(NULL); mTexture2DArrayZero.set(NULL); mResourceManager->release(); } void Context::makeCurrent(egl::Surface *surface) { if (!mHasBeenCurrent) { mMajorShaderModel = mRenderer->getMajorShaderModel(); mSupportsVertexTexture = mRenderer->getVertexTextureSupport(); mNumCompressedTextureFormats = 0; if (mExtensions.textureCompressionDXT1) { mNumCompressedTextureFormats += 2; } if (mExtensions.textureCompressionDXT3) { mNumCompressedTextureFormats += 1; } if (mExtensions.textureCompressionDXT5) { mNumCompressedTextureFormats += 1; } initRendererString(); initExtensionStrings(); mState.setViewportParams(0, 0, surface->getWidth(), surface->getHeight()); mState.setScissorParams(0, 0, surface->getWidth(), surface->getHeight()); mHasBeenCurrent = true; } // Wrap the existing swapchain resources into GL objects and assign them to the '0' names rx::SwapChain *swapchain = surface->getSwapChain(); Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain); Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); // Store the current client version in the renderer mRenderer->setCurrentClientVersion(mClientVersion); } // NOTE: this function should not assume that this context is current! void Context::markContextLost() { if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; mContextLost = true; } bool Context::isContextLost() { return mContextLost; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } GLsync Context::createFenceSync(GLenum condition) { GLuint handle = mResourceManager->createFenceSync(); gl::FenceSync *fenceSync = mResourceManager->getFenceSync(handle); ASSERT(fenceSync); fenceSync->set(condition); return reinterpret_cast(handle); } GLuint Context::createVertexArray() { GLuint handle = mVertexArrayHandleAllocator.allocate(); // Although the spec states VAO state is not initialized until the object is bound, // we create it immediately. The resulting behaviour is transparent to the application, // since it's not currently possible to access the state until the object is bound. VertexArray *vertexArray = new VertexArray(mRenderer->createVertexArray(), handle, MAX_VERTEX_ATTRIBS); mVertexArrayMap[handle] = vertexArray; return handle; } GLuint Context::createSampler() { return mResourceManager->createSampler(); } GLuint Context::createTransformFeedback() { GLuint handle = mTransformFeedbackAllocator.allocate(); TransformFeedback *transformFeedback = new TransformFeedback(handle); transformFeedback->addRef(); mTransformFeedbackMap[handle] = transformFeedback; return handle; } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { GLuint handle = mFramebufferHandleAllocator.allocate(); mFramebufferMap[handle] = NULL; return handle; } GLuint Context::createFenceNV() { GLuint handle = mFenceNVHandleAllocator.allocate(); mFenceNVMap[handle] = new FenceNV(mRenderer); return handle; } // Returns an unused query name GLuint Context::createQuery() { GLuint handle = mQueryHandleAllocator.allocate(); mQueryMap[handle] = NULL; return handle; } void Context::deleteBuffer(GLuint buffer) { if (mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if (mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if (mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFenceSync(GLsync fenceSync) { // The spec specifies the underlying Fence object is not deleted until all current // wait commands finish. However, since the name becomes invalid, we cannot query the fence, // and since our API is currently designed for being called from a single thread, we can delete // the fence immediately. mResourceManager->deleteFenceSync(reinterpret_cast(fenceSync)); } void Context::deleteVertexArray(GLuint vertexArray) { auto vertexArrayObject = mVertexArrayMap.find(vertexArray); if (vertexArrayObject != mVertexArrayMap.end()) { detachVertexArray(vertexArray); mVertexArrayHandleAllocator.release(vertexArrayObject->first); delete vertexArrayObject->second; mVertexArrayMap.erase(vertexArrayObject); } } void Context::deleteSampler(GLuint sampler) { if (mResourceManager->getSampler(sampler)) { detachSampler(sampler); } mResourceManager->deleteSampler(sampler); } void Context::deleteTransformFeedback(GLuint transformFeedback) { TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(transformFeedback); if (iter != mTransformFeedbackMap.end()) { detachTransformFeedback(transformFeedback); mTransformFeedbackAllocator.release(transformFeedback); iter->second->release(); mTransformFeedbackMap.erase(iter); } } void Context::deleteFramebuffer(GLuint framebuffer) { FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); if (framebufferObject != mFramebufferMap.end()) { detachFramebuffer(framebuffer); mFramebufferHandleAllocator.release(framebufferObject->first); delete framebufferObject->second; mFramebufferMap.erase(framebufferObject); } } void Context::deleteFenceNV(GLuint fence) { FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence); if (fenceObject != mFenceNVMap.end()) { mFenceNVHandleAllocator.release(fenceObject->first); delete fenceObject->second; mFenceNVMap.erase(fenceObject); } } void Context::deleteQuery(GLuint query) { QueryMap::iterator queryObject = mQueryMap.find(query); if (queryObject != mQueryMap.end()) { mQueryHandleAllocator.release(queryObject->first); if (queryObject->second) { queryObject->second->release(); } mQueryMap.erase(queryObject); } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) const { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) const { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) const { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } FenceSync *Context::getFenceSync(GLsync handle) const { return mResourceManager->getFenceSync(reinterpret_cast(handle)); } VertexArray *Context::getVertexArray(GLuint handle) const { auto vertexArray = mVertexArrayMap.find(handle); if (vertexArray == mVertexArrayMap.end()) { return NULL; } else { return vertexArray->second; } } Sampler *Context::getSampler(GLuint handle) const { return mResourceManager->getSampler(handle); } TransformFeedback *Context::getTransformFeedback(GLuint handle) const { if (handle == 0) { return mTransformFeedbackZero.get(); } else { TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle); return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL; } } bool Context::isSampler(GLuint samplerName) const { return