#include "precompiled.h" // // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libGLESv2/BinaryStream.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/renderer/ShaderExecutable.h" #include "common/debug.h" #include "common/version.h" #include "utilities.h" #include "libGLESv2/main.h" #include "libGLESv2/Shader.h" #include "libGLESv2/Program.h" #include "libGLESv2/renderer/Renderer.h" #include "libGLESv2/renderer/VertexDataManager.h" #undef near #undef far namespace gl { std::string str(int i) { char buffer[20]; snprintf(buffer, sizeof(buffer), "%d", i); return buffer; } UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index) { } unsigned int ProgramBinary::mCurrentSerial = 1; ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial()) { mPixelExecutable = NULL; mVertexExecutable = NULL; mGeometryExecutable = NULL; mValidated = false; for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { mSemanticIndex[index] = -1; } for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) { mSamplersPS[index].active = false; } for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++) { mSamplersVS[index].active = false; } mUsedVertexSamplerRange = 0; mUsedPixelSamplerRange = 0; mUsesPointSize = false; } ProgramBinary::~ProgramBinary() { delete mPixelExecutable; mPixelExecutable = NULL; delete mVertexExecutable; mVertexExecutable = NULL; delete mGeometryExecutable; mGeometryExecutable = NULL; while (!mUniforms.empty()) { delete mUniforms.back(); mUniforms.pop_back(); } } unsigned int ProgramBinary::getSerial() const { return mSerial; } unsigned int ProgramBinary::issueSerial() { return mCurrentSerial++; } rx::ShaderExecutable *ProgramBinary::getPixelExecutable() { return mPixelExecutable; } rx::ShaderExecutable *ProgramBinary::getVertexExecutable() { return mVertexExecutable; } rx::ShaderExecutable *ProgramBinary::getGeometryExecutable() { return mGeometryExecutable; } GLuint ProgramBinary::getAttributeLocation(const char *name) { if (name) { for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { if (mLinkedAttribute[index].name == std::string(name)) { return index; } } } return -1; } int ProgramBinary::getSemanticIndex(int attributeIndex) { ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); return mSemanticIndex[attributeIndex]; } // Returns one more than the highest sampler index used. GLint ProgramBinary::getUsedSamplerRange(SamplerType type) { switch (type) { case SAMPLER_PIXEL: return mUsedPixelSamplerRange; case SAMPLER_VERTEX: return mUsedVertexSamplerRange; default: UNREACHABLE(); return 0; } } bool ProgramBinary::usesPointSize() const { return mUsesPointSize; } bool ProgramBinary::usesPointSpriteEmulation() const { return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4; } bool ProgramBinary::usesGeometryShader() const { return usesPointSpriteEmulation(); } // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler // index (0-15 for the pixel shader and 0-3 for the vertex shader). GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex) { GLint logicalTextureUnit = -1; switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); if (mSamplersPS[samplerIndex].active) { logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; } break; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); if (mSamplersVS[samplerIndex].active) { logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; } break; default: UNREACHABLE(); } if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits()) { return logicalTextureUnit; } return -1; } // Returns the texture type for a given Direct3D 9 sampler type and // index (0-15 for the pixel shader and 0-3 for the vertex shader). TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) { switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); ASSERT(mSamplersPS[samplerIndex].active); return mSamplersPS[samplerIndex].textureType; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); ASSERT(mSamplersVS[samplerIndex].active); return mSamplersVS[samplerIndex].textureType; default: UNREACHABLE(); } return TEXTURE_2D; } GLint ProgramBinary::getUniformLocation(std::string name) { unsigned int subscript = 0; // Strip any trailing array operator and retrieve the subscript size_t open = name.find_last_of('['); size_t close = name.find_last_of(']'); if (open != std::string::npos && close == name.length() - 1) { subscript = atoi(name.substr(open + 1).c_str()); name.erase(open); } unsigned int numUniforms = mUniformIndex.size(); for (unsigned int location = 0; location < numUniforms; location++) { if (mUniformIndex[location].name == name && mUniformIndex[location].element == subscript) { return location; } } return -1; } bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_FLOAT) { GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = 0; target[2] = 0; target[3] = 0; target += 4; v += 1; } } else if (targetUniform->type == GL_BOOL) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[1] = GL_FALSE; boolParams[2] = GL_FALSE; boolParams[3] = GL_FALSE; boolParams += 4; v += 1; } } else { return false; } return true; } bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_FLOAT_VEC2) { GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = 0; target[3] = 0; target += 4; v += 2; } } else if (targetUniform->type == GL_BOOL_VEC2) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[2] = GL_FALSE; boolParams[3] = GL_FALSE; boolParams += 4; v += 2; } } else { return false; } return true; } bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_FLOAT_VEC3) { GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = 0; target += 4; v += 3; } } else if (targetUniform->type == GL_BOOL_VEC3) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[3] = GL_FALSE; boolParams += 4; v += 3; } } else { return false; } return true; } bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_FLOAT_VEC4) { GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = v[3]; target += 4; v += 4; } } else if (targetUniform->type == GL_BOOL_VEC4) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE; boolParams += 4; v += 4; } } else { return false; } return true; } template void transposeMatrix(T *target, const GLfloat *value) { int copyWidth = std::min(targetWidth, srcWidth); int copyHeight = std::min(targetHeight, srcHeight); for (int x = 0; x < copyWidth; x++) { for (int y = 0; y < copyHeight; y++) { target[x * targetWidth + y] = (T)value[y * srcWidth + x]; } } // clear unfilled right side for (int y = 0; y < copyHeight; y++) { for (int x = srcWidth; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } // clear unfilled bottom. for (int y = srcHeight; y < targetHeight; y++) { for (int x = 0; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } } bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT2) { return false; } int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 8; value += 4; } return true; } bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT3) { return false; } int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 12; value += 9; } return true; } bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT4) { return false; } int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 16; value += 16; } return true; } bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_INT || targetUniform->type == GL_SAMPLER_2D || targetUniform->type == GL_SAMPLER_CUBE) { GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = 0; target[2] = 0; target[3] = 0; target += 4; v += 1; } } else if (targetUniform->type == GL_BOOL) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; boolParams[1] = GL_FALSE; boolParams[2] = GL_FALSE; boolParams[3] = GL_FALSE; boolParams += 4; v += 1; } } else { return false; } return true; } bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_INT_VEC2) { GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = 0; target[3] = 0; target += 4; v += 2; } } else if (targetUniform->type == GL_BOOL_VEC2) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; boolParams[2] = GL_FALSE; boolParams[3] = GL_FALSE; boolParams += 4; v += 2; } } else { return false; } return true; } bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_INT_VEC3) { GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = 0; target += 4; v += 3; } } else if (targetUniform->type == GL_BOOL_VEC3) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; boolParams[3] = GL_FALSE; boolParams += 4; v += 3; } } else { return false; } return true; } bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; int elementCount = targetUniform->elementCount(); if (elementCount == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == GL_INT_VEC4) { GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = v[3]; target += 4; v += 4; } } else if (targetUniform->type == GL_BOOL_VEC4) { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE; boolParams += 4; v += 4; } } else { return false; } return true; } bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); break; case GL_FLOAT_MAT3: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); break; case GL_FLOAT_MAT4: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); break; default: { unsigned int size = UniformComponentCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; } } break; case GL_FLOAT: memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat), size * sizeof(GLfloat)); break; case GL_INT: { GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = (float)intParams[i]; } } break; default: UNREACHABLE(); } } } return true; } bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); break; case GL_FLOAT_MAT3: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); break; case GL_FLOAT_MAT4: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); break; default: { unsigned int size = VariableColumnCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = boolParams[i]; } } break; case GL_FLOAT: { GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = (GLint)floatParams[i]; } } break; case GL_INT: memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint), size * sizeof(GLint)); break; default: UNREACHABLE(); } } } return true; } void ProgramBinary::dirtyAllUniforms() { unsigned int numUniforms = mUniforms.size(); for (unsigned int index = 0; index < numUniforms; index++) { mUniforms[index]->dirty = true; } } // Applies all the uniforms set for this program object to the renderer void ProgramBinary::applyUniforms() { // Retrieve sampler uniform values for (std::vector::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) { Uniform *targetUniform = *ub; if (targetUniform->dirty) { if (targetUniform->type == GL_SAMPLER_2D || targetUniform->type == GL_SAMPLER_CUBE) { int count = targetUniform->elementCount(); GLint (*v)[4] = (GLint(*)[4])targetUniform->data; if (targetUniform->psRegisterIndex >= 0) { unsigned int firstIndex = targetUniform->psRegisterIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { ASSERT(mSamplersPS[samplerIndex].active); mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0]; } } } if (targetUniform->vsRegisterIndex >= 0) { unsigned int firstIndex = targetUniform->vsRegisterIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS) { ASSERT(mSamplersVS[samplerIndex].active); mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0]; } } } } } } mRenderer->applyUniforms(this, &mUniforms); } // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 // Returns the number of used varying registers, or -1 if unsuccesful int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader) { const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); fragmentShader->resetVaryingsRegisterAssignment(); for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { int n = VariableRowCount(varying->type) * varying->size; int m = VariableColumnCount(varying->type); bool success = false; if (m == 2 || m == 3 || m == 4) { for (int r = 0; r <= maxVaryingVectors - n && !success; r++) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 0; x < m && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 0; for (int y = 0; y < n; y++) { for (int x = 0; x < m; x++) { packing[r + y][x] = &*varying; } } success = true; } } if (!success && m == 2) { for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 2; x < 4 && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 2; for (int y = 0; y < n; y++) { for (int x = 2; x < 4; x++) { packing[r + y][x] = &*varying; } } success = true; } } } } else if (m == 1) { int space[4] = {0}; for (int y = 0; y < maxVaryingVectors; y++) { for (int x = 0; x < 4; x++) { space[x] += packing[y][x] ? 0 : 1; } } int column = 0; for (int x = 0; x < 4; x++) { if (space[x] >= n && space[x] < space[column]) { column = x; } } if (space[column] >= n) { for (int r = 0; r < maxVaryingVectors; r++) { if (!packing[r][column]) { varying->reg = r; for (int y = r; y < r + n; y++) { packing[y][column] = &*varying; } break; } } varying->col = column; success = true; } } else UNREACHABLE(); if (!success) { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } } // Return the number of used registers int registers = 0; for (int r = 0; r < maxVaryingVectors; r++) { if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) { registers++; } } return registers; } bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4], std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader) { if (pixelHLSL.empty() || vertexHLSL.empty()) { return false; } bool usesMRT = fragmentShader->mUsesMultipleRenderTargets; bool usesFragColor = fragmentShader->mUsesFragColor; bool usesFragData = fragmentShader->mUsesFragData; if (usesFragColor && usesFragData) { infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader."); return false; } // Write the HLSL input/output declarations const int shaderModel = mRenderer->getMajorShaderModel(); const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0); // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor const bool broadcast = fragmentShader->mUsesFragColor; const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1); if (registersNeeded > maxVaryingVectors) { infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord"); return false; } vertexShader->resetVaryingsRegisterAssignment(); for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++) { bool matched = false; for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++) { if (output->name == input->name) { if (output->type != input->type || output->size != input->size) { infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); return false; } output->reg = input->reg; output->col = input->col; matched = true; break; } } if (!matched) { infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); return false; } } mUsesPointSize = vertexShader->mUsesPointSize; std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD"; std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR"; std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION"; std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH"; // special varyings that use reserved registers int reservedRegisterIndex = registers; std::string fragCoordSemantic; std::string pointCoordSemantic; if (fragmentShader->mUsesFragCoord) { fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); } if (fragmentShader->mUsesPointCoord) { // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords. // In DX11 we compute this in the GS. if (shaderModel == 3) { pointCoordSemantic = "TEXCOORD0"; } else if (shaderModel >= 4) { pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); } } vertexHLSL += "struct VS_INPUT\n" "{\n"; int semanticIndex = 0; for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { switch (attribute->type) { case GL_FLOAT: vertexHLSL += " float "; break; case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break; case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break; case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break; case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break; case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break; case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break; default: UNREACHABLE(); } vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; semanticIndex += VariableRowCount(attribute->type); } vertexHLSL += "};\n" "\n" "struct VS_OUTPUT\n" "{\n"; if (shaderModel < 4) { vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; } for (int r = 0; r < registers; r++) { int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } if (vertexShader->mUsesPointSize && shaderModel >= 3) { vertexHLSL += " float gl_PointSize : PSIZE;\n"; } if (shaderModel >= 4) { vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; } vertexHLSL += "};\n" "\n" "VS_OUTPUT main(VS_INPUT input)\n" "{\n"; for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { vertexHLSL += " " + decorateAttribute(attribute->name) + " = "; if (VariableRowCount(attribute->type) > 1) // Matrix { vertexHLSL += "transpose"; } vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; } if (shaderModel >= 4) { vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position.x = gl_Position.x;\n" " output.gl_Position.y = -gl_Position.y;\n" " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.gl_Position.w = gl_Position.w;\n"; } else { vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n" " output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n" " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.gl_Position.w = gl_Position.w;\n"; } if (vertexShader->mUsesPointSize && shaderModel >= 3) { vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; } if (fragmentShader->mUsesFragCoord) { vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; } for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { int r = varying->reg + i * rows + j; vertexHLSL += " output.v" + str(r); bool sharedRegister = false; // Register used by multiple varyings for (int x = 0; x < 4; x++) { if (packing[r][x] && packing[r][x] != packing[r][0]) { sharedRegister = true; break; } } if(sharedRegister) { vertexHLSL += "."; for (int x = 0; x < 4; x++) { if (packing[r][x] == &*varying) { switch(x) { case 0: vertexHLSL += "x"; break; case 1: vertexHLSL += "y"; break; case 2: vertexHLSL += "z"; break; case 3: vertexHLSL += "w"; break; } } } } vertexHLSL += " = " + varying->name; if (varying->array) { vertexHLSL += "[" + str(i) + "]"; } if (rows > 1) { vertexHLSL += "[" + str(j) + "]"; } vertexHLSL += ";\n"; } } } } vertexHLSL += "\n" " return output;\n" "}\n"; pixelHLSL += "struct PS_INPUT\n" "{\n"; for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n"; } } } else UNREACHABLE(); } if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } if (fragmentShader->mUsesPointCoord && shaderModel >= 3) { pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; } // Must consume the PSIZE element if the geometry shader is not active // We won't know if we use a GS until we draw if (vertexShader->mUsesPointSize && shaderModel >= 4) { pixelHLSL += " float gl_PointSize : PSIZE;\n"; } if (fragmentShader->mUsesFragCoord) { if (shaderModel >= 4) { pixelHLSL += " float4 dx_VPos : SV_Position;\n"; } else if (shaderModel >= 3) { pixelHLSL += " float2 dx_VPos : VPOS;\n"; } } pixelHLSL += "};\n" "\n" "struct PS_OUTPUT\n" "{\n"; for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) { pixelHLSL += " float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n"; } if (fragmentShader->mUsesFragDepth) { pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n"; } pixelHLSL += "};\n" "\n"; if (fragmentShader->mUsesFrontFacing) { if (shaderModel >= 4) { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n" "{\n"; } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n" "{\n"; } } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n" "{\n"; } if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; if (shaderModel >= 4) { pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n" " gl_FragCoord.y = input.dx_VPos.y;\n"; } else if (shaderModel >= 3) { pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; } else { // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport() pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n" " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n"; } pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n" " gl_FragCoord.w = rhw;\n"; } if (fragmentShader->mUsesPointCoord && shaderModel >= 3) { pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; } if (fragmentShader->mUsesFrontFacing) { if (shaderModel <= 3) { pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n"; } else { pixelHLSL += " gl_FrontFacing = isFrontFace;\n"; } } for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); pixelHLSL += " " + varying->name; if (varying->array) { pixelHLSL += "[" + str(i) + "]"; } if (rows > 1) { pixelHLSL += "[" + str(j) + "]"; } switch (VariableColumnCount(varying->type)) { case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break; case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break; case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break; case 4: pixelHLSL += " = input.v" + n + ";\n"; break; default: UNREACHABLE(); } } } } else UNREACHABLE(); } pixelHLSL += "\n" " gl_main();\n" "\n" " PS_OUTPUT output;\n"; for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) { unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex; pixelHLSL += " output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n"; } if (fragmentShader->mUsesFragDepth) { pixelHLSL += " output.gl_Depth = gl_Depth;\n"; } pixelHLSL += "\n" " return output;\n" "}\n"; return true; } bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length) { BinaryInputStream stream(binary, length); int format = 0; stream.read(&format); if (format != GL_PROGRAM_BINARY_ANGLE) { infoLog.append("Invalid program binary format."); return false; } int version = 0; stream.read(&version); if (version != VERSION_DWORD) { infoLog.append("Invalid program binary version."); return false; } int compileFlags = 0; stream.read(&compileFlags); if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL) { infoLog.append("Mismatched compilation flags."); return false; } for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.read(&mLinkedAttribute[i].type); std::string name; stream.read(&name); mLinkedAttribute[i].name = name; stream.read(&mSemanticIndex[i]); } initAttributesByLayout(); for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) { stream.read(&mSamplersPS[i].active); stream.read(&mSamplersPS[i].logicalTextureUnit); int textureType; stream.read(&textureType); mSamplersPS[i].textureType = (TextureType) textureType; } for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) { stream.read(&mSamplersVS[i].active); stream.read(&mSamplersVS[i].logicalTextureUnit); int textureType; stream.read(&textureType); mSamplersVS[i].textureType = (TextureType) textureType; } stream.read(&mUsedVertexSamplerRange); stream.read(&mUsedPixelSamplerRange); stream.read(&mUsesPointSize); size_t size; stream.read(&size); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniforms.resize(size); for (unsigned int i = 0; i < size; ++i) { GLenum type; GLenum precision; std::string name; unsigned int arraySize; stream.read(&type); stream.read(&precision); stream.read(&name); stream.read(&arraySize); mUniforms[i] = new Uniform(type, precision, name, arraySize); stream.read(&mUniforms[i]->psRegisterIndex); stream.read(&mUniforms[i]->vsRegisterIndex); stream.read(&mUniforms[i]->registerCount); } stream.read(&size); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniformIndex.resize(size); for (unsigned int i = 0; i < size; ++i) { stream.read(&mUniformIndex[i].name); stream.read(&mUniformIndex[i].element); stream.read(&mUniformIndex[i].index); } unsigned int pixelShaderSize; stream.read(&pixelShaderSize); unsigned int vertexShaderSize; stream.read(&vertexShaderSize); unsigned int geometryShaderSize; stream.read(&geometryShaderSize); const char *ptr = (const char*) binary + stream.offset(); const GUID *binaryIdentifier = (const GUID *) ptr; ptr += sizeof(GUID); GUID identifier = mRenderer->getAdapterIdentifier(); if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0) { infoLog.append("Invalid program binary."); return false; } const char *pixelShaderFunction = ptr; ptr += pixelShaderSize; const char *vertexShaderFunction = ptr; ptr += vertexShaderSize; const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL; ptr += geometryShaderSize; mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast(pixelShaderFunction), pixelShaderSize, rx::SHADER_PIXEL); if (!mPixelExecutable) { infoLog.append("Could not create pixel shader."); return false; } mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast(vertexShaderFunction), vertexShaderSize, rx::SHADER_VERTEX); if (!mVertexExecutable) { infoLog.append("Could not create vertex shader."); delete mPixelExecutable; mPixelExecutable = NULL; return false; } if (geometryShaderFunction != NULL && geometryShaderSize > 0) { mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast(geometryShaderFunction), geometryShaderSize, rx::SHADER_GEOMETRY); if (!mGeometryExecutable) { infoLog.append("Could not create geometry shader."); delete mPixelExecutable; mPixelExecutable = NULL; delete mVertexExecutable; mVertexExecutable = NULL; return false; } } else { mGeometryExecutable = NULL; } return true; } bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length) { BinaryOutputStream stream; stream.write(GL_PROGRAM_BINARY_ANGLE); stream.write(VERSION_DWORD); stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL); for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.write(mLinkedAttribute[i].type); stream.write(mLinkedAttribute[i].name); stream.write(mSemanticIndex[i]); } for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) { stream.write(mSamplersPS[i].active); stream.write(mSamplersPS[i].logicalTextureUnit); stream.write((int) mSamplersPS[i].textureType); } for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) { stream.write(mSamplersVS[i].active); stream.write(mSamplersVS[i].logicalTextureUnit); stream.write((int) mSamplersVS[i].textureType); } stream.write(mUsedVertexSamplerRange); stream.write(mUsedPixelSamplerRange); stream.write(mUsesPointSize); stream.write(mUniforms.size()); for (unsigned int i = 0; i < mUniforms.size(); ++i) { stream.write(mUniforms[i]->type); stream.write(mUniforms[i]->precision); stream.write(mUniforms[i]->name); stream.write(mUniforms[i]->arraySize); stream.write(mUniforms[i]->psRegisterIndex); stream.write(mUniforms[i]->vsRegisterIndex); stream.write(mUniforms[i]->registerCount); } stream.write(mUniformIndex.size()); for (unsigned int i = 0; i < mUniformIndex.size(); ++i) { stream.write(mUniformIndex[i].name); stream.write(mUniformIndex[i].element); stream.write(mUniformIndex[i].index); } UINT pixelShaderSize = mPixelExecutable->getLength(); stream.write(pixelShaderSize); UINT vertexShaderSize = mVertexExecutable->getLength(); stream.write(vertexShaderSize); UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0; stream.write(geometryShaderSize); GUID identifier = mRenderer->getAdapterIdentifier(); GLsizei streamLength = stream.length(); const void *streamData = stream.data(); GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize; if (totalLength > bufSize) { if (length) { *length = 0; } return false; } if (binary) { char *ptr = (char*) binary; memcpy(ptr, streamData, streamLength); ptr += streamLength; memcpy(ptr, &identifier, sizeof(GUID)); ptr += sizeof(GUID); memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize); ptr += pixelShaderSize; memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize); ptr += vertexShaderSize; if (mGeometryExecutable != NULL && geometryShaderSize > 0) { memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize); ptr += geometryShaderSize; } ASSERT(ptr - totalLength == binary); } if (length) { *length = totalLength; } return true; } GLint ProgramBinary::getLength() { GLint length; if (save(NULL, INT_MAX, &length)) { return length; } else { return 0; } } bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) { if (!fragmentShader || !fragmentShader->isCompiled()) { return false; } if (!vertexShader || !vertexShader->isCompiled()) { return false; } std::string pixelHLSL = fragmentShader->getHLSL(); std::string vertexHLSL = vertexShader->getHLSL(); // Map the varyings to the register file const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL}; int registers = packVaryings(infoLog, packing, fragmentShader); if (registers < 0) { return false; } if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader)) { return false; } bool success = true; if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader)) { success = false; } if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms())) { success = false; } // special case for gl_DepthRange, the only built-in uniform (also a struct) if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange) { mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0)); mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0)); mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0)); } if (success) { mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX); mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL); if (usesGeometryShader()) { std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader); mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY); } if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable)) { infoLog.append("Failed to create D3D shaders."); success = false; delete mVertexExecutable; mVertexExecutable = NULL; delete mPixelExecutable; mPixelExecutable = NULL; delete mGeometryExecutable; mGeometryExecutable = NULL; } } return success; } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) { unsigned int usedLocations = 0; // Link attributes that have a binding location for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { int location = attributeBindings.getAttributeBinding(attribute->name); if (location != -1) // Set by glBindAttribLocation { if (!mLinkedAttribute[location].name.empty()) { // Multiple active attributes bound to the same location; not an error } mLinkedAttribute[location] = *attribute; int rows = VariableRowCount(attribute->type); if (rows + location > MAX_VERTEX_ATTRIBS) { infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); return false; } for (int i = 0; i < rows; i++) { usedLocations |= 1 << (location + i); } } } // Link attributes that don't have a binding location for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { int location = attributeBindings.getAttributeBinding(attribute->name); if (location == -1) // Not set by glBindAttribLocation { int rows = VariableRowCount(attribute->type); int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) { infoLog.append("Too many active attributes (%s)", attribute->name.c_str()); return false; // Fail to link } mLinkedAttribute[availableIndex] = *attribute; } } for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) { int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); for (int r = 0; r < rows; r++) { mSemanticIndex[attributeIndex++] = index++; } } initAttributesByLayout(); return true; } bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms) { for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++) { if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog)) { return false; } } for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++) { if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog)) { return false; } } return true; } bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog) { if (constant.type == GL_SAMPLER_2D || constant.type == GL_SAMPLER_CUBE) { unsigned int samplerIndex = constant.registerIndex; do { if (shader == GL_VERTEX_SHADER) { if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits()) { mSamplersVS[samplerIndex].active = true; mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersVS[samplerIndex].logicalTextureUnit = 0; mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); } else { infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits()); return false; } } else if (shader == GL_FRAGMENT_SHADER) { if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { mSamplersPS[samplerIndex].active = true; mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersPS[samplerIndex].logicalTextureUnit = 0; mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); } else { infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); return false; } } else UNREACHABLE(); samplerIndex++; } while (samplerIndex < constant.registerIndex + constant.arraySize); } Uniform *uniform = NULL; GLint location = getUniformLocation(constant.name); if (location >= 0) // Previously defined, type and precision must match { uniform = mUniforms[mUniformIndex[location].index]; if (uniform->type != constant.type) { infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); return false; } if (uniform->precision != constant.precision) { infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); return false; } } else { uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize); } if (!uniform) { return false; } if (shader == GL_FRAGMENT_SHADER) { uniform->psRegisterIndex = constant.registerIndex; } else if (shader == GL_VERTEX_SHADER) { uniform->vsRegisterIndex = constant.registerIndex; } else UNREACHABLE(); if (location >= 0) { return uniform->type == constant.type; } mUniforms.push_back(uniform); unsigned int uniformIndex = mUniforms.size() - 1; for (unsigned int i = 0; i < uniform->elementCount(); i++) { mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex)); } if (shader == GL_VERTEX_SHADER) { if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors()) { infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors()); return false; } } else if (shader == GL_FRAGMENT_SHADER) { if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors()) { infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors()); return false; } } else UNREACHABLE(); return true; } std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const { // for now we only handle point sprite emulation ASSERT(usesPointSpriteEmulation()); return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader); } std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const { ASSERT(registers >= 0); ASSERT(vertexShader->mUsesPointSize); ASSERT(mRenderer->getMajorShaderModel() >= 4); std::string geomHLSL; std::string varyingSemantic = "TEXCOORD"; std::string fragCoordSemantic; std::string pointCoordSemantic; int reservedRegisterIndex = registers; if (fragmentShader->mUsesFragCoord) { fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); } if (fragmentShader->mUsesPointCoord) { pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); } geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n" "\n" "struct GS_INPUT\n" "{\n"; for (int r = 0; r < registers; r++) { int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } geomHLSL += " float gl_PointSize : PSIZE;\n" " float4 gl_Position : SV_Position;\n" "};\n" "\n" "struct GS_OUTPUT\n" "{\n"; for (int r = 0; r < registers; r++) { int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } if (fragmentShader->mUsesPointCoord) { geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; } geomHLSL += " float gl_PointSize : PSIZE;\n" " float4 gl_Position : SV_Position;\n" "};\n" "\n" "static float2 pointSpriteCorners[] = \n" "{\n" " float2( 