#include "precompiled.h" // // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "libGLESv2/Context.h" #include "libGLESv2/main.h" #include "libGLESv2/utilities.h" #include "libGLESv2/Buffer.h" #include "libGLESv2/Fence.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/Renderbuffer.h" #include "libGLESv2/Program.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/Query.h" #include "libGLESv2/Texture.h" #include "libGLESv2/ResourceManager.h" #include "libGLESv2/renderer/IndexDataManager.h" #include "libGLESv2/renderer/RenderTarget.h" #include "libGLESv2/renderer/Renderer.h" #include "libEGL/Surface.h" #undef near #undef far namespace gl { static const char* makeStaticString(const std::string& str) { static std::set strings; std::set::iterator it = strings.find(str); if (it != strings.end()) return it->c_str(); return strings.insert(str).first->c_str(); } Context::Context(const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer) { ASSERT(robustAccess == false); // Unimplemented mFenceHandleAllocator.setBaseHandle(0); setClearColor(0.0f, 0.0f, 0.0f, 0.0f); mState.depthClearValue = 1.0f; mState.stencilClearValue = 0; mState.rasterizer.cullFace = false; mState.rasterizer.cullMode = GL_BACK; mState.rasterizer.frontFace = GL_CCW; mState.rasterizer.polygonOffsetFill = false; mState.rasterizer.polygonOffsetFactor = 0.0f; mState.rasterizer.polygonOffsetUnits = 0.0f; mState.rasterizer.pointDrawMode = false; mState.rasterizer.multiSample = false; mState.scissorTest = false; mState.scissor.x = 0; mState.scissor.y = 0; mState.scissor.width = 0; mState.scissor.height = 0; mState.blend.blend = false; mState.blend.sourceBlendRGB = GL_ONE; mState.blend.sourceBlendAlpha = GL_ONE; mState.blend.destBlendRGB = GL_ZERO; mState.blend.destBlendAlpha = GL_ZERO; mState.blend.blendEquationRGB = GL_FUNC_ADD; mState.blend.blendEquationAlpha = GL_FUNC_ADD; mState.blend.sampleAlphaToCoverage = false; mState.blend.dither = true; mState.blendColor.red = 0; mState.blendColor.green = 0; mState.blendColor.blue = 0; mState.blendColor.alpha = 0; mState.depthStencil.depthTest = false; mState.depthStencil.depthFunc = GL_LESS; mState.depthStencil.depthMask = true; mState.depthStencil.stencilTest = false; mState.depthStencil.stencilFunc = GL_ALWAYS; mState.depthStencil.stencilMask = -1; mState.depthStencil.stencilWritemask = -1; mState.depthStencil.stencilBackFunc = GL_ALWAYS; mState.depthStencil.stencilBackMask = - 1; mState.depthStencil.stencilBackWritemask = -1; mState.depthStencil.stencilFail = GL_KEEP; mState.depthStencil.stencilPassDepthFail = GL_KEEP; mState.depthStencil.stencilPassDepthPass = GL_KEEP; mState.depthStencil.stencilBackFail = GL_KEEP; mState.depthStencil.stencilBackPassDepthFail = GL_KEEP; mState.depthStencil.stencilBackPassDepthPass = GL_KEEP; mState.stencilRef = 0; mState.stencilBackRef = 0; mState.sampleCoverage = false; mState.sampleCoverageValue = 1.0f; mState.sampleCoverageInvert = false; mState.generateMipmapHint = GL_DONT_CARE; mState.fragmentShaderDerivativeHint = GL_DONT_CARE; mState.lineWidth = 1.0f; mState.viewport.x = 0; mState.viewport.y = 0; mState.viewport.width = 0; mState.viewport.height = 0; mState.zNear = 0.0f; mState.zFar = 1.0f; mState.blend.colorMaskRed = true; mState.blend.colorMaskGreen = true; mState.blend.colorMaskBlue = true; mState.blend.colorMaskAlpha = true; if (shareContext != NULL) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(mRenderer); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero.set(new Texture2D(mRenderer, 0)); mTextureCubeMapZero.set(new TextureCubeMap(mRenderer, 0)); mState.activeSampler = 0; bindArrayBuffer(0); bindElementArrayBuffer(0); bindTextureCubeMap(0); bindTexture2D(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); mState.currentProgram = 0; mCurrentProgramBinary.set(NULL); mState.packAlignment = 4; mState.unpackAlignment = 4; mState.packReverseRowOrder = false; mExtensionString = NULL; mRendererString = NULL; mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mHasBeenCurrent = false; mContextLost = false; mResetStatus = GL_NO_ERROR; mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT); mRobustAccess = robustAccess; mSupportsBGRATextures = false; mSupportsDXT1Textures = false; mSupportsDXT3Textures = false; mSupportsDXT5Textures = false; mSupportsEventQueries = false; mSupportsOcclusionQueries = false; mNumCompressedTextureFormats = 0; } Context::~Context() { if (mState.currentProgram != 0) { Program *programObject = mResourceManager->getProgram(mState.currentProgram); if (programObject) { programObject->release(); } mState.currentProgram = 0; } mCurrentProgramBinary.set(NULL); while (!mFramebufferMap.empty()) { deleteFramebuffer(mFramebufferMap.begin()->first); } while (!mFenceMap.empty()) { deleteFence(mFenceMap.begin()->first); } while (!mQueryMap.empty()) { deleteQuery(mQueryMap.begin()->first); } for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { mState.samplerTexture[type][sampler].set(NULL); } } for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { mIncompleteTextures[type].set(NULL); } for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mState.vertexAttribute[i].mBoundBuffer.set(NULL); } for (int i = 0; i < QUERY_TYPE_COUNT; i++) { mState.activeQuery[i].set(NULL); } mState.arrayBuffer.set(NULL); mState.elementArrayBuffer.set(NULL); mState.renderbuffer.set(NULL); mTexture2DZero.set(NULL); mTextureCubeMapZero.set(NULL); mResourceManager->release(); } void Context::makeCurrent(egl::Surface *surface) { if (!mHasBeenCurrent) { mMajorShaderModel = mRenderer->getMajorShaderModel(); mMaximumPointSize = mRenderer->getMaxPointSize(); mSupportsVertexTexture = mRenderer->getVertexTextureSupport(); mSupportsNonPower2Texture = mRenderer->getNonPower2TextureSupport(); mSupportsInstancing = mRenderer->getInstancingSupport(); mMaxViewportDimension = mRenderer->getMaxViewportDimension(); mMaxTextureDimension = std::min(std::min(mRenderer->getMaxTextureWidth(), mRenderer->getMaxTextureHeight()), (int)gl::IMPLEMENTATION_MAX_TEXTURE_SIZE); mMaxCubeTextureDimension = std::min(mMaxTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE); mMaxRenderbufferDimension = mMaxTextureDimension; mMaxTextureLevel = log2(mMaxTextureDimension) + 1; mMaxTextureAnisotropy = mRenderer->getTextureMaxAnisotropy(); TRACE("MaxTextureDimension=%d, MaxCubeTextureDimension=%d, MaxRenderbufferDimension=%d, MaxTextureLevel=%d, MaxTextureAnisotropy=%f", mMaxTextureDimension, mMaxCubeTextureDimension, mMaxRenderbufferDimension, mMaxTextureLevel, mMaxTextureAnisotropy); mSupportsEventQueries = mRenderer->getEventQuerySupport(); mSupportsOcclusionQueries = mRenderer->getOcclusionQuerySupport(); mSupportsBGRATextures = mRenderer->getBGRATextureSupport(); mSupportsDXT1Textures = mRenderer->getDXT1TextureSupport(); mSupportsDXT3Textures = mRenderer->getDXT3TextureSupport(); mSupportsDXT5Textures = mRenderer->getDXT5TextureSupport(); mSupportsFloat32Textures = mRenderer->getFloat32TextureSupport(&mSupportsFloat32LinearFilter, &mSupportsFloat32RenderableTextures); mSupportsFloat16Textures = mRenderer->getFloat16TextureSupport(&mSupportsFloat16LinearFilter, &mSupportsFloat16RenderableTextures); mSupportsLuminanceTextures = mRenderer->getLuminanceTextureSupport(); mSupportsLuminanceAlphaTextures = mRenderer->getLuminanceAlphaTextureSupport(); mSupportsDepthTextures = mRenderer->getDepthTextureSupport(); mSupportsTextureFilterAnisotropy = mRenderer->getTextureFilterAnisotropySupport(); mSupports32bitIndices = mRenderer->get32BitIndexSupport(); mNumCompressedTextureFormats = 0; if (supportsDXT1Textures()) { mNumCompressedTextureFormats += 2; } if (supportsDXT3Textures()) { mNumCompressedTextureFormats += 1; } if (supportsDXT5Textures()) { mNumCompressedTextureFormats += 1; } initExtensionString(); initRendererString(); mState.viewport.x = 0; mState.viewport.y = 0; mState.viewport.width = surface->getWidth(); mState.viewport.height = surface->getHeight(); mState.scissor.x = 0; mState.scissor.y = 0; mState.scissor.width = surface->getWidth(); mState.scissor.height = surface->getHeight(); mHasBeenCurrent = true; } // Wrap the existing swapchain resources into GL objects and assign them to the '0' names rx::SwapChain *swapchain = surface->getSwapChain(); Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain); Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); } // NOTE: this function should not assume that this context is current! void Context::markContextLost() { if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; mContextLost = true; } bool Context::isContextLost() { return mContextLost; } void Context::setClearColor(float red, float green, float blue, float alpha) { mState.colorClearValue.red = red; mState.colorClearValue.green = green; mState.colorClearValue.blue = blue; mState.colorClearValue.alpha = alpha; } void Context::setClearDepth(float depth) { mState.depthClearValue = depth; } void Context::setClearStencil(int stencil) { mState.stencilClearValue = stencil; } void Context::setCullFace(bool enabled) { mState.rasterizer.cullFace = enabled; } bool Context::isCullFaceEnabled() const { return mState.rasterizer.cullFace; } void Context::setCullMode(GLenum mode) { mState.rasterizer.cullMode = mode; } void Context::setFrontFace(GLenum front) { mState.rasterizer.frontFace = front; } void Context::setDepthTest(bool enabled) { mState.depthStencil.depthTest = enabled; } bool Context::isDepthTestEnabled() const { return mState.depthStencil.depthTest; } void Context::setDepthFunc(GLenum depthFunc) { mState.depthStencil.depthFunc = depthFunc; } void Context::setDepthRange(float zNear, float zFar) { mState.zNear = zNear; mState.zFar = zFar; } void Context::setBlend(bool enabled) { mState.blend.blend = enabled; } bool Context::isBlendEnabled() const { return mState.blend.blend; } void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) { mState.blend.sourceBlendRGB = sourceRGB; mState.blend.destBlendRGB = destRGB; mState.blend.sourceBlendAlpha = sourceAlpha; mState.blend.destBlendAlpha = destAlpha; } void Context::setBlendColor(float red, float green, float blue, float alpha) { mState.blendColor.red = red; mState.blendColor.green = green; mState.blendColor.blue = blue; mState.blendColor.alpha = alpha; } void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) { mState.blend.blendEquationRGB = rgbEquation; mState.blend.blendEquationAlpha = alphaEquation; } void Context::setStencilTest(bool enabled) { mState.depthStencil.stencilTest = enabled; } bool Context::isStencilTestEnabled() const { return mState.depthStencil.stencilTest; } void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) { mState.depthStencil.stencilFunc = stencilFunc; mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; mState.depthStencil.stencilMask = stencilMask; } void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) { mState.depthStencil.stencilBackFunc = stencilBackFunc; mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; mState.depthStencil.stencilBackMask = stencilBackMask; } void Context::setStencilWritemask(GLuint stencilWritemask) { mState.depthStencil.stencilWritemask = stencilWritemask; } void Context::setStencilBackWritemask(GLuint stencilBackWritemask) { mState.depthStencil.stencilBackWritemask = stencilBackWritemask; } void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) { mState.depthStencil.stencilFail = stencilFail; mState.depthStencil.stencilPassDepthFail = stencilPassDepthFail; mState.depthStencil.stencilPassDepthPass = stencilPassDepthPass; } void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) { mState.depthStencil.stencilBackFail = stencilBackFail; mState.depthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail; mState.depthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass; } void Context::setPolygonOffsetFill(bool enabled) { mState.rasterizer.polygonOffsetFill = enabled; } bool Context::isPolygonOffsetFillEnabled() const { return mState.rasterizer.polygonOffsetFill; } void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) { // An application can pass NaN values here, so handle this gracefully mState.rasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor; mState.rasterizer.polygonOffsetUnits = units != units ? 0.0f : units; } void Context::setSampleAlphaToCoverage(bool enabled) { mState.blend.sampleAlphaToCoverage = enabled; } bool Context::isSampleAlphaToCoverageEnabled() const { return mState.blend.sampleAlphaToCoverage; } void Context::setSampleCoverage(bool enabled) { mState.sampleCoverage = enabled; } bool Context::isSampleCoverageEnabled() const { return mState.sampleCoverage; } void Context::setSampleCoverageParams(GLclampf value, bool invert) { mState.sampleCoverageValue = value; mState.sampleCoverageInvert = invert; } void Context::setScissorTest(bool enabled) { mState.scissorTest = enabled; } bool Context::isScissorTestEnabled() const { return mState.scissorTest; } void Context::setDither(bool enabled) { mState.blend.dither = enabled; } bool Context::isDitherEnabled() const { return mState.blend.dither; } void Context::setLineWidth(GLfloat width) { mState.lineWidth = width; } void Context::setGenerateMipmapHint(GLenum hint) { mState.generateMipmapHint = hint; } void Context::setFragmentShaderDerivativeHint(GLenum hint) { mState.fragmentShaderDerivativeHint = hint; // TODO: Propagate the hint to shader translator so we can write // ddx, ddx_coarse, or ddx_fine depending on the hint. // Ignore for now. It is valid for implementations to ignore hint. } void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.viewport.x = x; mState.viewport.y = y; mState.viewport.width = width; mState.viewport.height = height; } void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.scissor.x = x; mState.scissor.y = y; mState.scissor.width = width; mState.scissor.height = height; } void Context::setColorMask(bool red, bool green, bool blue, bool alpha) { mState.blend.colorMaskRed = red; mState.blend.colorMaskGreen = green; mState.blend.colorMaskBlue = blue; mState.blend.colorMaskAlpha = alpha; } void Context::setDepthMask(bool mask) { mState.depthStencil.depthMask = mask; } void Context::setActiveSampler(unsigned int active) { mState.activeSampler = active; } GLuint Context::getReadFramebufferHandle() const { return mState.readFramebuffer; } GLuint Context::getDrawFramebufferHandle() const { return mState.drawFramebuffer; } GLuint Context::getRenderbufferHandle() const { return mState.renderbuffer.id(); } GLuint Context::getArrayBufferHandle() const { return mState.arrayBuffer.id(); } GLuint Context::getActiveQuery(GLenum target) const { Query *queryObject = NULL; switch (target) { case GL_ANY_SAMPLES_PASSED_EXT: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED].get(); break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE].get(); break; default: ASSERT(false); } if (queryObject) { return queryObject->id(); } else { return 0; } } void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled) { mState.vertexAttribute[attribNum].mArrayEnabled = enabled; } const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) { return mState.vertexAttribute[attribNum]; } void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, GLsizei