// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libGLESv2/BinaryStream.h" #include "libGLESv2/Program.h" #include "libGLESv2/ProgramBinary.h" #include "common/debug.h" #include "common/version.h" #include "libGLESv2/main.h" #include "libGLESv2/Shader.h" #include "libGLESv2/utilities.h" #include #if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) #define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 #endif namespace gl { std::string str(int i) { char buffer[20]; snprintf(buffer, sizeof(buffer), "%d", i); return buffer; } Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize) : type(type), _name(_name), name(ProgramBinary::undecorateUniform(_name)), arraySize(arraySize) { int bytes = UniformInternalSize(type) * arraySize; data = new unsigned char[bytes]; memset(data, 0, bytes); dirty = true; } Uniform::~Uniform() { delete[] data; } bool Uniform::isArray() { size_t dot = _name.find_last_of('.'); if (dot == std::string::npos) dot = -1; return _name.compare(dot + 1, dot + 4, "ar_") == 0; } UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index) : name(ProgramBinary::undecorateUniform(_name)), element(element), index(index) { } unsigned int ProgramBinary::mCurrentSerial = 1; ProgramBinary::ProgramBinary() : RefCountObject(0), mSerial(issueSerial()) { mDevice = getDevice(); mPixelExecutable = NULL; mVertexExecutable = NULL; mConstantTablePS = NULL; mConstantTableVS = NULL; mValidated = false; for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { mSemanticIndex[index] = -1; } for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) { mSamplersPS[index].active = false; } for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++) { mSamplersVS[index].active = false; } mUsedVertexSamplerRange = 0; mUsedPixelSamplerRange = 0; mDxDepthRangeLocation = -1; mDxDepthLocation = -1; mDxCoordLocation = -1; mDxHalfPixelSizeLocation = -1; mDxFrontCCWLocation = -1; mDxPointsOrLinesLocation = -1; } ProgramBinary::~ProgramBinary() { if (mPixelExecutable) { mPixelExecutable->Release(); } if (mVertexExecutable) { mVertexExecutable->Release(); } delete mConstantTablePS; delete mConstantTableVS; while (!mUniforms.empty()) { delete mUniforms.back(); mUniforms.pop_back(); } } unsigned int ProgramBinary::getSerial() const { return mSerial; } unsigned int ProgramBinary::issueSerial() { return mCurrentSerial++; } IDirect3DPixelShader9 *ProgramBinary::getPixelShader() { return mPixelExecutable; } IDirect3DVertexShader9 *ProgramBinary::getVertexShader() { return mVertexExecutable; } GLuint ProgramBinary::getAttributeLocation(const char *name) { if (name) { for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { if (mLinkedAttribute[index].name == std::string(name)) { return index; } } } return -1; } int ProgramBinary::getSemanticIndex(int attributeIndex) { ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); return mSemanticIndex[attributeIndex]; } // Returns one more than the highest sampler index used. GLint ProgramBinary::getUsedSamplerRange(SamplerType type) { switch (type) { case SAMPLER_PIXEL: return mUsedPixelSamplerRange; case SAMPLER_VERTEX: return mUsedVertexSamplerRange; default: UNREACHABLE(); return 0; } } bool ProgramBinary::usesPointSize() const { return mUsesPointSize; } // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler // index (0-15 for the pixel shader and 0-3 for the vertex shader). GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex) { GLint logicalTextureUnit = -1; switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); if (mSamplersPS[samplerIndex].active) { logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; } break; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); if (mSamplersVS[samplerIndex].active) { logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; } break; default: UNREACHABLE(); } if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits()) { return logicalTextureUnit; } return -1; } // Returns the texture type for a given Direct3D 9 sampler type and // index (0-15 for the pixel shader and 0-3 for the vertex shader). TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) { switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); ASSERT(mSamplersPS[samplerIndex].active); return mSamplersPS[samplerIndex].textureType; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); ASSERT(mSamplersVS[samplerIndex].active); return mSamplersVS[samplerIndex].textureType; default: UNREACHABLE(); } return TEXTURE_2D; } GLint ProgramBinary::getUniformLocation(std::string name) { unsigned int subscript = 0; // Strip any trailing array operator and retrieve the subscript size_t open = name.find_last_of('['); size_t close = name.find_last_of(']'); if (open != std::string::npos && close == name.length() - 1) { subscript = atoi(name.substr(open + 1).c_str()); name.erase(open); } unsigned int numUniforms = mUniformIndex.size(); for (unsigned int location = 0; location < numUniforms; location++) { if (mUniformIndex[location].name == name && mUniformIndex[location].element == subscript) { return location; } } return -1; } bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = 0; target[2] = 0; target[3] = 0; target += 4; v += 1; } } else if (targetUniform->type == GL_BOOL) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; for (int i = 0; i < count; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = 0; target[3] = 0; target += 4; v += 2; } } else if (targetUniform->type == GL_BOOL_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; for (int i = 0; i < count * 2; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = 0; target += 4; v += 3; } } else if (targetUniform->type == GL_BOOL_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; for (int i = 0; i < count * 3; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, v, 4 * sizeof(GLfloat) * count); } else if (targetUniform->type == GL_BOOL_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count * 4; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } template void transposeMatrix(T *target, const GLfloat *value) { int copyWidth = std::min(targetWidth, srcWidth); int copyHeight = std::min(targetHeight, srcHeight); for (int x = 0; x < copyWidth; x++) { for (int y = 0; y < copyHeight; y++) { target[x * targetWidth + y] = (T)value[y * srcWidth + x]; } } // clear unfilled right side for (int y = 0; y < copyHeight; y++) { for (int x = srcWidth; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } // clear unfilled bottom. for (int y = srcHeight; y < targetHeight; y++) { for (int x = 0; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } } bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT2) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 8; value += 4; } return true; } bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT3) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 12; value += 9; } return true; } bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT4) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 16; value += 16; } return true; } bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT || targetUniform->type == GL_SAMPLER_2D || targetUniform->type == GL_SAMPLER_CUBE) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint), v, sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; for (int i = 0; i < count; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2, v, 2 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; for (int i = 0; i < count * 2; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3, v, 3 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; for (int i = 0; i < count * 3; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4, v, 4 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count * 4; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); break; case GL_FLOAT_MAT3: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); break; case GL_FLOAT_MAT4: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); break; default: { unsigned int count = UniformExternalComponentCount(targetUniform->type); unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; } } break; case GL_FLOAT: memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat), count * sizeof(GLfloat)); break; case GL_INT: { GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (float)intParams[i]; } } break; default: UNREACHABLE(); } } } return true; } bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); } break; case GL_FLOAT_MAT3: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); } break; case GL_FLOAT_MAT4: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); } break; default: { unsigned int count = UniformExternalComponentCount(targetUniform->type); unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (GLint)boolParams[i]; } } break; case GL_FLOAT: { GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (GLint)floatParams[i]; } } break; case GL_INT: memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint), count * sizeof(GLint)); break; default: UNREACHABLE(); } } } return true; } void ProgramBinary::dirtyAllUniforms() { unsigned int numUniforms = mUniforms.size(); for (unsigned int index = 0; index < numUniforms; index++) { mUniforms[index]->dirty = true; } } // Applies all the uniforms set for this program object to the Direct3D 9 device void ProgramBinary::applyUniforms() { for (std::vector::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) { Uniform *targetUniform = *ub; if (targetUniform->dirty) { int arraySize = targetUniform->arraySize; GLfloat *f = (GLfloat*)targetUniform->data; GLint *i = (GLint*)targetUniform->data; GLboolean *b = (GLboolean*)targetUniform->data; switch (targetUniform->type) { case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break; case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break; case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break; case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break; case GL_FLOAT: case GL_FLOAT_VEC2: case GL_FLOAT_VEC3: case GL_FLOAT_VEC4: case GL_FLOAT_MAT2: case GL_FLOAT_MAT3: case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; case GL_SAMPLER_2D: case GL_SAMPLER_CUBE: case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break; case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break; case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break; case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break; default: UNREACHABLE(); } targetUniform->dirty = false; } } } // Compiles the HLSL code of the attached shaders into executable binaries ID3D10Blob *ProgramBinary::compileToBinary(InfoLog &infoLog, const char *hlsl, const char *profile, D3DConstantTable **constantTable) { if (!hlsl) { return NULL; } DWORD result = NOERROR; UINT flags = 0; std::string sourceText; if (perfActive()) { flags |= D3DCOMPILE_DEBUG; #ifdef NDEBUG flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; #else flags |= D3DCOMPILE_SKIP_OPTIMIZATION; #endif std::string sourcePath = getTempPath(); sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl); writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size()); } else { flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; sourceText = hlsl; } // Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options. // Try the default flags first and if compilation fails, try some alternatives. const static UINT extraFlags[] = { 0, D3DCOMPILE_AVOID_FLOW_CONTROL, D3DCOMPILE_PREFER_FLOW_CONTROL }; const static char * const extraFlagNames[] = { "default", "avoid flow control", "prefer flow control" }; for (int i = 0; i < sizeof(extraFlags) / sizeof(UINT); ++i) { ID3D10Blob *errorMessage = NULL; ID3D10Blob *binary = NULL; result = D3DCompile(hlsl, strlen(hlsl), g_fakepath, NULL, NULL, "main", profile, flags | extraFlags[i], 0, &binary, &errorMessage); if (errorMessage) { const char *message = (const char*)errorMessage->GetBufferPointer(); infoLog.appendSanitized(message); TRACE("\n%s", hlsl); TRACE("\n%s", message); errorMessage->Release(); errorMessage = NULL; } if (SUCCEEDED(result)) { D3DConstantTable *table = new D3DConstantTable(binary->GetBufferPointer(), binary->GetBufferSize()); if (table->error()) { delete table; binary->Release(); return NULL; } *constantTable = table; return binary; } else { if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) { return error(GL_OUT_OF_MEMORY, (ID3D10Blob*) NULL); } infoLog.append("Warning: D3D shader compilation failed with "); infoLog.append(extraFlagNames[i]); infoLog.append(" flags."); if (i + 1 < sizeof(extraFlagNames) / sizeof(char*)) { infoLog.append(" Retrying with "); infoLog.append(extraFlagNames[i + 1]); infoLog.append(".\n"); } } } return NULL; } // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 // Returns the number of used varying registers, or -1 if unsuccesful int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader) { Context *context = getContext(); const int maxVaryingVectors = context->getMaximumVaryingVectors(); for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { int n = VariableRowCount(varying->type) * varying->size; int m = VariableColumnCount(varying->type); bool success = false; if (m == 2 || m == 3 || m == 4) { for (int r = 0; r <= maxVaryingVectors - n && !success; r++) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 0; x < m && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 0; for (int y = 0; y < n; y++) { for (int x = 0; x < m; x++) { packing[r + y][x] = &*varying; } } success = true; } } if (!success && m == 2) { for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 2; x < 4 && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 2; for (int y = 0; y < n; y++) { for (int x = 2; x < 4; x++) { packing[r + y][x] = &*varying; } } success = true; } } } } else if (m == 1) { int space[4] = {0}; for (int y = 0; y < maxVaryingVectors; y++) { for (int x = 0; x < 4; x++) { space[x] += packing[y][x] ? 0 : 1; } } int column = 0; for (int x = 0; x < 4; x++) { if (space[x] >= n && space[x] < space[column]) { column = x; } } if (space[column] >= n) { for (int r = 0; r < maxVaryingVectors; r++) { if (!packing[r][column]) { varying->reg = r; for (int y = r; y < r + n; y++) { packing[y][column] = &*varying; } break; } } varying->col = column; success = true; } } else UNREACHABLE(); if (!success) { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } } // Return the number of used registers int registers = 0; for (int r = 0; r < maxVaryingVectors; r++) { if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) { registers++; } } return registers; } bool ProgramBinary::linkVaryings(InfoLog &infoLog, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader) { if (pixelHLSL.empty() || vertexHLSL.empty()) { return false; } // Reset the varying register assignments for (VaryingList::iterator fragVar = fragmentShader->mVaryings.begin(); fragVar != fragmentShader->mVaryings.end(); fragVar++) { fragVar->reg = -1; fragVar->col = -1; } for (VaryingList::iterator vtxVar = vertexShader->mVaryings.begin(); vtxVar != vertexShader->mVaryings.end(); vtxVar++) { vtxVar->reg = -1; vtxVar->col = -1; } // Map the varyings to the register file const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL}; int registers = packVaryings(infoLog, packing, fragmentShader); if (registers < 0) { return false; } // Write