mResourceManager->isSampler(samplerName); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setArrayBufferBinding(getBuffer(buffer)); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.getVertexArray()->setElementArrayBuffer(getBuffer(buffer)); } void Context::bindTexture2D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); mState.setSamplerTexture(TEXTURE_2D, getTexture(texture)); } void Context::bindTextureCubeMap(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); mState.setSamplerTexture(TEXTURE_CUBE, getTexture(texture)); } void Context::bindTexture3D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_3D); mState.setSamplerTexture(TEXTURE_3D, getTexture(texture)); } void Context::bindTexture2DArray(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D_ARRAY); mState.setSamplerTexture(TEXTURE_2D_ARRAY, getTexture(texture)); } void Context::bindReadFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer, framebuffer); } mState.setReadFramebufferBinding(getFramebuffer(framebuffer)); } void Context::bindDrawFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer, framebuffer); } mState.setDrawFramebufferBinding(getFramebuffer(framebuffer)); } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.setRenderbufferBinding(getRenderbuffer(renderbuffer)); } void Context::bindVertexArray(GLuint vertexArray) { if (!getVertexArray(vertexArray)) { VertexArray *vertexArrayObject = new VertexArray(mRenderer->createVertexArray(), vertexArray, MAX_VERTEX_ATTRIBS); mVertexArrayMap[vertexArray] = vertexArrayObject; } mState.setVertexArrayBinding(getVertexArray(vertexArray)); } void Context::bindSampler(GLuint textureUnit, GLuint sampler) { ASSERT(textureUnit < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS); // TODO: Update for backend-determined array size mResourceManager->checkSamplerAllocation(sampler); mState.setSamplerBinding(textureUnit, getSampler(sampler)); } void Context::bindGenericUniformBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setGenericUniformBufferBinding(getBuffer(buffer)); } void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.setIndexedUniformBufferBinding(index, getBuffer(buffer), offset, size); } void Context::bindGenericTransformFeedbackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setGenericTransformFeedbackBufferBinding(getBuffer(buffer)); } void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.setIndexedTransformFeedbackBufferBinding(index, getBuffer(buffer), offset, size); } void Context::bindCopyReadBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setCopyReadBufferBinding(getBuffer(buffer)); } void Context::bindCopyWriteBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setCopyWriteBufferBinding(getBuffer(buffer)); } void Context::bindPixelPackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setPixelPackBufferBinding(getBuffer(buffer)); } void Context::bindPixelUnpackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.setPixelUnpackBufferBinding(getBuffer(buffer)); } void Context::useProgram(GLuint program) { GLuint priorProgramId = mState.getCurrentProgramId(); Program *priorProgram = mResourceManager->getProgram(priorProgramId); if (priorProgramId != program) { mState.setCurrentProgram(program, mResourceManager->getProgram(program)); if (priorProgram) { priorProgram->release(); } } } void Context::linkProgram(GLuint program) { Program *programObject = mResourceManager->getProgram(program); bool linked = programObject->link(); // if the current program was relinked successfully we // need to install the new executables if (linked && program == mState.getCurrentProgramId()) { mState.setCurrentProgramBinary(programObject->getProgramBinary()); } } void Context::setProgramBinary(GLuint program, const void *binary, GLint length) { Program *programObject = mResourceManager->getProgram(program); bool loaded = programObject->setProgramBinary(binary, length); // if the current program was reloaded successfully we // need to install the new executables if (loaded && program == mState.getCurrentProgramId()) { mState.setCurrentProgramBinary(programObject->getProgramBinary()); } } void Context::bindTransformFeedback(GLuint transformFeedback) { mState.setTransformFeedbackBinding(getTransformFeedback(transformFeedback)); } void Context::beginQuery(GLenum target, GLuint query) { Query *queryObject = getQuery(query, true, target); ASSERT(queryObject); // set query as active for specified target mState.setActiveQuery(target, queryObject); // begin query queryObject->begin(); } void Context::endQuery(GLenum target) { Query *queryObject = mState.getActiveQuery(target); ASSERT(queryObject); queryObject->end(); mState.setActiveQuery(target, NULL); } void Context::setFramebufferZero(Framebuffer *buffer) { // First, check to see if the old default framebuffer // was set for draw or read framebuffer, and change // the bindings to point to the new one before deleting it. if (mState.getDrawFramebuffer()->id() == 0) { mState.setDrawFramebufferBinding(buffer); } if (mState.getReadFramebuffer()->id() == 0) { mState.setReadFramebufferBinding(buffer); } delete mFramebufferMap[0]; mFramebufferMap[0] = buffer; } void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples) { ASSERT(getTextureCaps().get(internalformat).renderable); RenderbufferStorage *renderbuffer = NULL; if (GetDepthBits(internalformat) > 0 && GetStencilBits(internalformat) > 0) { renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples); } else if (GetDepthBits(internalformat) > 0) { renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples); } else if (GetStencilBits(internalformat) > 0) { renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples); } else { renderbuffer = new gl::Colorbuffer(mRenderer, width, height, internalformat, samples); } mState.getCurrentRenderbuffer()->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) const { FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle); if (framebuffer == mFramebufferMap.end()) { return NULL; } else { return framebuffer->second; } } FenceNV *Context::getFenceNV(unsigned int handle) { FenceNVMap::iterator fence = mFenceNVMap.find(handle); if (fence == mFenceNVMap.end()) { return NULL; } else { return fence->second; } } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { QueryMap::iterator query = mQueryMap.find(handle); if (query == mQueryMap.end()) { return NULL; } else { if (!query->second && create) { query->second = new Query(mRenderer, type, handle); query->second->addRef(); } return query->second; } } Texture *Context::getTargetTexture(GLenum target) const { if (!ValidTextureTarget(this, target)) { return NULL; } switch (target) { case GL_TEXTURE_2D: return getTexture2D(); case GL_TEXTURE_CUBE_MAP: return getTextureCubeMap(); case GL_TEXTURE_3D: return getTexture3D(); case GL_TEXTURE_2D_ARRAY: return getTexture2DArray(); default: return NULL; } } Texture2D *Context::getTexture2D() const { return static_cast(getSamplerTexture(mState.getActiveSampler(), TEXTURE_2D)); } TextureCubeMap *Context::getTextureCubeMap() const { return static_cast(getSamplerTexture(mState.getActiveSampler(), TEXTURE_CUBE)); } Texture3D *Context::getTexture3D() const { return static_cast(getSamplerTexture(mState.getActiveSampler(), TEXTURE_3D)); } Texture2DArray *Context::getTexture2DArray() const { return static_cast(getSamplerTexture(mState.getActiveSampler(), TEXTURE_2D_ARRAY)); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const { if (mState.getSamplerTextureId(sampler, type) == 0) { switch (type) { default: UNREACHABLE(); case TEXTURE_2D: return mTexture2DZero.get(); case TEXTURE_CUBE: return mTextureCubeMapZero.get(); case TEXTURE_3D: return mTexture3DZero.get(); case TEXTURE_2D_ARRAY: return mTexture2DArrayZero.get(); } } else { return mState.getSamplerTexture(sampler, type); } } void Context::getBooleanv(GLenum pname, GLboolean *params) { switch (pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; default: mState.getBooleanv(pname, params); break; } } void Context::getFloatv(GLenum pname, GLfloat *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = mCaps.minAliasedLineWidth; params[1] = mCaps.maxAliasedLineWidth; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = mCaps.minAliasedPointSize; params[1] = mCaps.maxAliasedPointSize; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: ASSERT(mExtensions.textureFilterAnisotropic); *params = mExtensions.maxTextureAnisotropy; break; default: mState.getFloatv(pname, params); break; } } void Context::getIntegerv(GLenum pname, GLint *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mRenderer->getMaxVertexUniformVectors(); break; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mRenderer->getMaxVertexUniformVectors() * 4; break; case GL_MAX_VARYING_VECTORS: *params = mRenderer->getMaxVaryingVectors(); break; case GL_MAX_VARYING_COMPONENTS: *params = mRenderer->getMaxVaryingVectors() * 4; break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxCombinedTextureImageUnits(); break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxVertexTextureImageUnits(); break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mRenderer->getMaxFragmentUniformVectors(); break; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mRenderer->getMaxFragmentUniformVectors() * 4; break; case GL_MAX_RENDERBUFFER_SIZE: *params = mCaps.maxRenderbufferSize; break; case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mCaps.maxColorAttachments; break; case GL_MAX_DRAW_BUFFERS_EXT: *params = mCaps.maxDrawBuffers; break; case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = mCaps.max2DTextureSize; break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = mCaps.maxCubeMapTextureSize; break; case GL_MAX_3D_TEXTURE_SIZE: *params = mCaps.max3DTextureSize; break; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = mCaps.maxArrayTextureLayers; break; case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = getUniformBufferOffsetAlignment(); break; case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = getMaximumCombinedUniformBufferBindings(); break; case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mRenderer->getMaxVertexShaderUniformBuffers(); break; case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mRenderer->getMaxFragmentShaderUniformBuffers(); break; case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = getMaximumCombinedUniformBufferBindings(); break; case GL_MAJOR_VERSION: *params = mClientVersion; break; case GL_MINOR_VERSION: *params = 0; break; case GL_MAX_ELEMENTS_INDICES: *params = mRenderer->getMaxRecommendedElementsIndices(); break; case GL_MAX_ELEMENTS_VERTICES: *params = mRenderer->getMaxRecommendedElementsVertices(); break; case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackInterleavedComponents(); break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mRenderer->getMaxTransformFeedbackBuffers(); break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackSeparateComponents(); break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: params[0] = mNumCompressedTextureFormats; break; case GL_MAX_SAMPLES_ANGLE: *params = static_cast(getMaxSupportedSamples()); break; case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: { GLenum internalFormat, format, type; getCurrentReadFormatType(&internalFormat, &format, &type); if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT) *params = format; else *params = type; } break; case GL_MAX_VIEWPORT_DIMS: { params[0] = mCaps.maxViewportWidth; params[1] = mCaps.maxViewportHeight; } break; case GL_COMPRESSED_TEXTURE_FORMATS: { if (mExtensions.textureCompressionDXT1) { *params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; *params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } if (mExtensions.textureCompressionDXT3) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE; } if (mExtensions.textureCompressionDXT5) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE; } } break; case GL_RESET_NOTIFICATION_STRATEGY_EXT: *params = mResetStrategy; break; case GL_NUM_PROGRAM_BINARY_FORMATS_OES: *params = 1; break; case GL_PROGRAM_BINARY_FORMATS_OES: *params = GL_PROGRAM_BINARY_ANGLE; break; case GL_NUM_EXTENSIONS: *params = static_cast(mExtensionStrings.size()); break; default: mState.getIntegerv(pname, params); break; } } void Context::getInteger64v(GLenum pname, GLint64 *params) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. switch (pname) { case GL_MAX_ELEMENT_INDEX: *params = mCaps.maxElementIndex; break; case GL_MAX_UNIFORM_BLOCK_SIZE: *params = static_cast(mRenderer->getMaxUniformBufferSize()); break; case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: { GLint64 uniformBufferComponents = static_cast(mRenderer->getMaxVertexShaderUniformBuffers()) * static_cast(mRenderer->getMaxUniformBufferSize() / 4); GLint64 defaultBufferComponents = static_cast(mRenderer->getMaxVertexUniformVectors() * 4); *params = uniformBufferComponents + defaultBufferComponents; } break; case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: { GLint64 uniformBufferComponents = static_cast(mRenderer->getMaxFragmentShaderUniformBuffers()) * static_cast(mRenderer->getMaxUniformBufferSize() / 4); GLint64 defaultBufferComponents = static_cast(mRenderer->getMaxVertexUniformVectors() * 4); *params = uniformBufferComponents + defaultBufferComponents; } break; case GL_MAX_SERVER_WAIT_TIMEOUT: // We do not wait for server fence objects internally, so report a max timeout of zero. *params = 0; break; default: UNREACHABLE(); break; } } bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. // Indexed integer queries all refer to current state, so this function is a // mere passthrough. return mState.getIndexedIntegerv(target, index, data); } bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data) { // Queries about context capabilities and maximums are answered by Context. // Queries about current GL state values are answered by State. // Indexed integer queries all refer to current state, so this function is a // mere passthrough. return mState.getIndexedInteger64v(target, index, data); } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { *type = GL_INT; *numParams = 1; return true; } // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch (pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = mNumCompressedTextureFormats; } return true; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = 0; } return true; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_MAX_COLOR_ATTACHMENTS_EXT: case GL_MAX_DRAW_BUFFERS_EXT: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: //case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: case GL_READ_FRAMEBUFFER_BINDING_ANGLE: case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_PACK_REVERSE_ROW_ORDER_ANGLE: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_RESET_NOTIFICATION_STRATEGY_EXT: case GL_NUM_PROGRAM_BINARY_FORMATS_OES: case GL_PROGRAM_BINARY_FORMATS_OES: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_SAMPLES_ANGLE: { if (mExtensions.framebufferMultisample) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_PIXEL_PACK_BUFFER_BINDING: case GL_PIXEL_UNPACK_BUFFER_BINDING: { if (mExtensions.pixelBufferObject) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } return true; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } return true; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_CONTEXT_ROBUST_ACCESS_EXT: { *type = GL_BOOL; *numParams = 1; } return true; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } return true; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } return true; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } return true; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } return true; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: if (!mExtensions.maxTextureAnisotropy) { return false; } *type = GL_FLOAT; *numParams = 1; return true; } if (mClientVersion < 3) { return false; } // Check for ES3.0+ parameter names switch (pname) { case GL_MAX_UNIFORM_BUFFER_BINDINGS: case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: case GL_UNIFORM_BUFFER_BINDING: case GL_TRANSFORM_FEEDBACK_BINDING: case GL_COPY_READ_BUFFER_BINDING: case GL_COPY_WRITE_BUFFER_BINDING: case GL_TEXTURE_BINDING_3D: case GL_TEXTURE_BINDING_2D_ARRAY: case GL_MAX_3D_TEXTURE_SIZE: case GL_MAX_ARRAY_TEXTURE_LAYERS: case GL_MAX_VERTEX_UNIFORM_BLOCKS: case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: case GL_MAX_COMBINED_UNIFORM_BLOCKS: case GL_MAX_VARYING_COMPONENTS: case GL_VERTEX_ARRAY_BINDING: case GL_MAX_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: case GL_NUM_EXTENSIONS: case GL_MAJOR_VERSION: case GL_MINOR_VERSION: case GL_MAX_ELEMENTS_INDICES: case GL_MAX_ELEMENTS_VERTICES: case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_ELEMENT_INDEX: case GL_MAX_UNIFORM_BLOCK_SIZE: case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_SERVER_WAIT_TIMEOUT: { *type = GL_INT_64_ANGLEX; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_ACTIVE: case GL_TRANSFORM_FEEDBACK_PAUSED: { *type = GL_BOOL; *numParams = 1; } return true; } return false; } bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams) { if (mClientVersion < 3) { return false; } switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: case GL_UNIFORM_BUFFER_BINDING: { *type = GL_INT; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_BUFFER_START: case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: case GL_UNIFORM_BUFFER_START: case GL_UNIFORM_BUFFER_SIZE: { *type = GL_INT_64_ANGLEX; *numParams = 1; } } return false; } // Applies the render target surface, depth stencil surface, viewport rectangle and // scissor rectangle to the renderer bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport) { Framebuffer *framebufferObject = mState.getDrawFramebuffer(); ASSERT(framebufferObject && framebufferObject->completeness() == GL_FRAMEBUFFER_COMPLETE); mRenderer->applyRenderTarget(framebufferObject); float nearZ, farZ; mState.getDepthRange(&nearZ, &farZ); if (!mRenderer->setViewport(mState.getViewport(), nearZ, farZ, drawMode, mState.getRasterizerState().frontFace, ignoreViewport)) { return false; } mRenderer->setScissorRectangle(mState.getScissor(), mState.isScissorTestEnabled()); return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device void Context::applyState(GLenum drawMode) { Framebuffer *framebufferObject = mState.getDrawFramebuffer(); int samples = framebufferObject->getSamples(); RasterizerState rasterizer = mState.getRasterizerState(); rasterizer.pointDrawMode = (drawMode == GL_POINTS); rasterizer.multiSample = (samples != 0); mRenderer->setRasterizerState(rasterizer); unsigned int mask = 0; if (mState.isSampleCoverageEnabled()) { GLclampf coverageValue; bool coverageInvert = false; mState.getSampleCoverageParams(&coverageValue, &coverageInvert); if (coverageValue != 0) { float threshold = 0.5f; for (int i = 0; i < samples; ++i) { mask <<= 1; if ((i + 1) * coverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if (coverageInvert) { mask = ~mask; } } else { mask = 