stride, const void *pointer) { mState.vertexAttribute[attribNum].mBoundBuffer.set(boundBuffer); mState.vertexAttribute[attribNum].mSize = size; mState.vertexAttribute[attribNum].mType = type; mState.vertexAttribute[attribNum].mNormalized = normalized; mState.vertexAttribute[attribNum].mStride = stride; mState.vertexAttribute[attribNum].mPointer = pointer; } const void *Context::getVertexAttribPointer(unsigned int attribNum) const { return mState.vertexAttribute[attribNum].mPointer; } void Context::setPackAlignment(GLint alignment) { mState.packAlignment = alignment; } GLint Context::getPackAlignment() const { return mState.packAlignment; } void Context::setUnpackAlignment(GLint alignment) { mState.unpackAlignment = alignment; } GLint Context::getUnpackAlignment() const { return mState.unpackAlignment; } void Context::setPackReverseRowOrder(bool reverseRowOrder) { mState.packReverseRowOrder = reverseRowOrder; } bool Context::getPackReverseRowOrder() const { return mState.packReverseRowOrder; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { GLuint handle = mFramebufferHandleAllocator.allocate(); mFramebufferMap[handle] = NULL; return handle; } GLuint Context::createFence() { GLuint handle = mFenceHandleAllocator.allocate(); mFenceMap[handle] = new Fence(mRenderer); return handle; } // Returns an unused query name GLuint Context::createQuery() { GLuint handle = mQueryHandleAllocator.allocate(); mQueryMap[handle] = NULL; return handle; } void Context::deleteBuffer(GLuint buffer) { if (mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if (mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if (mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFramebuffer(GLuint framebuffer) { FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); if (framebufferObject != mFramebufferMap.end()) { detachFramebuffer(framebuffer); mFramebufferHandleAllocator.release(framebufferObject->first); delete framebufferObject->second; mFramebufferMap.erase(framebufferObject); } } void Context::deleteFence(GLuint fence) { FenceMap::iterator fenceObject = mFenceMap.find(fence); if (fenceObject != mFenceMap.end()) { mFenceHandleAllocator.release(fenceObject->first); delete fenceObject->second; mFenceMap.erase(fenceObject); } } void Context::deleteQuery(GLuint query) { QueryMap::iterator queryObject = mQueryMap.find(query); if (queryObject != mQueryMap.end()) { mQueryHandleAllocator.release(queryObject->first); if (queryObject->second) { queryObject->second->release(); } mQueryMap.erase(queryObject); } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } Framebuffer *Context::getReadFramebuffer() { return getFramebuffer(mState.readFramebuffer); } Framebuffer *Context::getDrawFramebuffer() { return mBoundDrawFramebuffer; } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.arrayBuffer.set(getBuffer(buffer)); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.elementArrayBuffer.set(getBuffer(buffer)); } void Context::bindTexture2D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); mState.samplerTexture[TEXTURE_2D][mState.activeSampler].set(getTexture(texture)); } void Context::bindTextureCubeMap(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].set(getTexture(texture)); } void Context::bindReadFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); } mState.readFramebuffer = framebuffer; } void Context::bindDrawFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); } mState.drawFramebuffer = framebuffer; mBoundDrawFramebuffer = getFramebuffer(framebuffer); } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.renderbuffer.set(getRenderbuffer(renderbuffer)); } void Context::useProgram(GLuint program) { GLuint priorProgram = mState.currentProgram; mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. if (priorProgram != program) { Program *newProgram = mResourceManager->getProgram(program); Program *oldProgram = mResourceManager->getProgram(priorProgram); mCurrentProgramBinary.set(NULL); if (newProgram) { newProgram->addRef(); mCurrentProgramBinary.set(newProgram->getProgramBinary()); } if (oldProgram) { oldProgram->release(); } } } void Context::linkProgram(GLuint program) { Program *programObject = mResourceManager->getProgram(program); bool linked = programObject->link(); // if the current program was relinked successfully we // need to install the new executables if (linked && program == mState.currentProgram) { mCurrentProgramBinary.set(programObject->getProgramBinary()); } } void Context::setProgramBinary(GLuint program, const void *binary, GLint length) { Program *programObject = mResourceManager->getProgram(program); bool loaded = programObject->setProgramBinary(binary, length); // if the current program was reloaded successfully we // need to install the new executables if (loaded && program == mState.currentProgram) { mCurrentProgramBinary.set(programObject->getProgramBinary()); } } void Context::beginQuery(GLenum target, GLuint query) { // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an // of zero, if the active query object name for is non-zero (for the // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if // the active query for either target is non-zero), if is the name of an // existing query object whose type does not match , or if is the // active query object name for any query type, the error INVALID_OPERATION is // generated. // Ensure no other queries are active // NOTE: If other queries than occlusion are supported, we will need to check // separately that: // a) The query ID passed is not the current active query for any target/type // b) There are no active queries for the requested target (and in the case // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, // no query may be active for either if glBeginQuery targets either. for (int i = 0; i < QUERY_TYPE_COUNT; i++) { if (mState.activeQuery[i].get() != NULL) { return gl::error(GL_INVALID_OPERATION); } } QueryType qType; switch (target) { case GL_ANY_SAMPLES_PASSED_EXT: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; default: ASSERT(false); return; } Query *queryObject = getQuery(query, true, target); // check that name was obtained with glGenQueries if (!queryObject) { return gl::error(GL_INVALID_OPERATION); } // check for type mismatch if (queryObject->getType() != target) { return gl::error(GL_INVALID_OPERATION); } // set query as active for specified target mState.activeQuery[qType].set(queryObject); // begin query queryObject->begin(); } void Context::endQuery(GLenum target) { QueryType qType; switch (target) { case GL_ANY_SAMPLES_PASSED_EXT: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; default: ASSERT(false); return; } Query *queryObject = mState.activeQuery[qType].get(); if (queryObject == NULL) { return gl::error(GL_INVALID_OPERATION); } queryObject->end(); mState.activeQuery[qType].set(NULL); } void Context::setFramebufferZero(Framebuffer *buffer) { delete mFramebufferMap[0]; mFramebufferMap[0] = buffer; if (mState.drawFramebuffer == 0) { mBoundDrawFramebuffer = buffer; } } void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples) { RenderbufferStorage *renderbuffer = NULL; switch (internalformat) { case GL_DEPTH_COMPONENT16: renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples); break; case GL_RGBA4: case GL_RGB5_A1: case GL_RGB565: case GL_RGB8_OES: case GL_RGBA8_OES: case GL_BGRA8_EXT: renderbuffer = new gl::Colorbuffer(mRenderer,width, height, internalformat, samples); break; case GL_STENCIL_INDEX8: renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples); break; case GL_DEPTH24_STENCIL8_OES: renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples); break; default: UNREACHABLE(); return; } Renderbuffer *renderbufferObject = mState.renderbuffer.get(); renderbufferObject->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) { FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle); if (framebuffer == mFramebufferMap.end()) { return NULL; } else { return framebuffer->second; } } Fence *Context::getFence(unsigned int handle) { FenceMap::iterator fence = mFenceMap.find(handle); if (fence == mFenceMap.end()) { return NULL; } else { return fence->second; } } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { QueryMap::iterator query = mQueryMap.find(handle); if (query == mQueryMap.end()) { return NULL; } else { if (!query->second && create) { query->second = new Query(mRenderer, type, handle); query->second->addRef(); } return query->second; } } Buffer *Context::getArrayBuffer() { return mState.arrayBuffer.get(); } Buffer *Context::getElementArrayBuffer() { return mState.elementArrayBuffer.get(); } ProgramBinary *Context::getCurrentProgramBinary() { return mCurrentProgramBinary.get(); } Texture2D *Context::getTexture2D() { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); } TextureCubeMap *Context::getTextureCubeMap() { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) { GLuint texid = mState.samplerTexture[type][sampler].id(); if (texid == 0) // Special case: 0 refers to different initial textures based on the target { switch (type) { default: UNREACHABLE(); case TEXTURE_2D: return mTexture2DZero.get(); case TEXTURE_CUBE: return mTextureCubeMapZero.get(); } } return mState.samplerTexture[type][sampler].get(); } bool Context::getBooleanv(GLenum pname, GLboolean *params) { switch (pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; case GL_DEPTH_WRITEMASK: *params = mState.depthStencil.depthMask; break; case GL_COLOR_WRITEMASK: params[0] = mState.blend.colorMaskRed; params[1] = mState.blend.colorMaskGreen; params[2] = mState.blend.colorMaskBlue; params[3] = mState.blend.colorMaskAlpha; break; case GL_CULL_FACE: *params = mState.rasterizer.cullFace; break; case GL_POLYGON_OFFSET_FILL: *params = mState.rasterizer.polygonOffsetFill; break; case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.blend.sampleAlphaToCoverage; break; case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break; case GL_SCISSOR_TEST: *params = mState.scissorTest; break; case GL_STENCIL_TEST: *params = mState.depthStencil.stencilTest; break; case GL_DEPTH_TEST: *params = mState.depthStencil.depthTest; break; case GL_BLEND: *params = mState.blend.blend; break; case GL_DITHER: *params = mState.blend.dither; break; case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; default: return false; } return true; } bool Context::getFloatv(GLenum pname, GLfloat *params) { // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. switch (pname) { case GL_LINE_WIDTH: *params = mState.lineWidth; break; case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; case GL_POLYGON_OFFSET_FACTOR: *params = mState.rasterizer.polygonOffsetFactor; break; case GL_POLYGON_OFFSET_UNITS: *params = mState.rasterizer.polygonOffsetUnits; break; case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN; params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN; params[1] = getMaximumPointSize(); break; case GL_DEPTH_RANGE: params[0] = mState.zNear; params[1] = mState.zFar; break; case GL_COLOR_CLEAR_VALUE: params[0] = mState.colorClearValue.red; params[1] = mState.colorClearValue.green; params[2] = mState.colorClearValue.blue; params[3] = mState.colorClearValue.alpha; break; case GL_BLEND_COLOR: params[0] = mState.blendColor.red; params[1] = mState.blendColor.green; params[2] = mState.blendColor.blue; params[3] = mState.blendColor.alpha; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: if (!supportsTextureFilterAnisotropy()) { return false; } *params = mMaxTextureAnisotropy; break; default: return false; } return true; } bool Context::getIntegerv(GLenum pname, GLint *params) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0_EXT); if (colorAttachment >= mRenderer->getMaxRenderTargets()) { // return true to stop further operation in the parent call return gl::error(GL_INVALID_OPERATION, true); } Framebuffer *framebuffer = getDrawFramebuffer(); *params = framebuffer->getDrawBufferState(colorAttachment); return true; } // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. You may find it in // Context::getFloatv. switch (pname) { case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mRenderer->getMaxVertexUniformVectors(); break; case GL_MAX_VARYING_VECTORS: *params = mRenderer->getMaxVaryingVectors(); break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxCombinedTextureImageUnits(); break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxVertexTextureImageUnits(); break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mRenderer->getMaxFragmentUniformVectors(); break; case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break; case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mRenderer->getMaxRenderTargets(); break; case GL_MAX_DRAW_BUFFERS_EXT: *params = mRenderer->getMaxRenderTargets(); break; case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break; case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.id(); break; //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break; case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break; case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break; case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break; case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mState.packReverseRowOrder; break; case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break; case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; case GL_STENCIL_FUNC: *params = mState.depthStencil.stencilFunc; break; case GL_STENCIL_REF: *params = mState.stencilRef; break; case GL_STENCIL_VALUE_MASK: *params = mState.depthStencil.stencilMask; break; case GL_STENCIL_BACK_FUNC: *params = mState.depthStencil.stencilBackFunc; break; case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break; case GL_STENCIL_BACK_VALUE_MASK: *params = mState.depthStencil.stencilBackMask; break; case GL_STENCIL_FAIL: *params = mState.depthStencil.stencilFail; break; case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilPassDepthFail; break; case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilPassDepthPass; break; case GL_STENCIL_BACK_FAIL: *params = mState.depthStencil.stencilBackFail; break; case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilBackPassDepthFail; break; case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilBackPassDepthPass; break; case GL_DEPTH_FUNC: *params = mState.depthStencil.depthFunc; break; case GL_BLEND_SRC_RGB: *params = mState.blend.sourceBlendRGB; break; case GL_BLEND_SRC_ALPHA: *params = mState.blend.sourceBlendAlpha; break; case GL_BLEND_DST_RGB: *params = mState.blend.destBlendRGB; break; case GL_BLEND_DST_ALPHA: *params = mState.blend.destBlendAlpha; break; case GL_BLEND_EQUATION_RGB: *params = mState.blend.blendEquationRGB; break; case GL_BLEND_EQUATION_ALPHA: *params = mState.blend.blendEquationAlpha; break; case GL_STENCIL_WRITEMASK: *params = mState.depthStencil.stencilWritemask; break; case GL_STENCIL_BACK_WRITEMASK: *params = mState.depthStencil.stencilBackWritemask; break; case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = getMaximumTextureDimension(); break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: params[0] = mNumCompressedTextureFormats; break; case GL_MAX_SAMPLES_ANGLE: { GLsizei maxSamples = getMaxSupportedSamples(); if (maxSamples != 0) { *params = maxSamples; } else { return false; } break; } case GL_SAMPLE_BUFFERS: case GL_SAMPLES: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE) { switch (pname) { case GL_SAMPLE_BUFFERS: if (framebuffer->getSamples() != 0) { *params = 1; } else { *params = 0; } break; case GL_SAMPLES: *params = framebuffer->getSamples(); break; } } else { *params = 0; } } break; case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: { GLenum format, type; if (getCurrentReadFormatType(&format, &type)) { if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT) *params = format; else *params = type; } } break; case GL_MAX_VIEWPORT_DIMS: { params[0] = mMaxViewportDimension; params[1] = mMaxViewportDimension; } break; case GL_COMPRESSED_TEXTURE_FORMATS: { if (supportsDXT1Textures()) { *params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; *params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } if (supportsDXT3Textures()) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE; } if (supportsDXT5Textures()) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE; } } break; case GL_VIEWPORT: params[0] = mState.viewport.x; params[1] = mState.viewport.y; params[2] = mState.viewport.width; params[3] = mState.viewport.height; break; case GL_SCISSOR_BOX: params[0] = mState.scissor.x; params[1] = mState.scissor.y; params[2] = mState.scissor.width; params[3] = mState.scissor.height; break; case GL_CULL_FACE_MODE: *params = mState.rasterizer.cullMode; break; case GL_FRONT_FACE: *params = mState.rasterizer.frontFace; break; case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::Renderbuffer *colorbuffer = framebuffer->getFirstColorbuffer(); if (colorbuffer) { switch (pname) { case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; } } else { *params = 0; } } break; case GL_DEPTH_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); if (depthbuffer) { *params = depthbuffer->getDepthSize(); } else { *params = 0; } } break; case GL_STENCIL_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); if (stencilbuffer) { *params = stencilbuffer->getStencilSize(); } else { *params = 0; } } break; case GL_TEXTURE_BINDING_2D: { if (mState.activeSampler > mRenderer->getMaxCombinedTextureImageUnits() - 1) { gl::error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].id(); } break; case GL_TEXTURE_BINDING_CUBE_MAP: { if (mState.activeSampler > mRenderer->getMaxCombinedTextureImageUnits() - 1) { gl::error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].id(); } break; case GL_RESET_NOTIFICATION_STRATEGY_EXT: *params = mResetStrategy; break; case GL_NUM_PROGRAM_BINARY_FORMATS_OES: *params = 1; break; case GL_PROGRAM_BINARY_FORMATS_OES: *params = GL_PROGRAM_BINARY_ANGLE; break; default: return false; } return true; } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { *type = GL_INT; *numParams = 1; return true; } // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch (pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = mNumCompressedTextureFormats; } break; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = 0; } break; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_MAX_COLOR_ATTACHMENTS_EXT: case GL_MAX_DRAW_BUFFERS_EXT: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: case GL_FRAMEBUFFER_BINDING: case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_PACK_REVERSE_ROW_ORDER_ANGLE: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_RESET_NOTIFICATION_STRATEGY_EXT: case GL_NUM_PROGRAM_BINARY_FORMATS_OES: case GL_PROGRAM_BINARY_FORMATS_OES: { *type = GL_INT; *numParams = 1; } break; case GL_MAX_SAMPLES_ANGLE: { if (getMaxSupportedSamples() != 0) { *type = GL_INT; *numParams = 1; } else { return false; } } break; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } break; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } break; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_CONTEXT_ROBUST_ACCESS_EXT: { *type = GL_BOOL; *numParams = 1; } break; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } break; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } break; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } break; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: if (!supportsTextureFilterAnisotropy()) { return false; } *type = GL_FLOAT; *numParams = 1; break; default: return false; } return true; } // Applies the render target surface, depth stencil surface, viewport rectangle and // scissor rectangle to the renderer bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport) { Framebuffer *framebufferObject = getDrawFramebuffer(); if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION, false); } mRenderer->applyRenderTarget(framebufferObject); if (!mRenderer->setViewport(mState.viewport, mState.zNear, mState.zFar, drawMode, mState.rasterizer.frontFace, ignoreViewport)) { return false; } mRenderer->setScissorRectangle(mState.scissor, mState.scissorTest); return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device void Context::applyState(GLenum drawMode) { Framebuffer *framebufferObject = getDrawFramebuffer(); int samples = framebufferObject->getSamples(); mState.rasterizer.pointDrawMode = (drawMode == GL_POINTS); mState.rasterizer.multiSample = (samples != 0); mRenderer->setRasterizerState(mState.rasterizer); unsigned int mask = 0; if (mState.sampleCoverage) { if (mState.sampleCoverageValue != 0) { float threshold = 0.5f; for (int i = 0; i < samples; ++i) { mask <<= 1; if ((i + 1) * mState.sampleCoverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if (mState.sampleCoverageInvert) { mask = ~mask; } } else { mask = 0xFFFFFFFF; } mRenderer->setBlendState(mState.blend, mState.blendColor, mask); mRenderer->setDepthStencilState(mState.depthStencil, mState.stencilRef, mState.stencilBackRef, mState.rasterizer.frontFace == GL_CCW); } // Applies the shaders and shader constants to the Direct3D 9 device void Context::applyShaders() { ProgramBinary *programBinary = getCurrentProgramBinary(); mRenderer->applyShaders(programBinary); programBinary->applyUniforms(); } // Applies the textures and sampler states to the Direct3D 9 device void Context::applyTextures() { applyTextures(SAMPLER_PIXEL); if (mSupportsVertexTexture) { applyTextures(SAMPLER_VERTEX); } } // For each Direct3D 9 sampler of either the pixel or vertex stage, // looks up the corresponding OpenGL texture image unit and texture type, // and sets the texture and its addressing/filtering state (or NULL when inactive). void Context::applyTextures(SamplerType type) { ProgramBinary *programBinary = getCurrentProgramBinary(); // Range of Direct3D samplers of given sampler type int samplerCount = (type == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : mRenderer->getMaxVertexTextureImageUnits(); int samplerRange = programBinary->getUsedSamplerRange(type); for (int samplerIndex = 0; samplerIndex < samplerRange; samplerIndex++) { int textureUnit = programBinary->getSamplerMapping(type, samplerIndex); // OpenGL texture image unit index if (textureUnit != -1) { TextureType textureType = programBinary->getSamplerTextureType(type, samplerIndex); Texture *texture = getSamplerTexture(textureUnit, textureType); if (texture->isSamplerComplete()) { SamplerState samplerState; texture->getSamplerState(&samplerState); mRenderer->setSamplerState(type, samplerIndex, samplerState); mRenderer->setTexture(type, samplerIndex, texture); texture->resetDirty(); } else { mRenderer->setTexture(type, samplerIndex, getIncompleteTexture(textureType)); } } else { mRenderer->setTexture(type, samplerIndex, NULL); } } for (int samplerIndex = samplerRange; samplerIndex < samplerCount; samplerIndex++) { mRenderer->setTexture(type, samplerIndex, NULL); } } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { Framebuffer *framebuffer = getReadFramebuffer(); if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); } if (getReadFramebufferHandle() != 0 && framebuffer->getSamples() != 0) { return gl::error(GL_INVALID_OPERATION); } GLsizei outputPitch = ComputePitch(width, ConvertSizedInternalFormat(format, type), getPackAlignment()); // sized query sanity check if (bufSize) { int requiredSize = outputPitch * height; if (requiredSize > *bufSize) { return gl::error(GL_INVALID_OPERATION); } } mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, getPackReverseRowOrder(), getPackAlignment(), pixels); } void Context::clear(GLbitfield mask) { Framebuffer *framebufferObject = getDrawFramebuffer(); if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); } DWORD flags = 0; GLbitfield finalMask = 0; if (mask & GL_COLOR_BUFFER_BIT) { mask &= ~GL_COLOR_BUFFER_BIT; if (framebufferObject->hasEnabledColorAttachment()) { finalMask |= GL_COLOR_BUFFER_BIT; } } if (mask & GL_DEPTH_BUFFER_BIT) { mask &= ~GL_DEPTH_BUFFER_BIT; if (mState.depthStencil.depthMask && framebufferObject->getDepthbufferType() != GL_NONE) { finalMask |= GL_DEPTH_BUFFER_BIT; } } if (mask & GL_STENCIL_BUFFER_BIT) { mask &= ~GL_STENCIL_BUFFER_BIT; if (framebufferObject->getStencilbufferType() != GL_NONE) { rx::RenderTarget *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil(); if (!depthStencil) { ERR("Depth stencil pointer unexpectedly null."); return; } if (GetStencilSize(depthStencil->getActualFormat()) > 0) { finalMask |= GL_STENCIL_BUFFER_BIT; } } } if (mask != 0) { return gl::error(GL_INVALID_VALUE); } if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } ClearParameters clearParams; clearParams.mask = finalMask; clearParams.colorClearValue = mState.colorClearValue; clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; clearParams.depthClearValue = mState.depthClearValue; clearParams.stencilClearValue = mState.stencilClearValue; clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; mRenderer->clear(clearParams, framebufferObject); } void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances) { if (!mState.currentProgram) { return gl::error(GL_INVALID_OPERATION); } if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); ProgramBinary *programBinary = getCurrentProgramBinary(); GLenum err = mRenderer->applyVertexBuffer(programBinary, mState.vertexAttribute, first, count, instances); if (err != GL_NO_ERROR) { return gl::error(err); } applyShaders(); applyTextures(); if (!programBinary->validateSamplers(NULL)) { return gl::error(GL_INVALID_OPERATION); } if (!skipDraw(mode)) { mRenderer->drawArrays(mode, count, instances); } } void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances) { if (!mState.currentProgram) { return gl::error(GL_INVALID_OPERATION); } if (!indices && !mState.elementArrayBuffer) { return gl::error(GL_INVALID_OPERATION); } if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); rx::TranslatedIndexData indexInfo; GLenum err = mRenderer->applyIndexBuffer(indices, mState.elementArrayBuffer.get(), count, mode, type, &indexInfo); if (err != GL_NO_ERROR) { return gl::error(err); } ProgramBinary *programBinary = getCurrentProgramBinary(); GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = mRenderer->applyVertexBuffer(programBinary, mState.vertexAttribute, indexInfo.minIndex, vertexCount, instances); if (err != GL_NO_ERROR) { return gl::error(err); } applyShaders(); applyTextures(); if (!programBinary->validateSamplers(NULL)) { return gl::error(GL_INVALID_OPERATION); } if (!skipDraw(mode)) { mRenderer->drawElements(mode, count, type, indices, mState.elementArrayBuffer.get(), indexInfo, instances); } } // Implements glFlush when block is false, glFinish when block is true void Context::sync(bool block) { mRenderer->sync(block); } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if (mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if (mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if (mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if (mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if (mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION; } return GL_NO_ERROR; } GLenum Context::getResetStatus() { if (mResetStatus == GL_NO_ERROR && !mContextLost) { // mResetStatus will be set by the markContextLost callback // in the case a notification is sent mRenderer->testDeviceLost(true); } GLenum status = mResetStatus; if (mResetStatus != GL_NO_ERROR) { ASSERT(mContextLost); if (mRenderer->testDeviceResettable()) { mResetStatus = GL_NO_ERROR; } } return status; } bool Context::isResetNotificationEnabled() { return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } int Context::getMajorShaderModel() const { return mMajorShaderModel; } float Context::getMaximumPointSize() const { return mMaximumPointSize; } unsigned int Context::getMaximumCombinedTextureImageUnits() const { return mRenderer->getMaxCombinedTextureImageUnits(); } int Context::getMaxSupportedSamples() const { return mRenderer->getMaxSupportedSamples(); } unsigned int Context::getMaximumRenderTargets() const { return mRenderer->getMaxRenderTargets(); } bool Context::supportsEventQueries() const { return mSupportsEventQueries; } bool Context::supportsOcclusionQueries() const { return mSupportsOcclusionQueries; } bool Context::supportsBGRATextures() const { return mSupportsBGRATextures; } bool Context::supportsDXT1Textures() const { return mSupportsDXT1Textures; } bool Context::supportsDXT3Textures() const { return mSupportsDXT3Textures; } bool Context::supportsDXT5Textures() const { return mSupportsDXT5Textures; } bool Context::supportsFloat32Textures() const { return mSupportsFloat32Textures; } bool Context::supportsFloat32LinearFilter() const { return mSupportsFloat32LinearFilter; } bool Context::supportsFloat32RenderableTextures() const { return mSupportsFloat32RenderableTextures; } bool Context::supportsFloat16Textures() const { return mSupportsFloat16Textures; } bool Context::supportsFloat16LinearFilter() const { return mSupportsFloat16LinearFilter; } bool Context::supportsFloat16RenderableTextures() const { return mSupportsFloat16RenderableTextures; } int Context::getMaximumRenderbufferDimension() const { return mMaxRenderbufferDimension; } int Context::getMaximumTextureDimension() const { return mMaxTextureDimension; } int Context::getMaximumCubeTextureDimension() const { return mMaxCubeTextureDimension; } int Context::getMaximumTextureLevel() const { return mMaxTextureLevel; } bool Context::supportsLuminanceTextures() const { return mSupportsLuminanceTextures; } bool Context::supportsLuminanceAlphaTextures() const { return mSupportsLuminanceAlphaTextures; } bool Context::supportsDepthTextures() const { return mSupportsDepthTextures; } bool Context::supports32bitIndices() const { return mSupports32bitIndices; } bool Context::supportsNonPower2Texture() const { return mSupportsNonPower2Texture; } bool Context::supportsInstancing() const { return mSupportsInstancing; } bool Context::supportsTextureFilterAnisotropy() const { return mSupportsTextureFilterAnisotropy; } float Context::getTextureMaxAnisotropy() const { return mMaxTextureAnisotropy; } bool Context::getCurrentReadFormatType(GLenum *format, GLenum *type) { Framebuffer *framebuffer = getReadFramebuffer(); if (!