the HLSL input/output declarations Context *context = getContext(); const bool sm3 = context->supportsShaderModel3(); const int maxVaryingVectors = context->getMaximumVaryingVectors(); if (registers == maxVaryingVectors && fragmentShader->mUsesFragCoord) { infoLog.append("No varying registers left to support gl_FragCoord"); return false; } for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++) { bool matched = false; for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++) { if (output->name == input->name) { if (output->type != input->type || output->size != input->size) { infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); return false; } output->reg = input->reg; output->col = input->col; matched = true; break; } } if (!matched) { infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); return false; } } mUsesPointSize = vertexShader->mUsesPointSize; std::string varyingSemantic = (mUsesPointSize && sm3) ? "COLOR" : "TEXCOORD"; vertexHLSL += "struct VS_INPUT\n" "{\n"; int semanticIndex = 0; for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { switch (attribute->type) { case GL_FLOAT: vertexHLSL += " float "; break; case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break; case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break; case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break; case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break; case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break; case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break; default: UNREACHABLE(); } vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; semanticIndex += VariableRowCount(attribute->type); } vertexHLSL += "};\n" "\n" "struct VS_OUTPUT\n" "{\n" " float4 gl_Position : POSITION;\n"; for (int r = 0; r < registers; r++) { int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { vertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; } if (vertexShader->mUsesPointSize && sm3) { vertexHLSL += " float gl_PointSize : PSIZE;\n"; } vertexHLSL += "};\n" "\n" "VS_OUTPUT main(VS_INPUT input)\n" "{\n"; for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { vertexHLSL += " " + decorateAttribute(attribute->name) + " = "; if (VariableRowCount(attribute->type) > 1) // Matrix { vertexHLSL += "transpose"; } vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; } vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n" " output.gl_Position.y = -(gl_Position.y + dx_HalfPixelSize.y * gl_Position.w);\n" " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.gl_Position.w = gl_Position.w;\n"; if (vertexShader->mUsesPointSize && sm3) { vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; } if (fragmentShader->mUsesFragCoord) { vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; } for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { int r = varying->reg + i * rows + j; vertexHLSL += " output.v" + str(r); bool sharedRegister = false; // Register used by multiple varyings for (int x = 0; x < 4; x++) { if (packing[r][x] && packing[r][x] != packing[r][0]) { sharedRegister = true; break; } } if(sharedRegister) { vertexHLSL += "."; for (int x = 0; x < 4; x++) { if (packing[r][x] == &*varying) { switch(x) { case 0: vertexHLSL += "x"; break; case 1: vertexHLSL += "y"; break; case 2: vertexHLSL += "z"; break; case 3: vertexHLSL += "w"; break; } } } } vertexHLSL += " = " + varying->name; if (varying->array) { vertexHLSL += "[" + str(i) + "]"; } if (rows > 1) { vertexHLSL += "[" + str(j) + "]"; } vertexHLSL += ";\n"; } } } } vertexHLSL += "\n" " return output;\n" "}\n"; pixelHLSL += "struct PS_INPUT\n" "{\n"; for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); pixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n"; } } } else UNREACHABLE(); } if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; if (sm3) { pixelHLSL += " float2 dx_VPos : VPOS;\n"; } } if (fragmentShader->mUsesPointCoord && sm3) { pixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n"; } if (fragmentShader->mUsesFrontFacing) { pixelHLSL += " float vFace : VFACE;\n"; } pixelHLSL += "};\n" "\n" "struct PS_OUTPUT\n" "{\n" " float4 gl_Color[1] : COLOR;\n" "};\n" "\n" "PS_OUTPUT main(PS_INPUT input)\n" "{\n"; if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; if (sm3) { pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; } else { // dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget() pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n" " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n"; } pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n" " gl_FragCoord.w = rhw;\n"; } if (fragmentShader->mUsesPointCoord && sm3) { pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; } if (fragmentShader->mUsesFrontFacing) { pixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n"; } for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); pixelHLSL += " " + varying->name; if (varying->array) { pixelHLSL += "[" + str(i) + "]"; } if (rows > 1) { pixelHLSL += "[" + str(j) + "]"; } pixelHLSL += " = input.v" + n + ";\n"; } } } else UNREACHABLE(); } pixelHLSL += "\n" " gl_main();\n" "\n" " PS_OUTPUT output;\n" " output.gl_Color[0] = gl_Color[0];\n" "\n" " return output;\n" "}\n"; return true; } bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length) { BinaryInputStream stream(binary, length); int format = 0; stream.read(&format); if (format != GL_PROGRAM_BINARY_ANGLE) { infoLog.append("Invalid program binary format."); return false; } int version = 0; stream.read(&version); if (version != BUILD_REVISION) { infoLog.append("Invalid program binary version."); return false; } for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.read(&mLinkedAttribute[i].type); std::string name; stream.read(&name); mLinkedAttribute[i].name = name; stream.read(&mSemanticIndex[i]); } for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) { stream.read(&mSamplersPS[i].active); stream.read(&mSamplersPS[i].logicalTextureUnit); int textureType; stream.read(&textureType); mSamplersPS[i].textureType = (TextureType) textureType; } for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i) { stream.read(&mSamplersVS[i].active); stream.read(&mSamplersVS[i].logicalTextureUnit); int textureType; stream.read(&textureType); mSamplersVS[i].textureType = (TextureType) textureType; } stream.read(&mUsedVertexSamplerRange); stream.read(&mUsedPixelSamplerRange); unsigned int size; stream.read(&size); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniforms.resize(size); for (unsigned int i = 0; i < size; ++i) { GLenum type; std::string _name; unsigned int arraySize; stream.read(&type); stream.read(&_name); stream.read(&arraySize); mUniforms[i] = new Uniform(type, _name, arraySize); stream.read(&mUniforms[i]->ps.float4Index); stream.read(&mUniforms[i]->ps.samplerIndex); stream.read(&mUniforms[i]->ps.boolIndex); stream.read(&mUniforms[i]->ps.registerCount); stream.read(&mUniforms[i]->vs.float4Index); stream.read(&mUniforms[i]->vs.samplerIndex); stream.read(&mUniforms[i]->vs.boolIndex); stream.read(&mUniforms[i]->vs.registerCount); } stream.read(&size); if (stream.error()) { infoLog.append("Invalid program binary."); return false; } mUniformIndex.resize(size); for (unsigned int i = 0; i < size; ++i) { stream.read(&mUniformIndex[i].name); stream.read(&mUniformIndex[i].element); stream.read(&mUniformIndex[i].index); } stream.read(&mDxDepthRangeLocation); stream.read(&mDxDepthLocation); stream.read(&mDxCoordLocation); stream.read(&mDxHalfPixelSizeLocation); stream.read(&mDxFrontCCWLocation); stream.read(&mDxPointsOrLinesLocation); unsigned int pixelShaderSize; stream.read(&pixelShaderSize); unsigned int vertexShaderSize; stream.read(&vertexShaderSize); const char *ptr = (const char*) binary + stream.offset(); const D3DCAPS9 *binaryIdentifier = (const D3DCAPS9*) ptr; ptr += sizeof(GUID); D3DADAPTER_IDENTIFIER9 *currentIdentifier = getDisplay()->getAdapterIdentifier(); if (memcmp(¤tIdentifier->DeviceIdentifier, binaryIdentifier, sizeof(GUID)) != 0) { infoLog.append("Invalid program binary."); return false; } const char *pixelShaderFunction = ptr; ptr += pixelShaderSize; const char *vertexShaderFunction = ptr; ptr += vertexShaderSize; mPixelExecutable = getDisplay()->createPixelShader(reinterpret_cast(pixelShaderFunction), pixelShaderSize); if (!mPixelExecutable) { infoLog.append("Could not create pixel shader."); return false; } mVertexExecutable = getDisplay()->createVertexShader(reinterpret_cast(vertexShaderFunction), vertexShaderSize); if (!mVertexExecutable) { infoLog.append("Could not create vertex shader."); mPixelExecutable->Release(); mPixelExecutable = NULL; return false; } return true; } bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length) { BinaryOutputStream stream; stream.write(GL_PROGRAM_BINARY_ANGLE); stream.write(BUILD_REVISION); for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { stream.write(mLinkedAttribute[i].type); stream.write(mLinkedAttribute[i].name); stream.write(mSemanticIndex[i]); } for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) { stream.write(mSamplersPS[i].active); stream.write(mSamplersPS[i].logicalTextureUnit); stream.write((int) mSamplersPS[i].textureType); } for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i) { stream.write(mSamplersVS[i].active); stream.write(mSamplersVS[i].logicalTextureUnit); stream.write((int) mSamplersVS[i].textureType); } stream.write(mUsedVertexSamplerRange); stream.write(mUsedPixelSamplerRange); stream.write(mUniforms.size()); for (unsigned int i = 0; i < mUniforms.size(); ++i) { stream.write(mUniforms[i]->type); stream.write(mUniforms[i]->_name); stream.write(mUniforms[i]->arraySize); stream.write(mUniforms[i]->ps.float4Index); stream.write(mUniforms[i]->ps.samplerIndex); stream.write(mUniforms[i]->ps.boolIndex); stream.write(mUniforms[i]->ps.registerCount); stream.write(mUniforms[i]->vs.float4Index); stream.write(mUniforms[i]->vs.samplerIndex); stream.write(mUniforms[i]->vs.boolIndex); stream.write(mUniforms[i]->vs.registerCount); } stream.write(mUniformIndex.size()); for (unsigned int i = 0; i < mUniformIndex.size(); ++i) { stream.write(mUniformIndex[i].name); stream.write(mUniformIndex[i].element); stream.write(mUniformIndex[i].index); } stream.write(mDxDepthRangeLocation); stream.write(mDxDepthLocation); stream.write(mDxCoordLocation); stream.write(mDxHalfPixelSizeLocation); stream.write(mDxFrontCCWLocation); stream.write(mDxPointsOrLinesLocation); UINT pixelShaderSize; HRESULT result = mPixelExecutable->GetFunction(NULL, &pixelShaderSize); ASSERT(SUCCEEDED(result)); stream.write(pixelShaderSize); UINT vertexShaderSize; result = mVertexExecutable->GetFunction(NULL, &vertexShaderSize); ASSERT(SUCCEEDED(result)); stream.write(vertexShaderSize); D3DADAPTER_IDENTIFIER9 *identifier = getDisplay()->getAdapterIdentifier(); GLsizei streamLength = stream.length(); const void *streamData = stream.data(); GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize; if (totalLength > bufSize) { if (length) { *length = 0; } return false; } if (binary) { char *ptr = (char*) binary; memcpy(ptr, streamData, streamLength); ptr += streamLength; memcpy(ptr, &identifier->DeviceIdentifier, sizeof(GUID)); ptr += sizeof(GUID); result = mPixelExecutable->GetFunction(ptr, &pixelShaderSize); ASSERT(SUCCEEDED(result)); ptr += pixelShaderSize; result = mVertexExecutable->GetFunction(ptr, &vertexShaderSize); ASSERT(SUCCEEDED(result)); ptr += vertexShaderSize; ASSERT(ptr - totalLength == binary); } if (length) { *length = totalLength; } return true; } GLint ProgramBinary::getLength() { GLint length; if (save(NULL, INT_MAX, &length)) { return length; } else { return 0; } } bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) { if (!fragmentShader || !fragmentShader->isCompiled()) { return false; } if (!vertexShader || !vertexShader->isCompiled()) { return false; } std::string pixelHLSL = fragmentShader->getHLSL(); std::string vertexHLSL = vertexShader->getHLSL(); if (!linkVaryings(infoLog, pixelHLSL, vertexHLSL, fragmentShader, vertexShader)) { return false; } Context *context = getContext(); const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0"; const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0"; ID3D10Blob *vertexBinary = compileToBinary(infoLog, vertexHLSL.c_str(), vertexProfile, &mConstantTableVS); ID3D10Blob *pixelBinary = compileToBinary(infoLog, pixelHLSL.c_str(), pixelProfile, &mConstantTablePS); if (vertexBinary && pixelBinary) { mVertexExecutable = getDisplay()->createVertexShader((DWORD*)vertexBinary->GetBufferPointer(), vertexBinary->GetBufferSize()); if (!mVertexExecutable) { return error(GL_OUT_OF_MEMORY, false); } mPixelExecutable = getDisplay()->createPixelShader((DWORD*)pixelBinary->GetBufferPointer(), pixelBinary->GetBufferSize()); if (!mPixelExecutable) { mVertexExecutable->Release(); mVertexExecutable = NULL; return error(GL_OUT_OF_MEMORY, false); } vertexBinary->Release(); pixelBinary->Release(); vertexBinary = NULL; pixelBinary = NULL; if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader)) { return false; } if (!linkUniforms(infoLog, GL_FRAGMENT_SHADER, mConstantTablePS)) { return false; } if (!linkUniforms(infoLog, GL_VERTEX_SHADER, mConstantTableVS)) { return false; } // these uniforms are searched as already-decorated because gl_ and dx_ // are reserved prefixes, and do not receive additional decoration mDxDepthRangeLocation = getUniformLocation("dx_DepthRange"); mDxDepthLocation = getUniformLocation("dx_Depth"); mDxCoordLocation = getUniformLocation("dx_Coord"); mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize"); mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW"); mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines"); context->markDxUniformsDirty(); return true; } return false; } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) { unsigned int usedLocations = 0; // Link attributes that have a binding location for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { int location = attributeBindings.getAttributeBinding(attribute->name); if (location != -1) // Set by glBindAttribLocation { if (!mLinkedAttribute[location].name.empty()) { // Multiple active attributes bound to the same location; not an error } mLinkedAttribute[location] = *attribute; int rows = VariableRowCount(attribute->type); if (rows + location > MAX_VERTEX_ATTRIBS) { infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); return false; } for (int i = 0; i < rows; i++) { usedLocations |= 1 << (location + i); } } } // Link attributes that don't have a binding location for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) { int location = attributeBindings.getAttributeBinding(attribute->name); if (location == -1) // Not set by glBindAttribLocation { int rows = VariableRowCount(attribute->type); int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) { infoLog.append("Too many active attributes (%s)", attribute->name.c_str()); return false; // Fail to link } mLinkedAttribute[availableIndex] = *attribute; } } for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) { int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); for (int r = 0; r < rows; r++) { mSemanticIndex[attributeIndex++] = index++; } } return true; } bool ProgramBinary::linkUniforms(InfoLog &infoLog, GLenum shader, D3DConstantTable *constantTable) { for (unsigned int constantIndex = 0; constantIndex < constantTable->constants(); constantIndex++) { const D3DConstant *constant = constantTable->getConstant(constantIndex); if (!defineUniform(infoLog, shader, constant)) { return false; } } return true; } // Adds the description of a constant found in the binary shader to the list of uniforms // Returns true if succesful (uniform not already defined) bool ProgramBinary::defineUniform(InfoLog &infoLog, GLenum shader, const D3DConstant *constant, std::string name) { if (constant->registerSet == D3DConstant::RS_SAMPLER) { for (unsigned int i = 0; i < constant->registerCount; i++) { const D3DConstant *psConstant = mConstantTablePS->getConstantByName(constant->name.c_str()); const D3DConstant *vsConstant = mConstantTableVS->getConstantByName(constant->name.c_str()); if (psConstant) { unsigned int samplerIndex = psConstant->registerIndex + i; if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { mSamplersPS[samplerIndex].active = true; mSamplersPS[samplerIndex].textureType = (constant->type == D3DConstant::PT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersPS[samplerIndex].logicalTextureUnit = 0; mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); } else { infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); return false; } } if (vsConstant) { unsigned int samplerIndex = vsConstant->registerIndex + i; if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits()) { mSamplersVS[samplerIndex].active = true; mSamplersVS[samplerIndex].textureType = (constant->type == D3DConstant::PT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersVS[samplerIndex].logicalTextureUnit = 0; mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); } else { infoLog.append("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits()); return false; } } } } switch(constant->typeClass) { case D3DConstant::CLASS_STRUCT: { for (unsigned int arrayIndex = 0; arrayIndex < constant->elements; arrayIndex++) { for (unsigned int field = 0; field < constant->structMembers[arrayIndex].size(); field++) { const D3DConstant *fieldConstant = constant->structMembers[arrayIndex][field]; std::string structIndex = (constant->elements > 1) ? ("[" + str(arrayIndex) + "]") : ""; if (!defineUniform(infoLog, shader, fieldConstant, name + constant->name + structIndex + ".")) { return false; } } } return true; } case D3DConstant::CLASS_SCALAR: case D3DConstant::CLASS_VECTOR: case D3DConstant::CLASS_MATRIX_COLUMNS: case D3DConstant::CLASS_OBJECT: return defineUniform(shader, constant, name + constant->name); default: UNREACHABLE(); return false; } } bool ProgramBinary::defineUniform(GLenum shader, const D3DConstant *constant, const std::string &_name) { Uniform *uniform = createUniform(constant, _name); if(!uniform) { return false; } // Check if already defined GLint location = getUniformLocation(uniform->name); GLenum type = uniform->type; if (location >= 0) { delete uniform; uniform = mUniforms[mUniformIndex[location].index]; } if (shader == GL_FRAGMENT_SHADER) uniform->ps.set(constant); if (shader == GL_VERTEX_SHADER) uniform->vs.set(constant); if (location >= 0) { return uniform->type == type; } mUniforms.push_back(uniform); unsigned int uniformIndex = mUniforms.size() - 1; for (unsigned int i = 0; i < uniform->arraySize; ++i) { mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex)); } return true; } Uniform *ProgramBinary::createUniform(const D3DConstant *constant, const std::string &_name) { if (constant->rows == 1) // Vectors and scalars { switch (constant->type) { case D3DConstant::PT_SAMPLER2D: switch (constant->columns) { case 1: return new Uniform(GL_SAMPLER_2D, _name, constant->elements); default: UNREACHABLE(); } break; case D3DConstant::PT_SAMPLERCUBE: switch (constant->columns) { case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constant->elements); default: UNREACHABLE(); } break; case D3DConstant::PT_BOOL: switch (constant->columns) { case 1: return new Uniform(GL_BOOL, _name, constant->elements); case 2: return new Uniform(GL_BOOL_VEC2, _name, constant->elements); case 3: return new Uniform(GL_BOOL_VEC3, _name, constant->elements); case 4: return new Uniform(GL_BOOL_VEC4, _name, constant->elements); default: UNREACHABLE(); } break; case D3DConstant::PT_INT: switch (constant->columns) { case 1: return new Uniform(GL_INT, _name, constant->elements); case 2: return new Uniform(GL_INT_VEC2, _name, constant->elements); case 3: return new Uniform(GL_INT_VEC3, _name, constant->elements); case 4: return new Uniform(GL_INT_VEC4, _name, constant->elements); default: UNREACHABLE(); } break; case D3DConstant::PT_FLOAT: switch (constant->columns) { case 1: return new Uniform(GL_FLOAT, _name, constant->elements); case 2: return new Uniform(GL_FLOAT_VEC2, _name, constant->elements); case 3: return new Uniform(GL_FLOAT_VEC3, _name, constant->elements); case 4: return new Uniform(GL_FLOAT_VEC4, _name, constant->elements); default: UNREACHABLE(); } break; default: UNREACHABLE(); } } else if (constant->rows == constant->columns) // Square matrices { switch (constant->type) { case D3DConstant::PT_FLOAT: switch (constant->rows) { case 2: return new Uniform(GL_FLOAT_MAT2, _name, constant->elements); case 3: return new Uniform(GL_FLOAT_MAT3, _name, constant->elements); case 4: return new Uniform(GL_FLOAT_MAT4, _name, constant->elements); default: UNREACHABLE(); } break; default: UNREACHABLE(); } } else UNREACHABLE(); return 0; } // This method needs to match OutputHLSL::decorate std::string ProgramBinary::decorateAttribute(const std::string &name) { if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) { return "_" + name; } return name; } std::string ProgramBinary::undecorateUniform(const std::string &_name) { std::string name = _name; // Remove any structure field decoration size_t pos = 0; while ((pos = name.find("._", pos)) != std::string::npos) { name.replace(pos, 2, "."); } // Remove the leading decoration if (name[0] == '_') { return name.substr(1); } else if (name.compare(0, 3, "ar_") == 0) { return name.substr(3); } return name; } void ProgramBinary::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v) { float vector[D3D9_MAX_FLOAT_CONSTANTS * 4]; BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS]; if (targetUniform->ps.float4Index >= 0 || targetUniform->vs.float4Index >= 0) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); for (int i = 0; i < count; i++) { for (int j = 0; j < 4; j++) { if (j < width) { vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f; } else { vector[i * 4 + j] = 0.0f; } } } } if (targetUniform->ps.boolIndex >= 0 || targetUniform->vs.boolIndex >= 0) { int psCount = targetUniform->ps.boolIndex >= 0 ? targetUniform->ps.registerCount : 0; int vsCount = targetUniform->vs.boolIndex >= 0 ? targetUniform->vs.registerCount : 0; int copyCount = std::min(count * width, std::max(psCount, vsCount)); ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS); for (int i = 0; i < copyCount; i++) { boolVector[i] = v[i] != GL_FALSE; } } if (targetUniform->ps.float4Index >= 0) { mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, vector, targetUniform->ps.registerCount); } if (targetUniform->ps.boolIndex >= 0) { mDevice->SetPixelShaderConstantB(targetUniform->ps.boolIndex, boolVector, targetUniform->ps.registerCount); } if (targetUniform->vs.float4Index >= 0) { mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, vector, targetUniform->vs.registerCount); } if (targetUniform->vs.boolIndex >= 0) { mDevice->SetVertexShaderConstantB(targetUniform->vs.boolIndex, boolVector, targetUniform->vs.registerCount); } } bool ProgramBinary::applyUniformnfv(Uniform *targetUniform, const GLfloat *v) { if (targetUniform->ps.registerCount) { mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, v, targetUniform->ps.registerCount); } if (targetUniform->vs.registerCount) { mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, v, targetUniform->vs.registerCount); } return true; } bool ProgramBinary::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = Vector4((float)v[i], 0, 0, 0); } if (targetUniform->ps.registerCount) { if (targetUniform->ps.samplerIndex >= 0) { unsigned int firstIndex = targetUniform->ps.samplerIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { ASSERT(mSamplersPS[samplerIndex].active); mSamplersPS[samplerIndex].logicalTextureUnit = v[i]; } } } else { ASSERT(targetUniform->ps.float4Index >= 0); mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float*)vector, targetUniform->ps.registerCount); } } if (targetUniform->vs.registerCount) { if (targetUniform->vs.samplerIndex >= 0) { unsigned int firstIndex = targetUniform->vs.samplerIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF) { ASSERT(mSamplersVS[samplerIndex].active); mSamplersVS[samplerIndex].logicalTextureUnit = v[i]; } } } else { ASSERT(targetUniform->vs.float4Index >= 0); mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount); } } return true; } bool ProgramBinary::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = Vector4((float)v[0], (float)v[1], 0, 0); v += 2; } applyUniformniv(targetUniform, count, vector); return true; } bool ProgramBinary::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = Vector4((float)v[0], (float)v[1], (float)v[2], 0); v += 3; } applyUniformniv(targetUniform, count, vector); return true; } bool ProgramBinary::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = Vector4((float)v[0], (float)v[1], (float)v[2], (float)v[3]); v += 4; } applyUniformniv(targetUniform, count, vector); return true; } void ProgramBinary::applyUniformniv(Uniform *targetUniform, GLsizei count, const Vector4 *vector) { if (targetUniform->ps.registerCount) { ASSERT(targetUniform->ps.float4Index >= 0); mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float *)vector, targetUniform->ps.registerCount); } if (targetUniform->vs.registerCount) { ASSERT(targetUniform->vs.float4Index >= 0); mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount); } } bool ProgramBinary::isValidated() const { return mValidated; } void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { // