// // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libGLESv2/BinaryStream.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/FramebufferAttachment.h" #include "libGLESv2/Renderbuffer.h" #include "libGLESv2/renderer/ShaderExecutable.h" #include "common/debug.h" #include "common/version.h" #include "common/utilities.h" #include "common/platform.h" #include "libGLESv2/main.h" #include "libGLESv2/Shader.h" #include "libGLESv2/Program.h" #include "libGLESv2/renderer/ProgramImpl.h" #include "libGLESv2/renderer/Renderer.h" #include "libGLESv2/renderer/d3d/DynamicHLSL.h" #include "libGLESv2/renderer/d3d/ShaderD3D.h" #include "libGLESv2/renderer/d3d/VertexDataManager.h" #include "libGLESv2/Context.h" #include "libGLESv2/Buffer.h" #include "common/blocklayout.h" namespace gl { namespace { GLenum GetTextureType(GLenum samplerType) { switch (samplerType) { case GL_SAMPLER_2D: case GL_INT_SAMPLER_2D: case GL_UNSIGNED_INT_SAMPLER_2D: case GL_SAMPLER_2D_SHADOW: return GL_TEXTURE_2D; case GL_SAMPLER_3D: case GL_INT_SAMPLER_3D: case GL_UNSIGNED_INT_SAMPLER_3D: return GL_TEXTURE_3D; case GL_SAMPLER_CUBE: case GL_SAMPLER_CUBE_SHADOW: return GL_TEXTURE_CUBE_MAP; case GL_INT_SAMPLER_CUBE: case GL_UNSIGNED_INT_SAMPLER_CUBE: return GL_TEXTURE_CUBE_MAP; case GL_SAMPLER_2D_ARRAY: case GL_INT_SAMPLER_2D_ARRAY: case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY: case GL_SAMPLER_2D_ARRAY_SHADOW: return GL_TEXTURE_2D_ARRAY; default: UNREACHABLE(); } return GL_TEXTURE_2D; } unsigned int ParseAndStripArrayIndex(std::string* name) { unsigned int subscript = GL_INVALID_INDEX; // Strip any trailing array operator and retrieve the subscript size_t open = name->find_last_of('['); size_t close = name->find_last_of(']'); if (open != std::string::npos && close == name->length() - 1) { subscript = atoi(name->substr(open + 1).c_str()); name->erase(open); } return subscript; } void GetDefaultInputLayoutFromShader(const std::vector &shaderAttributes, VertexFormat inputLayout[MAX_VERTEX_ATTRIBS]) { size_t layoutIndex = 0; for (size_t attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++) { ASSERT(layoutIndex < MAX_VERTEX_ATTRIBS); const sh::Attribute &shaderAttr = shaderAttributes[attributeIndex]; if (shaderAttr.type != GL_NONE) { GLenum transposedType = TransposeMatrixType(shaderAttr.type); for (size_t rowIndex = 0; static_cast(rowIndex) < VariableRowCount(transposedType); rowIndex++, layoutIndex++) { VertexFormat *defaultFormat = &inputLayout[layoutIndex]; defaultFormat->mType = VariableComponentType(transposedType); defaultFormat->mNormalized = false; defaultFormat->mPureInteger = (defaultFormat->mType != GL_FLOAT); // note: inputs can not be bool defaultFormat->mComponents = VariableColumnCount(transposedType); } } } } std::vector GetDefaultOutputLayoutFromShader(const std::vector &shaderOutputVars) { std::vector defaultPixelOutput(1); ASSERT(!shaderOutputVars.empty()); defaultPixelOutput[0] = GL_COLOR_ATTACHMENT0 + shaderOutputVars[0].outputIndex; return defaultPixelOutput; } bool IsRowMajorLayout(const sh::InterfaceBlockField &var) { return var.isRowMajorLayout; } bool IsRowMajorLayout(const sh::ShaderVariable &var) { return false; } } VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index) : name(name), element(element), index(index) { } ProgramBinary::VertexExecutable::VertexExecutable(const VertexFormat inputLayout[], const GLenum signature[], rx::ShaderExecutable *shaderExecutable) : mShaderExecutable(shaderExecutable) { for (size_t attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++) { mInputs[attributeIndex] = inputLayout[attributeIndex]; mSignature[attributeIndex] = signature[attributeIndex]; } } ProgramBinary::VertexExecutable::~VertexExecutable() { SafeDelete(mShaderExecutable); } bool ProgramBinary::VertexExecutable::matchesSignature(const GLenum signature[]) const { for (size_t attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (mSignature[attributeIndex] != signature[attributeIndex]) { return false; } } return true; } ProgramBinary::PixelExecutable::PixelExecutable(const std::vector &outputSignature, rx::ShaderExecutable *shaderExecutable) : mOutputSignature(outputSignature), mShaderExecutable(shaderExecutable) { } ProgramBinary::PixelExecutable::~PixelExecutable() { SafeDelete(mShaderExecutable); } LinkedVarying::LinkedVarying() { } LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName, unsigned int semanticIndex, unsigned int semanticIndexCount) : name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount) { } unsigned int ProgramBinary::mCurrentSerial = 1; ProgramBinary::ProgramBinary(rx::ProgramImpl *impl) : RefCountObject(0), mProgram(impl), mGeometryExecutable(NULL), mUsedVertexSamplerRange(0), mUsedPixelSamplerRange(0), mUsesPointSize(false), mShaderVersion(100), mDirtySamplerMapping(true), mValidated(false), mSerial(issueSerial()) { ASSERT(impl); for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { mSemanticIndex[index] = -1; } } ProgramBinary::~ProgramBinary() { reset(); SafeDelete(mProgram); } unsigned int ProgramBinary::getSerial() const { return mSerial; } int ProgramBinary::getShaderVersion() const { return mShaderVersion; } unsigned int ProgramBinary::issueSerial() { return mCurrentSerial++; } rx::ShaderExecutable *ProgramBinary::getPixelExecutableForFramebuffer(const Framebuffer *fbo) { std::vector outputs; const gl::ColorbufferInfo &colorbuffers = fbo->getColorbuffersForRender(); for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment) { const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment]; if (colorbuffer) { outputs.push_back(colorbuffer->getBinding() == GL_BACK ? GL_COLOR_ATTACHMENT0 : colorbuffer->getBinding()); } else { outputs.push_back(GL_NONE); } } return getPixelExecutableForOutputLayout(outputs); } rx::ShaderExecutable *ProgramBinary::getPixelExecutableForOutputLayout(const std::vector &outputSignature) { for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++) { if (mPixelExecutables[executableIndex]->matchesSignature(outputSignature)) { return mPixelExecutables[executableIndex]->shaderExecutable(); } } InfoLog tempInfoLog; rx::ShaderExecutable *pixelExecutable = mProgram->getPixelExecutableForOutputLayout(tempInfoLog, outputSignature, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS)); if (!pixelExecutable) { std::vector tempCharBuffer(tempInfoLog.getLength() + 3); tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]); ERR("Error compiling dynamic pixel executable:\n%s\n", &tempCharBuffer[0]); } else { mPixelExecutables.push_back(new PixelExecutable(outputSignature, pixelExecutable)); } return pixelExecutable; } rx::ShaderExecutable *ProgramBinary::getVertexExecutableForInputLayout(const VertexFormat inputLayout[MAX_VERTEX_ATTRIBS]) { GLenum signature[MAX_VERTEX_ATTRIBS]; mProgram->getDynamicHLSL()->getInputLayoutSignature(inputLayout, signature); for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++) { if (mVertexExecutables[executableIndex]->matchesSignature(signature)) { return mVertexExecutables[executableIndex]->shaderExecutable(); } } InfoLog tempInfoLog; rx::ShaderExecutable *vertexExecutable = mProgram->getVertexExecutableForInputLayout(tempInfoLog, inputLayout, mShaderAttributes, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS)); if (!vertexExecutable) { std::vector tempCharBuffer(tempInfoLog.getLength()+3); tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]); ERR("Error compiling dynamic vertex executable:\n%s\n", &tempCharBuffer[0]); } else { mVertexExecutables.push_back(new VertexExecutable(inputLayout, signature, vertexExecutable)); } return vertexExecutable; } rx::ShaderExecutable *ProgramBinary::getGeometryExecutable() const { return mGeometryExecutable; } GLuint ProgramBinary::getAttributeLocation(const char *name) { if (name) { for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { if (mLinkedAttribute[index].name == std::string(name)) { return index; } } } return -1; } int ProgramBinary::getSemanticIndex(int attributeIndex) { ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); return mSemanticIndex[attributeIndex]; } // Returns one more than the highest sampler index used. GLint ProgramBinary::getUsedSamplerRange(SamplerType type) { switch (type) { case SAMPLER_PIXEL: return mUsedPixelSamplerRange; case SAMPLER_VERTEX: return mUsedVertexSamplerRange; default: UNREACHABLE(); return 0; } } bool ProgramBinary::usesPointSize() const { return mUsesPointSize; } bool ProgramBinary::usesPointSpriteEmulation() const { return mUsesPointSize && mProgram->getRenderer()->getMajorShaderModel() >= 4; } bool ProgramBinary::usesGeometryShader() const { return usesPointSpriteEmulation(); } GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex, const Caps &caps) { GLint logicalTextureUnit = -1; switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < caps.maxTextureImageUnits); if (samplerIndex < mSamplersPS.size() && mSamplersPS[samplerIndex].active) { logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; } break; case SAMPLER_VERTEX: ASSERT(samplerIndex < caps.maxVertexTextureImageUnits); if (samplerIndex < mSamplersVS.size() && mSamplersVS[samplerIndex].active) { logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; } break; default: UNREACHABLE(); } if (logicalTextureUnit >= 0 && logicalTextureUnit < static_cast(caps.maxCombinedTextureImageUnits)) { return logicalTextureUnit; } return -1; } // Returns the texture type for a given Direct3D 9 sampler type and // index (0-15 for the pixel shader and 0-3 for the vertex shader). GLenum ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) { switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < mSamplersPS.size()); ASSERT(mSamplersPS[samplerIndex].active); return mSamplersPS[samplerIndex].textureType; case SAMPLER_VERTEX: ASSERT(samplerIndex < mSamplersVS.size()); ASSERT(mSamplersVS[samplerIndex].active); return mSamplersVS[samplerIndex].textureType; default: UNREACHABLE(); } return GL_TEXTURE_2D; } GLint ProgramBinary::getUniformLocation(std::string name) { unsigned int subscript = ParseAndStripArrayIndex(&name); unsigned int numUniforms = mUniformIndex.size(); for (unsigned int location = 0; location < numUniforms; location++) { if (mUniformIndex[location].name == name) { const int index = mUniformIndex[location].index; const bool isArray = mUniforms[index]->isArray(); if ((isArray && mUniformIndex[location].element == subscript) || (subscript == GL_INVALID_INDEX)) { return location; } } } return -1; } GLuint ProgramBinary::getUniformIndex(std::string name) { unsigned int subscript = ParseAndStripArrayIndex(&name); // The app is not allowed to specify array indices other than 0 for arrays of basic types if (subscript != 0 && subscript != GL_INVALID_INDEX) { return GL_INVALID_INDEX; } unsigned int numUniforms = mUniforms.size(); for (unsigned int index = 0; index < numUniforms; index++) { if (mUniforms[index]->name == name) { if (mUniforms[index]->isArray() || subscript == GL_INVALID_INDEX) { return index; } } } return GL_INVALID_INDEX; } GLuint ProgramBinary::getUniformBlockIndex(std::string name) { unsigned int subscript = ParseAndStripArrayIndex(&name); unsigned int numUniformBlocks = mUniformBlocks.size(); for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++) { const UniformBlock &uniformBlock = *mUniformBlocks[blockIndex]; if (uniformBlock.name == name) { const bool arrayElementZero = (subscript == GL_INVALID_INDEX && uniformBlock.elementIndex == 0); if (subscript == uniformBlock.elementIndex || arrayElementZero) { return blockIndex; } } } return GL_INVALID_INDEX; } UniformBlock *ProgramBinary::getUniformBlockByIndex(GLuint blockIndex) { ASSERT(blockIndex < mUniformBlocks.size()); return mUniformBlocks[blockIndex]; } GLint ProgramBinary::getFragDataLocation(const char *name) const { std::string baseName(name); unsigned int arrayIndex; arrayIndex = ParseAndStripArrayIndex(&baseName); for (auto locationIt = mOutputVariables.begin(); locationIt != mOutputVariables.end(); locationIt++) { const VariableLocation &outputVariable = locationIt->second; if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element)) { return static_cast(locationIt->first); } } return -1; } size_t ProgramBinary::getTransformFeedbackVaryingCount() const { return mTransformFeedbackLinkedVaryings.size(); } const LinkedVarying &ProgramBinary::getTransformFeedbackVarying(size_t idx) const { return mTransformFeedbackLinkedVaryings[idx]; } GLenum ProgramBinary::getTransformFeedbackBufferMode() const { return mTransformFeedbackBufferMode; } template static inline void SetIfDirty(T *dest, const T& source, bool *dirtyFlag) { ASSERT(dest != NULL); ASSERT(dirtyFlag != NULL); *dirtyFlag = *dirtyFlag || (memcmp(dest, &source, sizeof(T)) != 0); *dest = source; } template void ProgramBinary::setUniform(GLint location, GLsizei count, const T* v, GLenum targetUniformType) { const int components = VariableComponentCount(targetUniformType); const GLenum targetBoolType = VariableBoolVectorType(targetUniformType); LinkedUniform *targetUniform = getUniformByLocation(location); int elementCount = targetUniform->elementCount(); count = std::min(elementCount - (int)mUniformIndex[location].element, count); if (targetUniform->type == targetUniformType) { T *target = reinterpret_cast(targetUniform->data) + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { T *dest = target + (i * 4); const T *source = v + (i * components); for (int c = 0; c < components; c++) { SetIfDirty(dest + c, source[c], &targetUniform->dirty); } for (int c = components; c < 4; c++) { SetIfDirty(dest + c, T(0), &targetUniform->dirty); } } } else if (targetUniform->type == targetBoolType) { GLint *boolParams = reinterpret_cast(targetUniform->data) + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { GLint *dest = boolParams + (i * 4); const T *source = v + (i * components); for (int c = 0; c < components; c++) { SetIfDirty(dest + c, (source[c] == static_cast(0)) ? GL_FALSE : GL_TRUE, &targetUniform->dirty); } for (int c = components; c < 4; c++) { SetIfDirty(dest + c, GL_FALSE, &targetUniform->dirty); } } } else if (IsSampler(targetUniform->type)) { ASSERT(targetUniformType == GL_INT); GLint *target = reinterpret_cast(targetUniform->data) + mUniformIndex[location].element * 4; bool wasDirty = targetUniform->dirty; for (int i = 0; i < count; i++) { GLint *dest = target + (i * 4); const GLint *source = reinterpret_cast(v) + (i * components); SetIfDirty(dest + 0, source[0], &targetUniform->dirty); SetIfDirty(dest + 1, 0, &targetUniform->dirty); SetIfDirty(dest + 2, 0, &targetUniform->dirty); SetIfDirty(dest + 3, 0, &targetUniform->dirty); } if (!wasDirty && targetUniform->dirty) { mDirtySamplerMapping = true; } } else UNREACHABLE(); } void ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) { setUniform(location, count, v, GL_FLOAT); } void ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { setUniform(location, count, v, GL_FLOAT_VEC2); } void ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { setUniform(location, count, v, GL_FLOAT_VEC3); } void ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { setUniform(location, count, v, GL_FLOAT_VEC4); } template bool transposeMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight) { bool dirty = false; int copyWidth = std::min(targetHeight, srcWidth); int copyHeight = std::min(targetWidth, srcHeight); for (int x = 0; x < copyWidth; x++) { for (int y = 0; y < copyHeight; y++) { SetIfDirty(target + (x * targetWidth + y), static_cast(value[y * srcWidth + x]), &dirty); } } // clear unfilled right side for (int y = 0; y < copyWidth; y++) { for (int x = copyHeight; x < targetWidth; x++) { SetIfDirty(target + (y * targetWidth + x), static_cast(0), &dirty); } } // clear unfilled bottom. for (int y = copyWidth; y < targetHeight; y++) { for (int x = 0; x < targetWidth; x++) { SetIfDirty(target + (y * targetWidth + x), static_cast(0), &dirty); } } return dirty; } template bool expandMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight) { bool dirty = false; int copyWidth = std::min(targetWidth, srcWidth); int copyHeight = std::min(targetHeight, srcHeight); for (int y = 0; y < copyHeight; y++) { for (int x = 0; x < copyWidth; x++) { SetIfDirty(target + (y * targetWidth + x), static_cast(value[y * srcWidth + x]), &dirty); } } // clear unfilled right side for (int y = 0; y < copyHeight; y++) { for (int x = copyWidth; x < targetWidth; x++) { SetIfDirty(target + (y * targetWidth + x), static_cast(0), &dirty); } } // clear unfilled bottom. for (int y = copyHeight; y < targetHeight; y++) { for (int x = 0; x < targetWidth; x++) { SetIfDirty(target + (y * targetWidth + x), static_cast(0), &dirty); } } return dirty; } template void ProgramBinary::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum targetUniformType) { LinkedUniform *targetUniform = getUniformByLocation(location); int elementCount = targetUniform->elementCount(); count = std::min(elementCount - (int)mUniformIndex[location].element, count); const unsigned int targetMatrixStride = (4 * rows); GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * targetMatrixStride); for (int i = 0; i < count; i++) { // Internally store matrices as transposed versions to accomodate HLSL matrix indexing if (transpose == GL_FALSE) { targetUniform->dirty = transposeMatrix(target, value, 4, rows, rows, cols) || targetUniform->dirty; } else { targetUniform->dirty = expandMatrix(target, value, 4, rows, cols, rows) || targetUniform->dirty; } target += targetMatrixStride; value += cols * rows; } } void ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<2, 2>(location, count, transpose, value, GL_FLOAT_MAT2); } void ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<3, 3>(location, count, transpose, value, GL_FLOAT_MAT3); } void ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<4, 4>(location, count, transpose, value, GL_FLOAT_MAT4); } void ProgramBinary::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<2, 3>(location, count, transpose, value, GL_FLOAT_MAT2x3); } void ProgramBinary::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<3, 2>(location, count, transpose, value, GL_FLOAT_MAT3x2); } void ProgramBinary::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<2, 4>(location, count, transpose, value, GL_FLOAT_MAT2x4); } void ProgramBinary::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<4, 2>(location, count, transpose, value, GL_FLOAT_MAT4x2); } void ProgramBinary::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<3, 4>(location, count, transpose, value, GL_FLOAT_MAT3x4); } void ProgramBinary::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { setUniformMatrixfv<4, 3>(location, count, transpose, value, GL_FLOAT_MAT4x3); } void ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) { setUniform(location, count, v, GL_INT); } void ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) { setUniform(location, count, v, GL_INT_VEC2); } void ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) { setUniform(location, count, v, GL_INT_VEC3); } void ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) { setUniform(location, count, v, GL_INT_VEC4); } void ProgramBinary::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { setUniform(location, count, v, GL_UNSIGNED_INT); } void ProgramBinary::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { setUniform(location, count, v, GL_UNSIGNED_INT_VEC2); } void ProgramBinary::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { setUniform(location, count, v, GL_UNSIGNED_INT_VEC3); } void ProgramBinary::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { setUniform(location, count, v, GL_UNSIGNED_INT_VEC4); } template void ProgramBinary::getUniformv(GLint location, T *params, GLenum uniformType) { LinkedUniform *targetUniform = mUniforms[mUniformIndex[location].index]; if (IsMatrixType(targetUniform->type)) { const int rows = VariableRowCount(targetUniform->type); const int cols = VariableColumnCount(targetUniform->type); transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4 * rows, rows, cols, 4, rows); } else if (uniformType == VariableComponentType(targetUniform->type)) { unsigned int size = VariableComponentCount(targetUniform->type); memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(T), size * sizeof(T)); } else { unsigned int size = VariableComponentCount(targetUniform->type); switch (VariableComponentType(targetUniform->type)) { case GL_BOOL: { GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = (boolParams[i] == GL_FALSE) ? static_cast(0) : static_cast(1); } } break; case GL_FLOAT: { GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = static_cast(floatParams[i]); } } break; case GL_INT: { GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = static_cast(intParams[i]); } } break; case GL_UNSIGNED_INT: { GLuint *uintParams = (GLuint*)targetUniform->data + mUniformIndex[location].element * 4; for (unsigned int i = 0; i < size; i++) { params[i] = static_cast(uintParams[i]); } } break; default: UNREACHABLE(); } } } void ProgramBinary::getUniformfv(GLint location, GLfloat *params) { getUniformv(location, params, GL_FLOAT); } void ProgramBinary::getUniformiv(GLint location, GLint *params) { getUniformv(location, params, GL_INT); } void ProgramBinary::getUniformuiv(GLint location, GLuint *params) { getUniformv(location, params, GL_UNSIGNED_INT); } void ProgramBinary::dirtyAllUniforms() { unsigned int numUniforms = mUniforms.size(); for (unsigned int index = 0; index < numUniforms; index++) { mUniforms[index]->dirty = true; } } void ProgramBinary::updateSamplerMapping() { if (!mDirtySamplerMapping) { return; } mDirtySamplerMapping = false; // Retrieve sampler uniform values for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++) { LinkedUniform *targetUniform = mUniforms[uniformIndex]; if (targetUniform->dirty) { if (IsSampler(targetUniform->type)) { int count = targetUniform->elementCount(); GLint (*v)[4] = reinterpret_cast(targetUniform->data); if (targetUniform->isReferencedByFragmentShader()) { unsigned int firstIndex = targetUniform->psRegisterIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < mSamplersPS.size()) { ASSERT(mSamplersPS[samplerIndex].active); mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0]; } } } if (targetUniform->isReferencedByVertexShader()) { unsigned int firstIndex = targetUniform->vsRegisterIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < mSamplersVS.size()) { ASSERT(mSamplersVS[samplerIndex].active); mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0]; } } } } } } } // Applies all the uniforms set for this program object to the renderer Error ProgramBinary::applyUniforms() { updateSamplerMapping(); Error error = mProgram->getRenderer()->applyUniforms(*this); if (error.isError()) { return error; } for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++) { mUniforms[uniformIndex]->dirty = false; } return gl::Error(GL_NO_ERROR); } Error ProgramBinary::applyUniformBuffers(const std::vector boundBuffers, const Caps &caps) { const gl::Buffer *vertexUniformBuffers[gl::IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS] = {NULL}; const gl::Buffer *fragmentUniformBuffers[gl::IMPLEMENTATION_MAX_FRAGMENT_SHADER_UNIFORM_BUFFERS] = {NULL}; const unsigned int reservedBuffersInVS = mProgram->getRenderer()->getReservedVertexUniformBuffers(); const unsigned int reservedBuffersInFS = mProgram->getRenderer()->getReservedFragmentUniformBuffers(); ASSERT(boundBuffers.size() == mUniformBlocks.size()); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); uniformBlockIndex++) { UniformBlock *uniformBlock = getUniformBlockByIndex(uniformBlockIndex); gl::Buffer *uniformBuffer = boundBuffers[uniformBlockIndex]; ASSERT(uniformBlock && uniformBuffer); if (uniformBuffer->getSize() < uniformBlock->dataSize) { // undefined behaviour return gl::Error(GL_INVALID_OPERATION, "It is undefined behaviour to use a uniform buffer that is too small."); } // Unnecessary to apply an unreferenced standard or shared UBO if (!uniformBlock->isReferencedByVertexShader() && !uniformBlock->isReferencedByFragmentShader()) { continue; } if (uniformBlock->isReferencedByVertexShader()) { unsigned int registerIndex = uniformBlock->vsRegisterIndex - reservedBuffersInVS; ASSERT(vertexUniformBuffers[registerIndex] == NULL); ASSERT(registerIndex < caps.maxVertexUniformBlocks); vertexUniformBuffers[registerIndex] = uniformBuffer; } if (uniformBlock->isReferencedByFragmentShader()) { unsigned int registerIndex = uniformBlock->psRegisterIndex - reservedBuffersInFS; ASSERT(fragmentUniformBuffers[registerIndex] == NULL); ASSERT(registerIndex < caps.maxFragmentUniformBlocks); fragmentUniformBuffers[registerIndex] = uniformBuffer; } } return mProgram->getRenderer()->setUniformBuffers(vertexUniformBuffers, fragmentUniformBuffers); } bool ProgramBinary::linkVaryings(InfoLog &infoLog, Shader *fragmentShader, Shader *vertexShader) { std::vector &fragmentVaryings = fragmentShader->getVaryings(); std::vector &vertexVaryings = vertexShader->getVaryings(); for (size_t fragVaryingIndex = 0; fragVaryingIndex < fragmentVaryings.size(); fragVaryingIndex++) { PackedVarying *input = &fragmentVaryings[fragVaryingIndex]; bool matched = false; // Built-in varyings obey special rules if (input->isBuiltIn()) { continue; } for (size_t vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++) { PackedVarying *output = &vertexVaryings[vertVaryingIndex]; if (output->name == input->name) { if (!linkValidateVaryings(infoLog, output->name, *input, *output)) { return false; } output->registerIndex = input->registerIndex; output->columnIndex = input->columnIndex; matched = true; break; } } // We permit unmatched, unreferenced varyings if (!matched && input->staticUse) { infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); return false; } } return true; } bool ProgramBinary::load(InfoLog &infoLog, GLenum binaryFormat, const void *binary, GLsizei length) { #ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD return false; #else ASSERT(binaryFormat == mProgram->getBinaryFormat()); reset(); BinaryInputStream stream(binary, length); GLenum format = stream.readInt(); if (format != mProgram->getBinaryFormat()) { infoLog.append("Invalid program binary format."); return false; } int majorVersion = stream.readInt(); int minorVersion = stream.readInt(); if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION) { infoLog.append("Invalid program binary version."); return false; } unsigned char commitString[ANGLE_COMMIT_HASH_SIZE]; stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE); if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0) { infoLog.append("Invalid program binary version."); return false; } int compileFlags = stream.readInt(); if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL) { infoLog.append("Mismatched compilation flags."); return false; } for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.readInt(&mLinkedAttribute[i].type); stream.readString(&mLinkedAttribute[i].name); stream.readInt(&mShaderAttributes[i].type); stream.readString(&mShaderAttributes[i].name); stream.readInt(&mSemanticIndex[i]); } initAttributesByLayout(); const unsigned int psSamplerCount = stream.readInt(); for (unsigned int i = 0; i < psSamplerCount; ++i) { Sampler sampler; stream.readBool(&sampler.active); stream.readInt(&sampler.logicalTextureUnit); stream.readInt(&sampler.textureType); mSamplersPS.push_back(sampler); } const unsigned int vsSamplerCount = stream.readInt(); for (unsigned int i = 0; i < vsSamplerCount; ++i) { Sampler sampler; stream.readBool(&sampler.active); stream.readInt(&sampler.logicalTextureUnit); stream.readInt(&sampler.textureType); mSamplersVS.push_back(sampler); } stream.readInt(&mUsedVertexSamplerRange); stream.readInt(&mUsedPixelSamplerRange); stream.readBool(&mUsesPointSize); stream.readInt(&mShaderVersion); const unsigned int uniformCount = stream.readInt(); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniforms.resize(uniformCount); for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++) { GLenum type = stream.readInt(); GLenum precision = stream.readInt(); std::string name = stream.readString(); unsigned int arraySize = stream.readInt(); int blockIndex = stream.readInt(); int offset = stream.readInt(); int arrayStride = stream.readInt(); int matrixStride = stream.readInt(); bool isRowMajorMatrix = stream.readBool(); const sh::BlockMemberInfo blockInfo(offset, arrayStride, matrixStride, isRowMajorMatrix); LinkedUniform *uniform = new LinkedUniform(type, precision, name, arraySize, blockIndex, blockInfo); stream.readInt(&uniform->psRegisterIndex); stream.readInt(&uniform->vsRegisterIndex); stream.readInt(&uniform->registerCount); stream.readInt(&uniform->registerElement); mUniforms[uniformIndex] = uniform; } unsigned int uniformBlockCount = stream.readInt(); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniformBlocks.resize(uniformBlockCount); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex) { std::string name = stream.readString(); unsigned int elementIndex = stream.readInt(); unsigned int dataSize = stream.readInt(); UniformBlock *uniformBlock = new UniformBlock(name, elementIndex, dataSize); stream.readInt(&uniformBlock->psRegisterIndex); stream.readInt(&uniformBlock->vsRegisterIndex); unsigned int numMembers = stream.readInt(); uniformBlock->memberUniformIndexes.resize(numMembers); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++) { stream.readInt(&uniformBlock->memberUniformIndexes[blockMemberIndex]); } mUniformBlocks[uniformBlockIndex] = uniformBlock; } const unsigned int uniformIndexCount = stream.readInt(); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniformIndex.resize(uniformIndexCount); for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++) { stream.readString(&mUniformIndex[uniformIndexIndex].name); stream.readInt(&mUniformIndex[uniformIndexIndex].element); stream.readInt(&mUniformIndex[uniformIndexIndex].index); } stream.readInt(&mTransformFeedbackBufferMode); const unsigned int transformFeedbackVaryingCount = stream.readInt(); mTransformFeedbackLinkedVaryings.resize(transformFeedbackVaryingCount); for (unsigned int varyingIndex = 0; varyingIndex < transformFeedbackVaryingCount; varyingIndex++) { LinkedVarying &varying = mTransformFeedbackLinkedVaryings[varyingIndex]; stream.readString(&varying.name); stream.readInt(&varying.type); stream.readInt(&varying.size); stream.readString(&varying.semanticName); stream.readInt(&varying.semanticIndex); stream.readInt(&varying.semanticIndexCount); } const unsigned int vertexShaderCount = stream.readInt(); for (unsigned int vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; vertexShaderIndex++) { VertexFormat inputLayout[MAX_VERTEX_ATTRIBS]; for (size_t inputIndex = 0; inputIndex < MAX_VERTEX_ATTRIBS; inputIndex++) { VertexFormat *vertexInput = &inputLayout[inputIndex]; stream.readInt(&vertexInput->mType); stream.readInt(&vertexInput->mNormalized); stream.readInt(&vertexInput->mComponents); stream.readBool(&vertexInput->mPureInteger); } unsigned int vertexShaderSize = stream.readInt(); const unsigned char *vertexShaderFunction = reinterpret_cast(binary) + stream.offset(); rx::ShaderExecutable *shaderExecutable = mProgram->getRenderer()->loadExecutable(reinterpret_cast(vertexShaderFunction), vertexShaderSize, rx::SHADER_VERTEX, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS)); if (!shaderExecutable) { infoLog.append("Could not create vertex shader."); return false; } // generated converted input layout GLenum signature[MAX_VERTEX_ATTRIBS]; mProgram->getDynamicHLSL()->getInputLayoutSignature(inputLayout, signature); // add new binary mVertexExecutables.push_back(new VertexExecutable(inputLayout, signature, shaderExecutable)); stream.skip(vertexShaderSize); } const size_t pixelShaderCount = stream.readInt(); for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++) { const size_t outputCount = stream.readInt(); std::vector outputs(outputCount); for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++) { stream.readInt(&outputs[outputIndex]); } const size_t pixelShaderSize = stream.readInt(); const unsigned char *pixelShaderFunction = reinterpret_cast(binary) + stream.offset(); rx::Renderer *renderer = mProgram->getRenderer(); rx::ShaderExecutable *shaderExecutable = renderer->loadExecutable(pixelShaderFunction, pixelShaderSize, rx::SHADER_PIXEL, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS)); if (!shaderExecutable) { infoLog.append("Could not create pixel shader."); return false; } // add new binary mPixelExecutables.push_back(new PixelExecutable(outputs, shaderExecutable)); stream.skip(pixelShaderSize); } unsigned int geometryShaderSize = stream.readInt(); if (geometryShaderSize > 0) { const char *geometryShaderFunction = (const char*) binary + stream.offset(); rx::Renderer *renderer = mProgram->getRenderer(); mGeometryExecutable = renderer->loadExecutable(reinterpret_cast(geometryShaderFunction), geometryShaderSize, rx::SHADER_GEOMETRY, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS)); if (!mGeometryExecutable) { infoLog.append("Could not create geometry shader."); return false; } stream.skip(geometryShaderSize); } if (!mProgram->load(infoLog, &stream)) { return false; } const char *ptr = (const char*) binary + stream.offset(); const GUID *binaryIdentifier = (const GUID *) ptr; ptr += sizeof(GUID); GUID identifier = mProgram->getRenderer()->getAdapterIdentifier(); if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0) { infoLog.append("Invalid program binary."); return false; } mProgram->initializeUniformStorage(mUniforms); return true; #endif // #ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD } bool ProgramBinary::save(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) { if (binaryFormat) { *binaryFormat = mProgram->getBinaryFormat(); } BinaryOutputStream stream; stream.writeInt(mProgram->getBinaryFormat()); stream.writeInt(ANGLE_MAJOR_VERSION); stream.writeInt(ANGLE_MINOR_VERSION); stream.writeBytes(reinterpret_cast(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE); stream.writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL); for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.writeInt(mLinkedAttribute[i].type); stream.writeString(mLinkedAttribute[i].name); stream.writeInt(mShaderAttributes[i].type); stream.writeString(mShaderAttributes[i].name); stream.writeInt(mSemanticIndex[i]); } stream.writeInt(mSamplersPS.size()); for (unsigned int i = 0; i < mSamplersPS.size(); ++i) { stream.writeInt(mSamplersPS[i].active); stream.writeInt(mSamplersPS[i].logicalTextureUnit); stream.writeInt(mSamplersPS[i].textureType); } stream.writeInt(mSamplersVS.size()); for (unsigned int i = 0; i < mSamplersVS.size(); ++i) { stream.writeInt(mSamplersVS[i].active); stream.writeInt(mSamplersVS[i].logicalTextureUnit); stream.writeInt(mSamplersVS[i].textureType); } stream.writeInt(mUsedVertexSamplerRange); stream.writeInt(mUsedPixelSamplerRange); stream.writeInt(mUsesPointSize); stream.writeInt(mShaderVersion); stream.writeInt(mUniforms.size()); for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); ++uniformIndex) { const LinkedUniform &uniform = *mUniforms[uniformIndex]; stream.writeInt(uniform.type); stream.writeInt(uniform.precision); stream.writeString(uniform.name); stream.writeInt(uniform.arraySize); stream.writeInt(uniform.blockIndex); stream.writeInt(uniform.blockInfo.offset); stream.writeInt(uniform.blockInfo.arrayStride); stream.writeInt(uniform.blockInfo.matrixStride); stream.writeInt(uniform.blockInfo.isRowMajorMatrix); stream.writeInt(uniform.psRegisterIndex); stream.writeInt(uniform.vsRegisterIndex); stream.writeInt(uniform.registerCount); stream.writeInt(uniform.registerElement); } stream.writeInt(mUniformBlocks.size()); for (size_t uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); ++uniformBlockIndex) { const UniformBlock& uniformBlock = *mUniformBlocks[uniformBlockIndex]; stream.writeString(uniformBlock.name); stream.writeInt(uniformBlock.elementIndex); stream.writeInt(uniformBlock.dataSize); stream.writeInt(uniformBlock.memberUniformIndexes.size()); for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++) { stream.writeInt(uniformBlock.memberUniformIndexes[blockMemberIndex]); } stream.writeInt(uniformBlock.psRegisterIndex); stream.writeInt(uniformBlock.vsRegisterIndex); } stream.writeInt(mUniformIndex.size()); for (size_t i = 0; i < mUniformIndex.size(); ++i) { stream.writeString(mUniformIndex[i].name); stream.writeInt(mUniformIndex[i].element); stream.writeInt(mUniformIndex[i].index); } stream.writeInt(mTransformFeedbackBufferMode); stream.writeInt(mTransformFeedbackLinkedVaryings.size()); for (size_t i = 0; i < mTransformFeedbackLinkedVaryings.size(); i++) { const LinkedVarying &varying = mTransformFeedbackLinkedVaryings[i]; stream.writeString(varying.name); stream.writeInt(varying.type); stream.writeInt(varying.size); stream.writeString(varying.semanticName); stream.writeInt(varying.semanticIndex); stream.writeInt(varying.semanticIndexCount); } stream.writeInt(mVertexExecutables.size()); for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size(); vertexExecutableIndex++) { VertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex]; for (size_t inputIndex = 0; inputIndex < gl::MAX_VERTEX_ATTRIBS; inputIndex++) { const VertexFormat &vertexInput = vertexExecutable->inputs()[inputIndex]; stream.writeInt(vertexInput.mType); stream.writeInt(vertexInput.mNormalized); stream.writeInt(vertexInput.mComponents); stream.writeInt(vertexInput.mPureInteger); } size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength(); stream.writeInt(vertexShaderSize); const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction(); stream.writeBytes(vertexBlob, vertexShaderSize); } stream.writeInt(mPixelExecutables.size()); for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size(); pixelExecutableIndex++) { PixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex]; const std::vector outputs = pixelExecutable->outputSignature(); stream.writeInt(outputs.size()); for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++) { stream.writeInt(outputs[outputIndex]); } size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength(); stream.writeInt(pixelShaderSize); const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction(); stream.writeBytes(pixelBlob, pixelShaderSize); } size_t geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0; stream.writeInt(geometryShaderSize); if (mGeometryExecutable != NULL && geometryShaderSize > 0) { const uint8_t *geometryBlob = mGeometryExecutable->getFunction(); stream.writeBytes(geometryBlob, geometryShaderSize); } if (!mProgram->save(&stream)) { if (length) { *length = 0; } return false; } GUID identifier = mProgram->getRenderer()->getAdapterIdentifier(); GLsizei streamLength = stream.length(); const void *streamData = stream.data(); GLsizei totalLength = streamLength + sizeof(GUID); if (totalLength > bufSize) { if (length) { *length = 0; } return false; } if (binary) { char *ptr = (char*) binary; memcpy(ptr, streamData, streamLength); ptr += streamLength; memcpy(ptr, &identifier, sizeof(GUID)); ptr += sizeof(GUID); ASSERT(ptr - totalLength == binary); } if (length) { *length = totalLength; } return true; } GLint ProgramBinary::getLength() { GLint length; if (save(NULL, NULL, INT_MAX, &length)) { return length; } else { return 0; } } bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, Shader *fragmentShader, Shader *vertexShader, const std::vector& transformFeedbackVaryings, GLenum transformFeedbackBufferMode, const Caps &caps) { if (!fragmentShader || !fragmentShader->isCompiled()) { return false; } ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER); if (!vertexShader || !vertexShader->isCompiled()) { return false; } ASSERT(vertexShader->getType() == GL_VERTEX_SHADER); reset(); mSamplersPS.resize(caps.maxTextureImageUnits); mSamplersVS.resize(caps.maxVertexTextureImageUnits); mTransformFeedbackBufferMode = transformFeedbackBufferMode; rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader->getImplementation()); rx::ShaderD3D *fragmentShaderD3D = rx::ShaderD3D::makeShaderD3D(fragmentShader->getImplementation()); mShaderVersion = vertexShaderD3D->getShaderVersion(); int registers; std::vector linkedVaryings; if (!mProgram->link(infoLog, fragmentShader, vertexShader, transformFeedbackVaryings, ®isters, &linkedVaryings, &mOutputVariables)) { return false; } mUsesPointSize = vertexShaderD3D->usesPointSize(); bool success = true; if (!linkAttributes(infoLog, attributeBindings, vertexShader)) { success = false; } if (!linkUniforms(infoLog, *vertexShader, *fragmentShader, caps)) { success = false; } // special case for gl_DepthRange, the only built-in uniform (also a struct) if (vertexShaderD3D->usesDepthRange() || fragmentShaderD3D->usesDepthRange()) { const sh::BlockMemberInfo &defaultInfo = sh::BlockMemberInfo::getDefaultBlockInfo(); mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0, -1, defaultInfo)); mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0, -1, defaultInfo)); mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0, -1, defaultInfo)); } if (!linkUniformBlocks(infoLog, *vertexShader, *fragmentShader, caps)) { success = false; } if (!gatherTransformFeedbackLinkedVaryings(infoLog, linkedVaryings, transformFeedbackVaryings, transformFeedbackBufferMode, &mTransformFeedbackLinkedVaryings, caps)) { success = false; } if (success) { VertexFormat defaultInputLayout[MAX_VERTEX_ATTRIBS]; GetDefaultInputLayoutFromShader(vertexShader->getActiveAttributes(), defaultInputLayout); rx::ShaderExecutable *defaultVertexExecutable = getVertexExecutableForInputLayout(defaultInputLayout); std::vector defaultPixelOutput = GetDefaultOutputLayoutFromShader(mProgram->getPixelShaderKey()); rx::ShaderExecutable *defaultPixelExecutable = getPixelExecutableForOutputLayout(defaultPixelOutput); if (usesGeometryShader()) { std::string geometryHLSL = mProgram->getDynamicHLSL()->generateGeometryShaderHLSL(registers, fragmentShaderD3D, vertexShaderD3D); mGeometryExecutable = mProgram->getRenderer()->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY, mTransformFeedbackLinkedVaryings, (mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS), rx::ANGLE_D3D_WORKAROUND_NONE); } if (!defaultVertexExecutable || !defaultPixelExecutable || (usesGeometryShader() && !mGeometryExecutable)) { infoLog.append("Failed to create D3D shaders."); success = false; reset(); } } return success; } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, const Shader *vertexShader) { const rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader->getImplementation()); unsigned int usedLocations = 0; const std::vector &shaderAttributes = vertexShader->getActiveAttributes(); // Link attributes that have a binding location for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++) { const sh::Attribute &attribute = shaderAttributes[attributeIndex]; ASSERT(attribute.staticUse); const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location; mShaderAttributes[attributeIndex] = attribute; if (location != -1) // Set by glBindAttribLocation or by location layout qualifier { const int rows = VariableRegisterCount(attribute.type); if (rows + location > MAX_VERTEX_ATTRIBS) { infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location); return false; } for (int row = 0; row < rows; row++) { const int rowLocation = location + row; sh::ShaderVariable &linkedAttribute = mLinkedAttribute[rowLocation]; // In GLSL 3.00, attribute aliasing produces a link error // In GLSL 1.00, attribute aliasing is allowed if (mShaderVersion >= 300) { if (!linkedAttribute.name.empty()) { infoLog.append("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), linkedAttribute.name.c_str(), rowLocation); return false; } } linkedAttribute = attribute; usedLocations |= 1 << rowLocation; } } } // Link attributes that don't have a binding location for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++) { const sh::Attribute &attribute = shaderAttributes[attributeIndex]; ASSERT(attribute.staticUse); const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location; if (location == -1) // Not set by glBindAttribLocation or by location layout qualifier { int rows = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) { infoLog.append("Too many active attributes (%s)", attribute.name.c_str()); return false; // Fail to link } mLinkedAttribute[availableIndex] = attribute; } } for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) { int index = vertexShaderD3D->getSemanticIndex(mLinkedAttribute[attributeIndex].name); int rows = VariableRegisterCount(mLinkedAttribute[attributeIndex].type); for (int r = 0; r < rows; r++) { mSemanticIndex[attributeIndex++] = index++; } } initAttributesByLayout(); return true; } bool ProgramBinary::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable, const sh::ShaderVariable &fragmentVariable, bool validatePrecision) { if (vertexVariable.type != fragmentVariable.type) { infoLog.append("Types for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (vertexVariable.arraySize != fragmentVariable.arraySize) { infoLog.append("Array sizes for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (validatePrecision && vertexVariable.precision != fragmentVariable.precision) { infoLog.append("Precisions for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } if (vertexVariable.fields.size() != fragmentVariable.fields.size()) { infoLog.append("Structure lengths for %s differ between vertex and fragment shaders", variableName.c_str()); return false; } const unsigned int numMembers = vertexVariable.fields.size(); for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++) { const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex]; const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog.append("Name mismatch for field '%d' of %s: (in vertex: '%s', in fragment: '%s')", memberIndex, variableName.c_str(), vertexMember.name.c_str(), fragmentMember.name.c_str()); return false; } const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." + vertexMember.name + "'"; if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision)) { return false; } } return true; } bool ProgramBinary::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform) { if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true)) { return false; } return true; } bool ProgramBinary::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying) { if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false)) { return false; } if (vertexVarying.interpolation != fragmentVarying.interpolation) { infoLog.append("Interpolation types for %s differ between vertex and fragment shaders", varyingName.c_str()); return false; } return true; } bool ProgramBinary::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform) { if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true)) { return false; } if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout) { infoLog.append("Matrix packings for %s differ between vertex and fragment shaders", uniformName.c_str()); return false; } return true; } bool ProgramBinary::linkUniforms(InfoLog &infoLog, const Shader &vertexShader, const Shader &fragmentShader, const Caps &caps) { const rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader.getImplementation()); const rx::ShaderD3D *fragmentShaderD3D = rx::ShaderD3D::makeShaderD3D(fragmentShader.getImplementation()); const std::vector &vertexUniforms = vertexShader.getUniforms(); const std::vector &fragmentUniforms = fragmentShader.getUniforms(); // Check that uniforms defined in the vertex and fragment shaders are identical typedef std::map UniformMap; UniformMap linkedUniforms; for (unsigned int vertexUniformIndex = 0; vertexUniformIndex < vertexUniforms.size(); vertexUniformIndex++) { const sh::Uniform &vertexUniform = vertexUniforms[vertexUniformIndex]; linkedUniforms[vertexUniform.name] = &vertexUniform; } for (unsigned int fragmentUniformIndex = 0; fragmentUniformIndex < fragmentUniforms.size(); fragmentUniformIndex++) { const sh::Uniform &fragmentUniform = fragmentUniforms[fragmentUniformIndex]; UniformMap::const_iterator entry = linkedUniforms.find(fragmentUniform.name); if (entry != linkedUniforms.end()) { const sh::Uniform &vertexUniform = *entry->second; const std::string &uniformName = "uniform '" + vertexUniform.name + "'"; if (!linkValidateUniforms(infoLog, uniformName, vertexUniform, fragmentUniform)) { return false; } } } for (unsigned int uniformIndex = 0; uniformIndex < vertexUniforms.size(); uniformIndex++) { const sh::Uniform &uniform = vertexUniforms[uniformIndex]; if (uniform.staticUse) { defineUniformBase(GL_VERTEX_SHADER, uniform, vertexShaderD3D->getUniformRegister(uniform.name)); } } for (unsigned int uniformIndex = 0; uniformIndex < fragmentUniforms.size(); uniformIndex++) { const sh::Uniform &uniform = fragmentUniforms[uniformIndex]; if (uniform.staticUse) { defineUniformBase(GL_FRAGMENT_SHADER, uniform, fragmentShaderD3D->getUniformRegister(uniform.name)); } } if (!indexUniforms(infoLog, caps)) { return false; } mProgram->initializeUniformStorage(mUniforms); return true; } void ProgramBinary::defineUniformBase(GLenum shader, const sh::Uniform &uniform, unsigned int uniformRegister) { ShShaderOutput outputType = rx::ShaderD3D::getCompilerOutputType(shader); sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType)); encoder.skipRegisters(uniformRegister); defineUniform(shader, uniform, uniform.name, &encoder); } void ProgramBinary::defineUniform(GLenum shader, const sh::ShaderVariable &uniform, const std::string &fullName, sh::HLSLBlockEncoder *encoder) { if (uniform.isStruct()) { for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++) { const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : ""); encoder->enterAggregateType(); for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++) { const sh::ShaderVariable &field = uniform.fields[fieldIndex]; const std::string &fieldFullName = (fullName + elementString + "." + field.name); defineUniform(shader, field, fieldFullName, encoder); } encoder->exitAggregateType(); } } else // Not a struct { // Arrays are treated as aggregate types if (uniform.isArray()) { encoder->enterAggregateType(); } LinkedUniform *linkedUniform = getUniformByName(fullName); if (!linkedUniform) { linkedUniform = new LinkedUniform(uniform.type, uniform.precision, fullName, uniform.arraySize, -1, sh::BlockMemberInfo::getDefaultBlockInfo()); ASSERT(linkedUniform); linkedUniform->registerElement = encoder->getCurrentElement(); mUniforms.push_back(linkedUniform); } ASSERT(linkedUniform->registerElement == encoder->getCurrentElement()); if (shader == GL_FRAGMENT_SHADER) { linkedUniform->psRegisterIndex = encoder->getCurrentRegister(); } else if (shader == GL_VERTEX_SHADER) { linkedUniform->vsRegisterIndex = encoder->getCurrentRegister(); } else UNREACHABLE(); // Advance the uniform offset, to track registers allocation for structs encoder->encodeType(uniform.type, uniform.arraySize, false); // Arrays are treated as aggregate types if (uniform.isArray()) { encoder->exitAggregateType(); } } } bool ProgramBinary::indexSamplerUniform(const LinkedUniform &uniform, InfoLog &infoLog, const Caps &caps) { ASSERT(IsSampler(uniform.type)); ASSERT(uniform.vsRegisterIndex != GL_INVALID_INDEX || uniform.psRegisterIndex != GL_INVALID_INDEX); if (uniform.vsRegisterIndex != GL_INVALID_INDEX) { if (!assignSamplers(uniform.vsRegisterIndex, uniform.type, uniform.arraySize, mSamplersVS, &mUsedVertexSamplerRange)) { infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mSamplersVS.size()); return false; } unsigned int maxVertexVectors = mProgram->getRenderer()->getReservedVertexUniformVectors() + caps.maxVertexUniformVectors; if (uniform.vsRegisterIndex + uniform.registerCount > maxVertexVectors) { infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", caps.maxVertexUniformVectors); return false; } } if (uniform.psRegisterIndex != GL_INVALID_INDEX) { if (!assignSamplers(uniform.psRegisterIndex, uniform.type, uniform.arraySize, mSamplersPS, &mUsedPixelSamplerRange)) { infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", mSamplersPS.size()); return false; } unsigned int maxFragmentVectors = mProgram->getRenderer()->getReservedFragmentUniformVectors() + caps.maxFragmentUniformVectors; if (uniform.psRegisterIndex + uniform.registerCount > maxFragmentVectors) { infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", caps.maxFragmentUniformVectors); return false; } } return true; } bool ProgramBinary::indexUniforms(InfoLog &infoLog, const Caps &caps) { for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++) { const LinkedUniform &uniform = *mUniforms[uniformIndex]; if (IsSampler(uniform.type)) { if (!indexSamplerUniform(uniform, infoLog, caps)) { return false; } } for (unsigned int arrayElementIndex = 0; arrayElementIndex < uniform.elementCount(); arrayElementIndex++) { mUniformIndex.push_back(VariableLocation(uniform.name, arrayElementIndex, uniformIndex)); } } return true; } bool ProgramBinary::assignSamplers(unsigned int startSamplerIndex, GLenum samplerType, unsigned int samplerCount, std::vector &outSamplers, GLuint *outUsedRange) { unsigned int samplerIndex = startSamplerIndex; do { if (samplerIndex < outSamplers.size()) { Sampler& sampler = outSamplers[samplerIndex]; sampler.active = true; sampler.textureType = GetTextureType(samplerType); sampler.logicalTextureUnit = 0; *outUsedRange = std::max(samplerIndex + 1, *outUsedRange); } else { return false; } samplerIndex++; } while (samplerIndex < startSamplerIndex + samplerCount); return true; } bool ProgramBinary::areMatchingInterfaceBlocks(InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock) { const char* blockName = vertexInterfaceBlock.name.c_str(); // validate blocks for the same member types if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size()) { infoLog.append("Types for interface block '%s' differ between vertex and fragment shaders", blockName); return false; } if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize) { infoLog.append("Array sizes differ for interface block '%s' between vertex and fragment shaders", blockName); return false; } if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout) { infoLog.append("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", blockName); return false; } const unsigned int numBlockMembers = vertexInterfaceBlock.fields.size(); for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++) { const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex]; const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex]; if (vertexMember.name != fragmentMember.name) { infoLog.append("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')", blockMemberIndex, blockName, vertexMember.name.c_str(), fragmentMember.name.c_str()); return false; } std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'"; if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember)) { return false; } } return true; } bool ProgramBinary::linkUniformBlocks(InfoLog &infoLog, const Shader &vertexShader, const Shader &fragmentShader, const Caps &caps) { const std::vector &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks(); const std::vector &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks(); // Check that interface blocks defined in the vertex and fragment shaders are identical typedef std::map UniformBlockMap; UniformBlockMap linkedUniformBlocks; for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &vertexInterfaceBlock = vertexInterfaceBlocks[blockIndex]; linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock; } for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &fragmentInterfaceBlock = fragmentInterfaceBlocks[blockIndex]; UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name); if (entry != linkedUniformBlocks.end()) { const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second; if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock)) { return false; } } } for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &interfaceBlock = vertexInterfaceBlocks[blockIndex]; // Note: shared and std140 layouts are always considered active if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED) { if (!defineUniformBlock(infoLog, vertexShader, interfaceBlock, caps)) { return false; } } } for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++) { const sh::InterfaceBlock &interfaceBlock = fragmentInterfaceBlocks[blockIndex]; // Note: shared and std140 layouts are always considered active if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED) { if (!defineUniformBlock(infoLog, fragmentShader, interfaceBlock, caps)) { return false; } } } return true; } bool ProgramBinary::gatherTransformFeedbackLinkedVaryings(InfoLog &infoLog, const std::vector &linkedVaryings, const std::vector &transformFeedbackVaryingNames, GLenum transformFeedbackBufferMode, std::vector *outTransformFeedbackLinkedVaryings, const Caps &caps) const { size_t totalComponents = 0; // Gather the linked varyings that are used for transform feedback, they should all exist. outTransformFeedbackLinkedVaryings->clear(); for (size_t i = 0; i < transformFeedbackVaryingNames.size(); i++) { bool found = false; for (size_t j = 0; j < linkedVaryings.size(); j++) { if (transformFeedbackVaryingNames[i] == linkedVaryings[j].name) { for (size_t k = 0; k < outTransformFeedbackLinkedVaryings->size(); k++) { if (outTransformFeedbackLinkedVaryings->at(k).name == linkedVaryings[j].name) { infoLog.append("Two transform feedback varyings specify the same output variable (%s).", linkedVaryings[j].name.c_str()); return false; } } size_t componentCount = linkedVaryings[j].semanticIndexCount * 4; if (transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS && componentCount > caps.maxTransformFeedbackSeparateComponents) { infoLog.append("Transform feedback varying's %s components (%u) exceed the maximum separate components (%u).", linkedVaryings[j].name.c_str(), componentCount, caps.maxTransformFeedbackSeparateComponents); return false; } totalComponents += componentCount; outTransformFeedbackLinkedVaryings->push_back(linkedVaryings[j]); found = true; break; } } // All transform feedback varyings are expected to exist since packVaryings checks for them. ASSERT(found); } if (transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents) { infoLog.append("Transform feedback varying total components (%u) exceed the maximum interleaved components (%u).", totalComponents, caps.maxTransformFeedbackInterleavedComponents); return false; } return true; } template void ProgramBinary::defineUniformBlockMembers(const std::vector &fields, const std::string &prefix, int blockIndex, sh::BlockLayoutEncoder *encoder, std::vector *blockUniformIndexes, bool inRowMajorLayout) { for (unsigned int uniformIndex = 0; uniformIndex < fields.size(); uniformIndex++) { const VarT &field = fields[uniformIndex]; const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name); if (field.isStruct()) { bool rowMajorLayout = (inRowMajorLayout || IsRowMajorLayout(field)); for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++) { encoder->enterAggregateType(); const std::string uniformElementName = fieldName + (field.isArray() ? ArrayString(arrayElement) : ""); defineUniformBlockMembers(field.fields, uniformElementName, blockIndex, encoder, blockUniformIndexes, rowMajorLayout); encoder->exitAggregateType(); } } else { bool isRowMajorMatrix = (IsMatrixType(field.type) && inRowMajorLayout); sh::BlockMemberInfo memberInfo = encoder->encodeType(field.type, field.arraySize, isRowMajorMatrix); LinkedUniform *newUniform = new LinkedUniform(field.type, field.precision, fieldName, field.arraySize, blockIndex, memberInfo); // add to uniform list, but not index, since uniform block uniforms have no location blockUniformIndexes->push_back(mUniforms.size()); mUniforms.push_back(newUniform); } } } bool ProgramBinary::defineUniformBlock(InfoLog &infoLog, const Shader &shader, const sh::InterfaceBlock &interfaceBlock, const Caps &caps) { const rx::ShaderD3D* shaderD3D = rx::ShaderD3D::makeShaderD3D(shader.getImplementation()); // create uniform block entries if they do not exist if (getUniformBlockIndex(interfaceBlock.name) == GL_INVALID_INDEX) { std::vector blockUniformIndexes; const unsigned int blockIndex = mUniformBlocks.size(); // define member uniforms sh::BlockLayoutEncoder *encoder = NULL; if (interfaceBlock.layout == sh::BLOCKLAYOUT_STANDARD) { encoder = new sh::Std140BlockEncoder; } else { encoder = new sh::HLSLBlockEncoder(sh::HLSLBlockEncoder::ENCODE_PACKED); } ASSERT(encoder); defineUniformBlockMembers(interfaceBlock.fields, "", blockIndex, encoder, &blockUniformIndexes, interfaceBlock.isRowMajorLayout); size_t dataSize = encoder->getBlockSize(); // create all the uniform blocks if (interfaceBlock.arraySize > 0) { for (unsigned int uniformBlockElement = 0; uniformBlockElement < interfaceBlock.arraySize; uniformBlockElement++) { UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, uniformBlockElement, dataSize); newUniformBlock->memberUniformIndexes = blockUniformIndexes; mUniformBlocks.push_back(newUniformBlock); } } else { UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, GL_INVALID_INDEX, dataSize); newUniformBlock->memberUniformIndexes = blockUniformIndexes; mUniformBlocks.push_back(newUniformBlock); } } if (interfaceBlock.staticUse) { // Assign registers to the uniform blocks const GLuint blockIndex = getUniformBlockIndex(interfaceBlock.name); const unsigned int elementCount = std::max(1u, interfaceBlock.arraySize); ASSERT(blockIndex != GL_INVALID_INDEX); ASSERT(blockIndex + elementCount <= mUniformBlocks.size()); unsigned int interfaceBlockRegister = shaderD3D->getInterfaceBlockRegister(interfaceBlock.name); for (unsigned int uniformBlockElement = 0; uniformBlockElement < elementCount; uniformBlockElement++) { UniformBlock *uniformBlock = mUniformBlocks[blockIndex + uniformBlockElement]; ASSERT(uniformBlock->name == interfaceBlock.name); if (!assignUniformBlockRegister(infoLog, uniformBlock, shader.getType(), interfaceBlockRegister + uniformBlockElement, caps)) { return false; } } } return true; } bool ProgramBinary::assignUniformBlockRegister(InfoLog &infoLog, UniformBlock *uniformBlock, GLenum shader, unsigned int registerIndex, const Caps &caps) { if (shader == GL_VERTEX_SHADER) { uniformBlock->vsRegisterIndex = registerIndex; if (registerIndex - mProgram->getRenderer()->getReservedVertexUniformBuffers() >= caps.maxVertexUniformBlocks) { infoLog.append("Vertex shader uniform block count exceed GL_MAX_VERTEX_UNIFORM_BLOCKS (%u)", caps.maxVertexUniformBlocks); return false; } } else if (shader == GL_FRAGMENT_SHADER) { uniformBlock->psRegisterIndex = registerIndex; if (registerIndex - mProgram->getRenderer()->getReservedFragmentUniformBuffers() >= caps.maxFragmentUniformBlocks) { infoLog.append("Fragment shader uniform block count exceed GL_MAX_FRAGMENT_UNIFORM_BLOCKS (%u)", caps.maxFragmentUniformBlocks); return false; } } else UNREACHABLE(); return true; } bool ProgramBinary::isValidated() const { return mValidated; } void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { // Skip over inactive attributes unsigned int activeAttribute = 0; unsigned int attribute; for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mLinkedAttribute[attribute].name.empty()) { continue; } if (activeAttribute == index) { break; } activeAttribute++; } if (bufsize > 0) { const char *string = mLinkedAttribute[attribute].name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = 1; // Always a single 'type' instance *type = mLinkedAttribute[attribute].type; } GLint ProgramBinary::getActiveAttributeCount() const { int count = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { count++; } } return count; } GLint ProgramBinary::getActiveAttributeMaxLength() const { int maxLength = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); } } return maxLength; } void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount() if (bufsize > 0) { std::string string = mUniforms[index]->name; if (mUniforms[index]->isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = mUniforms[index]->elementCount(); *type = mUniforms[index]->type; } GLint ProgramBinary::getActiveUniformCount() const { return mUniforms.size(); } GLint ProgramBinary::getActiveUniformMaxLength() const { int maxLength = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (!mUniforms[uniformIndex]->name.empty()) { int length = (int)(mUniforms[uniformIndex]->name.length() + 1); if (mUniforms[uniformIndex]->isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } return maxLength; } GLint ProgramBinary::getActiveUniformi(GLuint index, GLenum pname) const { const gl::LinkedUniform& uniform = *mUniforms[index]; switch (pname) { case GL_UNIFORM_TYPE: return static_cast(uniform.type); case GL_UNIFORM_SIZE: return static_cast(uniform.elementCount()); case GL_UNIFORM_NAME_LENGTH: return static_cast(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0)); case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex; case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset; case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride; case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride; case GL_UNIFORM_IS_ROW_MAJOR: return static_cast(uniform.blockInfo.isRowMajorMatrix); default: UNREACHABLE(); break; } return 0; } bool ProgramBinary::isValidUniformLocation(GLint location) const { ASSERT(rx::IsIntegerCastSafe(mUniformIndex.size())); return (location >= 0 && location < static_cast(mUniformIndex.size())); } LinkedUniform *ProgramBinary::getUniformByLocation(GLint location) const { ASSERT(location >= 0 && static_cast(location) < mUniformIndex.size()); return mUniforms[mUniformIndex[location].index]; } LinkedUniform *ProgramBinary::getUniformByName(const std::string &name) const { for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++) { if (mUniforms[uniformIndex]->name == name) { return mUniforms[uniformIndex]; } } return NULL; } void ProgramBinary::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const { ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex]; if (bufSize > 0) { std::string string = uniformBlock.name; if (uniformBlock.isArrayElement()) { string += ArrayString(uniformBlock.elementIndex); } strncpy(uniformBlockName, string.c_str(), bufSize); uniformBlockName[bufSize - 1] = '\0'; if (length) { *length = strlen(uniformBlockName); } } } void ProgramBinary::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const { ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount() const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex]; switch (pname) { case GL_UNIFORM_BLOCK_DATA_SIZE: *params = static_cast(uniformBlock.dataSize); break; case GL_UNIFORM_BLOCK_NAME_LENGTH: *params = static_cast(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0)); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS: *params = static_cast(uniformBlock.memberUniformIndexes.size()); break; case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES: { for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++) { params[blockMemberIndex] = static_cast(uniformBlock.memberUniformIndexes[blockMemberIndex]); } } break; case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER: *params = static_cast(uniformBlock.isReferencedByVertexShader()); break; case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER: *params = static_cast(uniformBlock.isReferencedByFragmentShader()); break; default: UNREACHABLE(); } } GLuint ProgramBinary::getActiveUniformBlockCount() const { return mUniformBlocks.size(); } GLuint ProgramBinary::getActiveUniformBlockMaxLength() const { unsigned int maxLength = 0; unsigned int numUniformBlocks = mUniformBlocks.size(); for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++) { const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex]; if (!uniformBlock.name.empty()) { const unsigned int length = uniformBlock.name.length() + 1; // Counting in "[0]". const unsigned int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0); maxLength = std::max(length + arrayLength, maxLength); } } return maxLength; } void ProgramBinary::validate(InfoLog &infoLog, const Caps &caps) { applyUniforms(); if (!validateSamplers(&infoLog, caps)) { mValidated = false; } else { mValidated = true; } } bool ProgramBinary::validateSamplers(InfoLog *infoLog, const Caps &caps) { // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. updateSamplerMapping(); std::vector textureUnitTypes(caps.maxCombinedTextureImageUnits, GL_NONE); for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) { if (mSamplersPS[i].active) { unsigned int unit = mSamplersPS[i].logicalTextureUnit; if (unit >= textureUnitTypes.size()) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, textureUnitTypes.size()); } return false; } if (textureUnitTypes[unit] != GL_NONE) { if (mSamplersPS[i].textureType != textureUnitTypes[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitTypes[unit] = mSamplersPS[i].textureType; } } } for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) { if (mSamplersVS[i].active) { unsigned int unit = mSamplersVS[i].logicalTextureUnit; if (unit >= textureUnitTypes.size()) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, textureUnitTypes.size()); } return false; } if (textureUnitTypes[unit] != GL_NONE) { if (mSamplersVS[i].textureType != textureUnitTypes[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitTypes[unit] = mSamplersVS[i].textureType; } } } return true; } ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(GL_TEXTURE_2D) { } struct AttributeSorter { AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS]) : originalIndices(semanticIndices) { } bool operator()(int a, int b) { if (originalIndices[a] == -1) return false; if (originalIndices[b] == -1) return true; return (originalIndices[a] < originalIndices[b]); } const int (&originalIndices)[MAX_VERTEX_ATTRIBS]; }; void ProgramBinary::initAttributesByLayout() { for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mAttributesByLayout[i] = i; } std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex)); } void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const { rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS]; for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { oldTranslatedAttributes[i] = attributes[i]; } for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { int oldIndex = mAttributesByLayout[i]; sortedSemanticIndices[i] = oldIndex; attributes[i] = oldTranslatedAttributes[oldIndex]; } } void ProgramBinary::reset() { SafeDeleteContainer(mVertexExecutables); SafeDeleteContainer(mPixelExecutables); SafeDelete(mGeometryExecutable); mTransformFeedbackBufferMode = GL_NONE; mTransformFeedbackLinkedVaryings.clear(); mSamplersPS.clear(); mSamplersVS.clear(); mUsedVertexSamplerRange = 0; mUsedPixelSamplerRange = 0; mUsesPointSize = false; mShaderVersion = 0; mDirtySamplerMapping = true; SafeDeleteContainer(mUniforms); SafeDeleteContainer(mUniformBlocks); mUniformIndex.clear(); mOutputVariables.clear(); mProgram->reset(); mValidated = false; } }