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_OPERATION, false); } Renderbuffer *renderbuffer = framebuffer->getReadColorbuffer(); if (!renderbuffer) { return gl::error(GL_INVALID_OPERATION, false); } *format = gl::ExtractFormat(renderbuffer->getActualFormat()); *type = gl::ExtractType(renderbuffer->getActualFormat()); return true; } void Context::detachBuffer(GLuint buffer) { // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. if (mState.arrayBuffer.id() == buffer) { mState.arrayBuffer.set(NULL); } if (mState.elementArrayBuffer.id() == buffer) { mState.elementArrayBuffer.set(NULL); } for (int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mState.vertexAttribute[attribute].mBoundBuffer.id() == buffer) { mState.vertexAttribute[attribute].mBoundBuffer.set(NULL); } } } void Context::detachTexture(GLuint texture) { // [OpenGL ES 2.0.24] section 3.8 page 84: // If a texture object is deleted, it is as if all texture units which are bound to that texture object are // rebound to texture object zero for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { if (mState.samplerTexture[type][sampler].id() == texture) { mState.samplerTexture[type][sampler].set(NULL); } } } // [OpenGL ES 2.0.24] section 4.4 page 112: // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this // image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if (readFramebuffer) { readFramebuffer->detachTexture(texture); } if (drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachTexture(texture); } } void Context::detachFramebuffer(GLuint framebuffer) { // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if (mState.readFramebuffer == framebuffer) { bindReadFramebuffer(0); } if (mState.drawFramebuffer == framebuffer) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { // [OpenGL ES 2.0.24] section 4.4 page 109: // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer // had been executed with the target RENDERBUFFER and name of zero. if (mState.renderbuffer.id() == renderbuffer) { bindRenderbuffer(0); } // [OpenGL ES 2.0.24] section 4.4 page 111: // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment // point to which this image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if (readFramebuffer) { readFramebuffer->detachRenderbuffer(renderbuffer); } if (drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachRenderbuffer(renderbuffer); } } Texture *Context::getIncompleteTexture(TextureType type) { Texture *t = mIncompleteTextures[type].get(); if (t == NULL) { static const GLubyte color[] = { 0, 0, 0, 255 }; switch (type) { default: UNREACHABLE(); // default falls through to TEXTURE_2D case TEXTURE_2D: { Texture2D *incomplete2d = new Texture2D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); t = incomplete2d; } break; case TEXTURE_CUBE: { TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); t = incompleteCube; } break; } mIncompleteTextures[type].set(t); } return t; } bool Context::skipDraw(GLenum drawMode) { if (drawMode == GL_POINTS) { // ProgramBinary assumes non-point rendering if gl_PointSize isn't written, // which affects varying interpolation. Since the value of gl_PointSize is // undefined when not written, just skip drawing to avoid unexpected results. if (!getCurrentProgramBinary()->usesPointSize()) { // This is stictly speaking not an error, but developers should be // notified of risking undefined behavior. ERR("Point rendering without writing to gl_PointSize."); return true; } } else if (IsTriangleMode(drawMode)) { if (mState.rasterizer.cullFace && mState.rasterizer.cullMode == GL_FRONT_AND_BACK) { return true; } } return false; } void Context::setVertexAttrib(GLuint index, const GLfloat *values) { ASSERT(index < gl::MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].mCurrentValue[0] = values[0]; mState.vertexAttribute[index].mCurrentValue[1] = values[1]; mState.vertexAttribute[index].mCurrentValue[2] = values[2]; mState.vertexAttribute[index].mCurrentValue[3] = values[3]; } void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) { ASSERT(index < gl::MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].mDivisor = divisor; } // keep list sorted in following order // OES extensions // EXT extensions // Vendor extensions void Context::initExtensionString() { std::string extensionString = ""; // OES extensions if (supports32bitIndices()) { extensionString += "GL_OES_element_index_uint "; } extensionString += "GL_OES_packed_depth_stencil "; extensionString += "GL_OES_get_program_binary "; extensionString += "GL_OES_rgb8_rgba8 "; if (mRenderer->getDerivativeInstructionSupport()) { extensionString += "GL_OES_standard_derivatives "; } if (supportsFloat16Textures()) { extensionString += "GL_OES_texture_half_float "; } if (supportsFloat16LinearFilter()) { extensionString += "GL_OES_texture_half_float_linear "; } if (supportsFloat32Textures()) { extensionString += "GL_OES_texture_float "; } if (supportsFloat32LinearFilter()) { extensionString += "GL_OES_texture_float_linear "; } if (supportsNonPower2Texture()) { extensionString += "GL_OES_texture_npot "; } // Multi-vendor (EXT) extensions if (supportsOcclusionQueries()) { extensionString += "GL_EXT_occlusion_query_boolean "; } extensionString += "GL_EXT_read_format_bgra "; extensionString += "GL_EXT_robustness "; if (supportsDXT1Textures()) { extensionString += "GL_EXT_texture_compression_dxt1 "; } if (supportsTextureFilterAnisotropy()) { extensionString += "GL_EXT_texture_filter_anisotropic "; } if (supportsBGRATextures()) { extensionString += "GL_EXT_texture_format_BGRA8888 "; } if (mRenderer->getMaxRenderTargets() > 1) { extensionString += "GL_EXT_draw_buffers "; } extensionString += "GL_EXT_texture_storage "; extensionString += "GL_EXT_frag_depth "; // ANGLE-specific extensions if (supportsDepthTextures()) { extensionString += "GL_ANGLE_depth_texture "; } extensionString += "GL_ANGLE_framebuffer_blit "; if (getMaxSupportedSamples() != 0) { extensionString += "GL_ANGLE_framebuffer_multisample "; } if (supportsInstancing()) { extensionString += "GL_ANGLE_instanced_arrays "; } extensionString += "GL_ANGLE_pack_reverse_row_order "; if (supportsDXT3Textures()) { extensionString += "GL_ANGLE_texture_compression_dxt3 "; } if (supportsDXT5Textures()) { extensionString += "GL_ANGLE_texture_compression_dxt5 "; } extensionString += "GL_ANGLE_texture_usage "; extensionString += "GL_ANGLE_translated_shader_source "; // Other vendor-specific extensions if (supportsEventQueries()) { extensionString += "GL_NV_fence "; } std::string::size_type end = extensionString.find_last_not_of(' '); if (end != std::string::npos) { extensionString.resize(end+1); } mExtensionString = makeStaticString(extensionString); } const char *Context::getExtensionString() const { return mExtensionString; } void Context::initRendererString() { std::ostringstream rendererString; rendererString << "ANGLE ("; rendererString << mRenderer->getRendererDescription(); rendererString << ")"; mRendererString = makeStaticString(rendererString.str()); } const char *Context::getRendererString() const { return mRendererString; } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask) { Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if (!readFramebuffer || readFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE || !drawFramebuffer || drawFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); } if (drawFramebuffer->getSamples() != 0) { return gl::error(GL_INVALID_OPERATION); } Renderbuffer *readColorBuffer = readFramebuffer->getReadColorbuffer(); Renderbuffer *drawColorBuffer = drawFramebuffer->getFirstColorbuffer(); if (drawColorBuffer == NULL) { ERR("Draw buffers formats don't match, which is not supported in this implementation of BlitFramebufferANGLE"); return gl::error(GL_INVALID_OPERATION); } int readBufferWidth = readColorBuffer->getWidth(); int readBufferHeight = readColorBuffer->getHeight(); int drawBufferWidth = drawColorBuffer->getWidth(); int drawBufferHeight = drawColorBuffer->getHeight(); Rectangle sourceRect; Rectangle destRect; if (srcX0 < srcX1) { sourceRect.x = srcX0; destRect.x = dstX0; sourceRect.width = srcX1 - srcX0; destRect.width = dstX1 - dstX0; } else { sourceRect.x = srcX1; destRect.x = dstX1; sourceRect.width = srcX0 - srcX1; destRect.width = dstX0 - dstX1; } if (srcY0 < srcY1) { sourceRect.height = srcY1 - srcY0; destRect.height = dstY1 - dstY0; sourceRect.y = srcY0; destRect.y = dstY0; } else { sourceRect.height = srcY0 - srcY1; destRect.height = dstY0 - srcY1; sourceRect.y = srcY1; destRect.y = dstY1; } Rectangle sourceScissoredRect = sourceRect; Rectangle destScissoredRect = destRect; if (mState.scissorTest) { // Only write to parts of the destination framebuffer which pass the scissor test. if (destRect.x < mState.scissor.x) { int xDiff = mState.scissor.x - destRect.x; destScissoredRect.x = mState.scissor.x; destScissoredRect.width -= xDiff; sourceScissoredRect.x += xDiff; sourceScissoredRect.width -= xDiff; } if (destRect.x + destRect.width > mState.scissor.x + mState.scissor.width) { int xDiff = (destRect.x + destRect.width) - (mState.scissor.x + mState.scissor.width); destScissoredRect.width -= xDiff; sourceScissoredRect.width -= xDiff; } if (destRect.y < mState.scissor.y) { int yDiff = mState.scissor.y - destRect.y; destScissoredRect.y = mState.scissor.y; destScissoredRect.height -= yDiff; sourceScissoredRect.y += yDiff; sourceScissoredRect.height -= yDiff; } if (destRect.y + destRect.height > mState.scissor.y + mState.scissor.height) { int yDiff = (destRect.y + destRect.height) - (mState.scissor.y + mState.scissor.height); destScissoredRect.height -= yDiff; sourceScissoredRect.height -= yDiff; } } bool blitRenderTarget = false; bool blitDepthStencil = false; Rectangle sourceTrimmedRect = sourceScissoredRect; Rectangle destTrimmedRect = destScissoredRect; // The source & destination rectangles also may need to be trimmed if they fall out of the bounds of // the actual draw and read surfaces. if (sourceTrimmedRect.x < 0) { int xDiff = 0 - sourceTrimmedRect.x; sourceTrimmedRect.x = 0; sourceTrimmedRect.width -= xDiff; destTrimmedRect.x += xDiff; destTrimmedRect.width -= xDiff; } if (sourceTrimmedRect.x + sourceTrimmedRect.width > readBufferWidth) { int xDiff = (sourceTrimmedRect.x + sourceTrimmedRect.width) - readBufferWidth; sourceTrimmedRect.width -= xDiff; destTrimmedRect.width -= xDiff; } if (sourceTrimmedRect.y < 0) { int yDiff = 0 - sourceTrimmedRect.y; sourceTrimmedRect.y = 0; sourceTrimmedRect.height -= yDiff; destTrimmedRect.y += yDiff; destTrimmedRect.height -= yDiff; } if (sourceTrimmedRect.y + sourceTrimmedRect.height > readBufferHeight) { int yDiff = (sourceTrimmedRect.y + sourceTrimmedRect.height) - readBufferHeight; sourceTrimmedRect.height -= yDiff; destTrimmedRect.height -= yDiff; } if (destTrimmedRect.x < 0) { int xDiff = 0 - destTrimmedRect.x; destTrimmedRect.x = 0; destTrimmedRect.width -= xDiff; sourceTrimmedRect.x += xDiff; sourceTrimmedRect.width -= xDiff; } if (destTrimmedRect.x + destTrimmedRect.width > drawBufferWidth) { int xDiff = (destTrimmedRect.x + destTrimmedRect.width) - drawBufferWidth; destTrimmedRect.width -= xDiff; sourceTrimmedRect.width -= xDiff; } if (destTrimmedRect.y < 0) { int yDiff = 0 - destTrimmedRect.y; destTrimmedRect.y = 0; destTrimmedRect.height -= yDiff; sourceTrimmedRect.y += yDiff; sourceTrimmedRect.height -= yDiff; } if (destTrimmedRect.y + destTrimmedRect.height > drawBufferHeight) { int yDiff = (destTrimmedRect.y + destTrimmedRect.height) - drawBufferHeight; destTrimmedRect.height -= yDiff; sourceTrimmedRect.height -= yDiff; } bool partialBufferCopy = false; if (sourceTrimmedRect.height < readBufferHeight || sourceTrimmedRect.width < readBufferWidth || destTrimmedRect.height < drawBufferHeight || destTrimmedRect.width < drawBufferWidth || sourceTrimmedRect.y != 0 || destTrimmedRect.y != 0 || sourceTrimmedRect.x != 0 || destTrimmedRect.x != 0) { partialBufferCopy = true; } if (mask & GL_COLOR_BUFFER_BIT) { const GLenum readColorbufferType = readFramebuffer->getReadColorbufferType(); const bool validReadType = (readColorbufferType == GL_TEXTURE_2D) || (readColorbufferType == GL_RENDERBUFFER); bool validDrawType = true; bool validDrawFormat = true; for (unsigned int colorAttachment = 0; colorAttachment < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; colorAttachment++) { if (drawFramebuffer->isEnabledColorAttachment(colorAttachment)) { if (drawFramebuffer->getColorbufferType(colorAttachment) != GL_TEXTURE_2D && drawFramebuffer->getColorbufferType(colorAttachment) != GL_RENDERBUFFER) { validDrawType = false; } if (drawFramebuffer->getColorbuffer(colorAttachment)->getActualFormat() != readColorBuffer->getActualFormat()) { validDrawFormat = false; } } } if (!validReadType || !validDrawType || !validDrawFormat) { ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation"); return gl::error(GL_INVALID_OPERATION); } if (partialBufferCopy && readFramebuffer->getSamples() != 0) { return gl::error(GL_INVALID_OPERATION); } blitRenderTarget = true; } if (mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) { Renderbuffer *readDSBuffer = NULL; Renderbuffer *drawDSBuffer = NULL; // We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have // both a depth and stencil buffer, it will be the same buffer. if (mask & GL_DEPTH_BUFFER_BIT) { if (readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) { if (readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() || readFramebuffer->getDepthbuffer()->getActualFormat() != drawFramebuffer->getDepthbuffer()->getActualFormat()) { return gl::error(GL_INVALID_OPERATION); } blitDepthStencil = true; readDSBuffer = readFramebuffer->getDepthbuffer(); drawDSBuffer = drawFramebuffer->getDepthbuffer(); } } if (mask & GL_STENCIL_BUFFER_BIT) { if (readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) { if (readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() || readFramebuffer->getStencilbuffer()->getActualFormat() != drawFramebuffer->getStencilbuffer()->getActualFormat()) { return gl::error(GL_INVALID_OPERATION); } blitDepthStencil = true; readDSBuffer = readFramebuffer->getStencilbuffer(); drawDSBuffer = drawFramebuffer->getStencilbuffer(); } } if (partialBufferCopy) { ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); return gl::error(GL_INVALID_OPERATION); // only whole-buffer copies are permitted } if ((drawDSBuffer && drawDSBuffer->getSamples() != 0) || (readDSBuffer && readDSBuffer->getSamples() != 0)) { return gl::error(GL_INVALID_OPERATION); } } if (blitRenderTarget || blitDepthStencil) { mRenderer->blitRect(readFramebuffer, sourceTrimmedRect, drawFramebuffer, destTrimmedRect, blitRenderTarget, blitDepthStencil); } } } extern "C" { gl::Context *glCreateContext(const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) { return new gl::Context(shareContext, renderer, notifyResets, robustAccess); } void glDestroyContext(gl::Context *context) { delete context; if (context == gl::getContext()) { gl::makeCurrent(NULL, NULL, NULL); } } void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface) { gl::makeCurrent(context, display, surface); } gl::Context *glGetCurrentContext() { return gl::getContext(); } }