0xFFFFFFFF; } mRenderer->setBlendState(framebufferObject, mState.getBlendState(), mState.getBlendColor(), mask); mRenderer->setDepthStencilState(mState.getDepthStencilState(), mState.getStencilRef(), mState.getStencilBackRef(), rasterizer.frontFace == GL_CCW); } // Applies the shaders and shader constants to the Direct3D 9 device void Context::applyShaders(ProgramBinary *programBinary, bool transformFeedbackActive) { const VertexAttribute *vertexAttributes = mState.getVertexArray()->getVertexAttributes(); VertexFormat inputLayout[gl::MAX_VERTEX_ATTRIBS]; VertexFormat::GetInputLayout(inputLayout, programBinary, vertexAttributes, mState.getVertexAttribCurrentValues()); const Framebuffer *fbo = mState.getDrawFramebuffer(); mRenderer->applyShaders(programBinary, inputLayout, fbo, mState.getRasterizerState().rasterizerDiscard, transformFeedbackActive); programBinary->applyUniforms(); } size_t Context::getCurrentTexturesAndSamplerStates(ProgramBinary *programBinary, SamplerType type, Texture **outTextures, TextureType *outTextureTypes, SamplerState *outSamplers) { size_t samplerRange = programBinary->getUsedSamplerRange(type); for (size_t i = 0; i < samplerRange; i++) { outTextureTypes[i] = programBinary->getSamplerTextureType(type, i); GLint textureUnit = programBinary->getSamplerMapping(type, i); // OpenGL texture image unit index if (textureUnit != -1) { outTextures[i] = getSamplerTexture(textureUnit, outTextureTypes[i]); outTextures[i]->getSamplerStateWithNativeOffset(&outSamplers[i]); Sampler *samplerObject = mState.getSampler(textureUnit); if (samplerObject) { samplerObject->getState(&outSamplers[i]); } } else { outTextures[i] = NULL; } } return samplerRange; } void Context::generateSwizzles(Texture *textures[], size_t count) { for (size_t i = 0; i < count; i++) { if (textures[i] && textures[i]->getSamplerState().swizzleRequired()) { mRenderer->generateSwizzle(textures[i]); } } } // For each Direct3D sampler of either the pixel or vertex stage, // looks up the corresponding OpenGL texture image unit and texture type, // and sets the texture and its addressing/filtering state (or NULL when inactive). void Context::applyTextures(SamplerType shaderType, Texture *textures[], TextureType *textureTypes, SamplerState *samplers, size_t textureCount, const FramebufferTextureSerialArray& framebufferSerials, size_t framebufferSerialCount) { // Range of Direct3D samplers of given sampler type size_t samplerCount = (shaderType == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : mRenderer->getMaxVertexTextureImageUnits(); for (size_t samplerIndex = 0; samplerIndex < textureCount; samplerIndex++) { Texture *texture = textures[samplerIndex]; const SamplerState &sampler = samplers[samplerIndex]; TextureType textureType = textureTypes[samplerIndex]; if (texture) { // TODO: std::binary_search may become unavailable using older versions of GCC if (texture->isSamplerComplete(sampler) && !std::binary_search(framebufferSerials.begin(), framebufferSerials.begin() + framebufferSerialCount, texture->getTextureSerial())) { mRenderer->setSamplerState(shaderType, samplerIndex, sampler); mRenderer->setTexture(shaderType, samplerIndex, texture); texture->resetDirty(); } else { Texture *incompleteTexture = getIncompleteTexture(textureType); mRenderer->setTexture(shaderType, samplerIndex, incompleteTexture); incompleteTexture->resetDirty(); } } else { mRenderer->setTexture(shaderType, samplerIndex, NULL); } } for (size_t samplerIndex = textureCount; samplerIndex < samplerCount; samplerIndex++) { mRenderer->setTexture(shaderType, samplerIndex, NULL); } } bool Context::applyUniformBuffers() { Program *programObject = getProgram(mState.getCurrentProgramId()); ProgramBinary *programBinary = programObject->getProgramBinary(); std::vector boundBuffers; for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < programBinary->getActiveUniformBlockCount(); uniformBlockIndex++) { GLuint blockBinding = programObject->getUniformBlockBinding(uniformBlockIndex); if (mState.getIndexedUniformBuffer(blockBinding)->id() == 0) { // undefined behaviour return false; } else { Buffer *uniformBuffer = mState.getIndexedUniformBuffer(blockBinding); ASSERT(uniformBuffer); boundBuffers.push_back(uniformBuffer); } } return programBinary->applyUniformBuffers(boundBuffers); } bool Context::applyTransformFeedbackBuffers() { TransformFeedback *curTransformFeedback = mState.getCurrentTransformFeedback(); if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused()) { Buffer *transformFeedbackBuffers[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS]; GLintptr transformFeedbackOffsets[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS]; for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { transformFeedbackBuffers[i] = mState.getIndexedTransformFeedbackBuffer(i); transformFeedbackOffsets[i] = mState.getIndexedTransformFeedbackBufferOffset(i); } mRenderer->applyTransformFeedbackBuffers(transformFeedbackBuffers, transformFeedbackOffsets); return true; } else { return false; } } void Context::markTransformFeedbackUsage() { for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { Buffer *buffer = mState.getIndexedTransformFeedbackBuffer(i); if (buffer) { buffer->markTransformFeedbackUsage(); } } } void Context::clear(GLbitfield mask) { if (mState.isRasterizerDiscardEnabled()) { return; } ClearParameters clearParams = mState.getClearParameters(mask); if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, mState.getDrawFramebuffer()); } void Context::clearBufferfv(GLenum buffer, int drawbuffer, const float *values) { if (mState.isRasterizerDiscardEnabled()) { return; } // glClearBufferfv can be called to clear the color buffer or depth buffer ClearParameters clearParams = mState.getClearParameters(0); if (buffer == GL_COLOR) { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast(i)); } clearParams.colorFClearValue = ColorF(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_FLOAT; } if (buffer == GL_DEPTH) { clearParams.clearDepth = true; clearParams.depthClearValue = values[0]; } if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, mState.getDrawFramebuffer()); } void Context::clearBufferuiv(GLenum buffer, int drawbuffer, const unsigned int *values) { if (mState.isRasterizerDiscardEnabled()) { return; } // glClearBufferuv can only be called to clear a color buffer ClearParameters clearParams = mState.getClearParameters(0); for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast(i)); } clearParams.colorUIClearValue = ColorUI(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_UNSIGNED_INT; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, mState.getDrawFramebuffer()); } void Context::clearBufferiv(GLenum buffer, int drawbuffer, const int *values) { if (mState.isRasterizerDiscardEnabled()) { return; } // glClearBufferfv can be called to clear the color buffer or stencil buffer ClearParameters clearParams = mState.getClearParameters(0); if (buffer == GL_COLOR) { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast(i)); } clearParams.colorIClearValue = ColorI(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_INT; } if (buffer == GL_STENCIL) { clearParams.clearStencil = true; clearParams.stencilClearValue = values[1]; } if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, mState.getDrawFramebuffer()); } void Context::clearBufferfi(GLenum buffer, int drawbuffer, float depth, int stencil) { if (mState.isRasterizerDiscardEnabled()) { return; } // glClearBufferfi can only be called to clear a depth stencil buffer ClearParameters clearParams = mState.getClearParameters(0); clearParams.clearDepth = true; clearParams.depthClearValue = depth; clearParams.clearStencil = true; clearParams.stencilClearValue = stencil; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, mState.getDrawFramebuffer()); } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { gl::Framebuffer *framebuffer = mState.getReadFramebuffer(); bool isSized = IsSizedInternalFormat(format); GLenum sizedInternalFormat = (isSized ? format : GetSizedInternalFormat(format, type)); GLuint outputPitch = GetRowPitch(sizedInternalFormat, type, width, mState.getPackAlignment()); mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, mState.getPackState(), pixels); } void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances) { ASSERT(mState.getCurrentProgramId() != 0); ProgramBinary *programBinary = mState.getCurrentProgramBinary(); programBinary->updateSamplerMapping(); Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers); Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS]; TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS]; SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS]; size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers); generateSwizzles(vsTextures, vsTextureCount); generateSwizzles(psTextures, psTextureCount); if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); GLenum err = mRenderer->applyVertexBuffer(programBinary, mState.getVertexArray()->getVertexAttributes(), mState.getVertexAttribCurrentValues(), first, count, instances); if (err != GL_NO_ERROR) { return gl::error(err); } bool transformFeedbackActive = applyTransformFeedbackBuffers(); applyShaders(programBinary, transformFeedbackActive); FramebufferTextureSerialArray frameBufferSerials; size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials); applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount); applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount); if (!applyUniformBuffers()) { return; } if (!skipDraw(mode)) { mRenderer->drawArrays(mode, count, instances, transformFeedbackActive); if (transformFeedbackActive) { markTransformFeedbackUsage(); } } } void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances) { ASSERT(mState.getCurrentProgramId() != 0); ProgramBinary *programBinary = mState.getCurrentProgramBinary(); programBinary->updateSamplerMapping(); Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers); Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS]; TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS]; SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS]; size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers); generateSwizzles(vsTextures, vsTextureCount); generateSwizzles(psTextures, psTextureCount); if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); VertexArray *vao = mState.getVertexArray(); rx::TranslatedIndexData indexInfo; GLenum err = mRenderer->applyIndexBuffer(indices, vao->getElementArrayBuffer(), count, mode, type, &indexInfo); if (err != GL_NO_ERROR) { return gl::error(err); } GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = mRenderer->applyVertexBuffer(programBinary, vao->getVertexAttributes(), mState.getVertexAttribCurrentValues(), indexInfo.minIndex, vertexCount, instances); if (err != GL_NO_ERROR) { return gl::error(err); } bool transformFeedbackActive = applyTransformFeedbackBuffers(); // Transform feedback is not allowed for DrawElements, this error should have been caught at the API validation // layer. ASSERT(!transformFeedbackActive); applyShaders(programBinary, transformFeedbackActive); FramebufferTextureSerialArray frameBufferSerials; size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials); applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount); applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount); if (!applyUniformBuffers()) { return; } if (!skipDraw(mode)) { mRenderer->drawElements(mode, count, type, indices, vao->getElementArrayBuffer(), indexInfo, instances); } } // Implements glFlush when block is false, glFinish when block is true void Context::sync(bool block) { mRenderer->sync(block); } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if (mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if (mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if (mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if (mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if (mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION; } return GL_NO_ERROR; } GLenum Context::getResetStatus() { if (mResetStatus == GL_NO_ERROR && !mContextLost) { // mResetStatus will be set by the markContextLost callback // in the case a notification is sent mRenderer->testDeviceLost(true); } GLenum status = mResetStatus; if (mResetStatus != GL_NO_ERROR) { ASSERT(mContextLost); if (mRenderer->testDeviceResettable()) { mResetStatus = GL_NO_ERROR; } } return status; } bool Context::isResetNotificationEnabled() { return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } int Context::getClientVersion() const { return mClientVersion; } const Caps &Context::getCaps() const { return mCaps; } const TextureCapsMap &Context::getTextureCaps() const { return mTextureCaps; } const Extensions &Context::getExtensions() const { return mExtensions; } int Context::getMajorShaderModel() const { return mMajorShaderModel; } unsigned int Context::getMaximumCombinedTextureImageUnits() const { return mRenderer->getMaxCombinedTextureImageUnits(); } unsigned int Context::getMaximumCombinedUniformBufferBindings() const { return mRenderer->getMaxVertexShaderUniformBuffers() + mRenderer->getMaxFragmentShaderUniformBuffers(); } int Context::getMaxSupportedSamples() const { return mRenderer->getMaxSupportedSamples(); } GLsizei Context::getMaxSupportedFormatSamples(GLenum internalFormat) const { return mRenderer->getMaxSupportedFormatSamples(internalFormat); } GLsizei Context::getNumSampleCounts(GLenum internalFormat) const { return mRenderer->getNumSampleCounts(internalFormat); } void Context::getSampleCounts(GLenum internalFormat, GLsizei bufSize, GLint *params) const { mRenderer->getSampleCounts(internalFormat, bufSize, params); } unsigned int Context::getMaxTransformFeedbackBufferBindings() const { return mRenderer->getMaxTransformFeedbackBuffers(); } GLintptr Context::getUniformBufferOffsetAlignment() const { // setting a large alignment forces uniform buffers to bind with zero offset return static_cast(std::numeric_limits::max()); } void Context::getCurrentReadFormatType(GLenum *internalFormat, GLenum *format, GLenum *type) { Framebuffer *framebuffer = mState.getReadFramebuffer(); ASSERT(framebuffer && framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE); FramebufferAttachment *attachment = framebuffer->getReadColorbuffer(); ASSERT(attachment); *internalFormat = attachment->getActualFormat(); *format = gl::GetFormat(attachment->getActualFormat()); *type = gl::GetType(attachment->getActualFormat()); } void Context::detachTexture(GLuint texture) { // Simple pass-through to State's detachTexture method, as textures do not require // allocation map management either here or in the resource manager at detach time. // Zero textures are held by the Context, and we don't attempt to request them from // the State. mState.detachTexture(texture); } void Context::detachBuffer(GLuint buffer) { // Buffer detachment is handled by Context, because the buffer must also be // attached from any VAOs in existence, and Context holds the VAO map. // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. mState.removeArrayBufferBinding(buffer); // mark as freed among the vertex array objects for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++) { vaoIt->second->detachBuffer(buffer); } } void Context::detachFramebuffer(GLuint framebuffer) { // Framebuffer detachment is handled by Context, because 0 is a valid // Framebuffer object, and a pointer to it must be passed from Context // to State at binding time. // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if (mState.removeReadFramebufferBinding(framebuffer)) { bindReadFramebuffer(0); } if (mState.removeDrawFramebufferBinding(framebuffer)) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { mState.detachRenderbuffer(renderbuffer); } void Context::detachVertexArray(GLuint vertexArray) { // Vertex array detachment is handled by Context, because 0 is a valid // VAO, and a pointer to it must be passed from Context to State at // binding time. // [OpenGL ES 3.0.2] section 2.10 page 43: // If a vertex array object that is currently bound is deleted, the binding // for that object reverts to zero and the default vertex array becomes current. if (mState.removeVertexArrayBinding(vertexArray)) { bindVertexArray(0); } } void Context::detachTransformFeedback(GLuint transformFeedback) { mState.detachTransformFeedback(transformFeedback); } void Context::detachSampler(GLuint sampler) { mState.detachSampler(sampler); } Texture *Context::getIncompleteTexture(TextureType type) { Texture *t = mIncompleteTextures[type].get(); if (t == NULL) { const GLubyte color[] = { 0, 0, 0, 255 }; const PixelUnpackState incompleteUnpackState(1); switch (type) { default: UNREACHABLE(); // default falls through to TEXTURE_2D case TEXTURE_2D: { Texture2D *incomplete2d = new Texture2D(mRenderer->createTexture2D(), Texture::INCOMPLETE_TEXTURE_ID); incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete2d; } break; case TEXTURE_CUBE: { TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer->createTextureCube(), Texture::INCOMPLETE_TEXTURE_ID); incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incompleteCube; } break; case TEXTURE_3D: { Texture3D *incomplete3d = new Texture3D(mRenderer->createTexture3D(), Texture::INCOMPLETE_TEXTURE_ID); incomplete3d->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete3d; } break; case TEXTURE_2D_ARRAY: { Texture2DArray *incomplete2darray = new Texture2DArray(mRenderer->createTexture2DArray(), Texture::INCOMPLETE_TEXTURE_ID); incomplete2darray->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete2darray; } break; } mIncompleteTextures[type].set(t); } return t; } bool Context::skipDraw(GLenum drawMode) { if (drawMode == GL_POINTS) { // ProgramBinary assumes non-point rendering if gl_PointSize isn't written, // which affects varying interpolation. Since the value of gl_PointSize is // undefined when not written, just skip drawing to avoid unexpected results. if (!mState.getCurrentProgramBinary()->usesPointSize()) { // This is stictly speaking not an error, but developers should be // notified of risking undefined behavior. ERR("Point rendering without writing to gl_PointSize."); return true; } } else if (IsTriangleMode(drawMode)) { if (mState.getRasterizerState().cullFace && mState.getRasterizerState().cullMode == GL_FRONT_AND_BACK) { return true; } } return false; } void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) { mState.getVertexArray()->setVertexAttribDivisor(index, divisor); } void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast(param)); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast(param)); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast(param)); break; default: UNREACHABLE(); break; } } void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround(param)); break; default: UNREACHABLE(); break; } } GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return uiround(samplerObject->getMinLod()); case GL_TEXTURE_MAX_LOD: return uiround(samplerObject->getMaxLod()); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod(); case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod(); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } void Context::initRendererString() { std::ostringstream rendererString; rendererString << "ANGLE ("; rendererString << mRenderer->getRendererDescription(); rendererString << ")"; mRendererString = MakeStaticString(rendererString.str()); } const std::string &Context::getRendererString() const { return mRendererString; } void Context::initExtensionStrings() { mExtensionStrings = mExtensions.getStrings(); std::ostringstream combinedStringStream; std::copy(mExtensionStrings.begin(), mExtensionStrings.end(), std::ostream_iterator(combinedStringStream, " ")); mExtensionString = combinedStringStream.str(); } const std::string &Context::getExtensionString() const { return mExtensionString; } const std::string &Context::getExtensionString(size_t idx) const { return mExtensionStrings[idx]; } size_t Context::getExtensionStringCount() const { return mExtensionStrings.size(); } size_t Context::getBoundFramebufferTextureSerials(FramebufferTextureSerialArray *outSerialArray) { size_t serialCount = 0; Framebuffer *drawFramebuffer = mState.getDrawFramebuffer(); for (unsigned int i = 0; i < IMPLEMENTATION_MAX_DRAW_BUFFERS; i++) { FramebufferAttachment *attachment = drawFramebuffer->getColorbuffer(i); if (attachment && attachment->isTexture()) { (*outSerialArray)[serialCount++] = attachment->getTextureSerial(); } } FramebufferAttachment *depthStencilAttachment = drawFramebuffer->getDepthOrStencilbuffer(); if (depthStencilAttachment && depthStencilAttachment->isTexture()) { (*outSerialArray)[serialCount++] = depthStencilAttachment->getTextureSerial(); } std::sort(outSerialArray->begin(), outSerialArray->begin() + serialCount); return serialCount; } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { Framebuffer *readFramebuffer = mState.getReadFramebuffer(); Framebuffer *drawFramebuffer = mState.getDrawFramebuffer(); bool blitRenderTarget = false; bool blitDepth = false; bool blitStencil = false; if ((mask & GL_COLOR_BUFFER_BIT) && readFramebuffer->getReadColorbuffer() && drawFramebuffer->getFirstColorbuffer()) { blitRenderTarget = true; } if ((mask & GL_STENCIL_BUFFER_BIT) && readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) { blitStencil = true; } if ((mask & GL_DEPTH_BUFFER_BIT) && readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) { blitDepth = true; } gl::Rectangle srcRect(srcX0, srcY0, srcX1 - srcX0, srcY1 - srcY0); gl::Rectangle dstRect(dstX0, dstY0, dstX1 - dstX0, dstY1 - dstY0); if (blitRenderTarget || blitDepth || blitStencil) { const gl::Rectangle *scissor = mState.isScissorTestEnabled() ? &mState.getScissor() : NULL; mRenderer->blitRect(readFramebuffer, srcRect, drawFramebuffer, dstRect, scissor, blitRenderTarget, blitDepth, blitStencil, filter); } } void Context::invalidateFrameBuffer(GLenum target, GLsizei numAttachments, const GLenum* attachments, GLint x, GLint y, GLsizei width, GLsizei height) { Framebuffer *frameBuffer = NULL; switch (target) { case GL_FRAMEBUFFER: case GL_DRAW_FRAMEBUFFER: frameBuffer = mState.getDrawFramebuffer(); break; case GL_READ_FRAMEBUFFER: frameBuffer = mState.getReadFramebuffer(); break; default: UNREACHABLE(); } if (frameBuffer && frameBuffer->completeness() == GL_FRAMEBUFFER_COMPLETE) { for (int i = 0; i < numAttachments; ++i) { rx::RenderTarget *renderTarget = NULL; if (attachments[i] >= GL_COLOR_ATTACHMENT0 && attachments[i] <= GL_COLOR_ATTACHMENT15) { gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(attachments[i] - GL_COLOR_ATTACHMENT0); if (attachment) { renderTarget = attachment->getRenderTarget(); } } else if (attachments[i] == GL_COLOR) { gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(0); if (attachment) { renderTarget = attachment->getRenderTarget(); } } else { gl::FramebufferAttachment *attachment = NULL; switch (attachments[i]) { case GL_DEPTH_ATTACHMENT: case GL_DEPTH: attachment = frameBuffer->getDepthbuffer(); break; case GL_STENCIL_ATTACHMENT: case GL_STENCIL: attachment = frameBuffer->getStencilbuffer(); break; case GL_DEPTH_STENCIL_ATTACHMENT: attachment = frameBuffer->getDepthOrStencilbuffer(); break; default: UNREACHABLE(); } if (attachment) { renderTarget = attachment->getDepthStencil(); } } if (renderTarget) { renderTarget->invalidate(x, y, width, height); } } } } bool Context::hasMappedBuffer(GLenum target) const { if (target == GL_ARRAY_BUFFER) { for (unsigned int attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; attribIndex++) { const gl::VertexAttribute &vertexAttrib = mState.getVertexAttribState(attribIndex); gl::Buffer *boundBuffer = vertexAttrib.buffer.get(); if (vertexAttrib.enabled && boundBuffer && boundBuffer->isMapped()) { return true; } } } else if (target == GL_ELEMENT_ARRAY_BUFFER) { Buffer *elementBuffer = mState.getTargetBuffer(target); return (elementBuffer && elementBuffer->isMapped()); } else if (target == GL_TRANSFORM_FEEDBACK_BUFFER) { UNIMPLEMENTED(); } else UNREACHABLE(); return false; } void Context::initCaps(GLuint clientVersion) { mCaps = mRenderer->getRendererCaps(); mExtensions = mRenderer->getRendererExtensions(); if (clientVersion < 3) { // Disable ES3+ extensions mExtensions.colorBufferFloat = false; } if (clientVersion > 2) { // FIXME(geofflang): Don't support EXT_sRGB in non-ES2 contexts //mExtensions.sRGB = false; } const TextureCapsMap &rendererFormats = mRenderer->getRendererTextureCaps(); for (TextureCapsMap::const_iterator i = rendererFormats.begin(); i != rendererFormats.end(); i++) { GLenum format = i->first; TextureCaps formatCaps = i->second; if (formatCaps.texturable && IsValidInternalFormat(format, mExtensions, clientVersion)) { // Update the format caps based on the client version and extensions formatCaps.renderable = IsRenderingSupported(format, mExtensions, clientVersion); formatCaps.filterable = IsFilteringSupported(format, mExtensions, clientVersion); mTextureCaps.insert(format, formatCaps); } } } } extern "C" { gl::Context *glCreateContext(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) { return new gl::Context(clientVersion, shareContext, renderer, notifyResets, robustAccess); } void glDestroyContext(gl::Context *context) { delete context; if (context == gl::getContext()) { gl::makeCurrent(NULL, NULL, NULL); } } void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface) { gl::makeCurrent(context, display, surface); } gl::Context *glGetCurrentContext() { return gl::getContext(); } }