0.5f, -0.5f),\n" " float2( 0.5f, 0.5f),\n" " float2(-0.5f, -0.5f),\n" " float2(-0.5f, 0.5f)\n" "};\n" "\n" "static float2 pointSpriteTexcoords[] = \n" "{\n" " float2(1.0f, 1.0f),\n" " float2(1.0f, 0.0f),\n" " float2(0.0f, 1.0f),\n" " float2(0.0f, 0.0f)\n" "};\n" "\n" "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n" "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n" "\n" "[maxvertexcount(4)]\n" "void main(point GS_INPUT input[1], inout TriangleStream outStream)\n" "{\n" " GS_OUTPUT output = (GS_OUTPUT)0;\n" " output.gl_PointSize = input[0].gl_PointSize;\n"; for (int r = 0; r < registers; r++) { geomHLSL += " output.v" + str(r) + " = input[0].v" + str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n"; } geomHLSL += " \n" " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n" " float4 gl_Position = input[0].gl_Position;\n" " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n"; for (int corner = 0; corner < 4; corner++) { geomHLSL += " \n" " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n"; if (fragmentShader->mUsesPointCoord) { geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n"; } geomHLSL += " outStream.Append(output);\n"; } geomHLSL += " \n" " outStream.RestartStrip();\n" "}\n"; return geomHLSL; } // This method needs to match OutputHLSL::decorate std::string ProgramBinary::decorateAttribute(const std::string &name) { if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) { return "_" + name; } return name; } bool ProgramBinary::isValidated() const { return mValidated; } void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { // Skip over inactive attributes unsigned int activeAttribute = 0; unsigned int attribute; for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mLinkedAttribute[attribute].name.empty()) { continue; } if (activeAttribute == index) { break; } activeAttribute++; } if (bufsize > 0) { const char *string = mLinkedAttribute[attribute].name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = 1; // Always a single 'type' instance *type = mLinkedAttribute[attribute].type; } GLint ProgramBinary::getActiveAttributeCount() const { int count = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { count++; } } return count; } GLint ProgramBinary::getActiveAttributeMaxLength() const { int maxLength = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); } } return maxLength; } void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount() if (bufsize > 0) { std::string string = mUniforms[index]->name; if (mUniforms[index]->isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = mUniforms[index]->elementCount(); *type = mUniforms[index]->type; } GLint ProgramBinary::getActiveUniformCount() const { return mUniforms.size(); } GLint ProgramBinary::getActiveUniformMaxLength() const { int maxLength = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (!mUniforms[uniformIndex]->name.empty()) { int length = (int)(mUniforms[uniformIndex]->name.length() + 1); if (mUniforms[uniformIndex]->isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } return maxLength; } void ProgramBinary::validate(InfoLog &infoLog) { applyUniforms(); if (!validateSamplers(&infoLog)) { mValidated = false; } else { mValidated = true; } } bool ProgramBinary::validateSamplers(InfoLog *infoLog) { // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits(); TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS]; for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i) { textureUnitType[i] = TEXTURE_UNKNOWN; } for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) { if (mSamplersPS[i].active) { unsigned int unit = mSamplersPS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersPS[i].textureType != textureUnitType[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersPS[i].textureType; } } } for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) { if (mSamplersVS[i].active) { unsigned int unit = mSamplersVS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersVS[i].textureType != textureUnitType[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersVS[i].textureType; } } } return true; } ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D) { } struct AttributeSorter { AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS]) : originalIndices(semanticIndices) { } bool operator()(int a, int b) { return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b]; } const int (&originalIndices)[MAX_VERTEX_ATTRIBS]; }; void ProgramBinary::initAttributesByLayout() { for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mAttributesByLayout[i] = i; } std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex)); } void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const { rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS]; for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { oldTranslatedAttributes[i] = attributes[i]; } for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { int oldIndex = mAttributesByLayout[i]; sortedSemanticIndices[i] = mSemanticIndex[oldIndex]; attributes[i] = oldTranslatedAttributes[oldIndex]; } } }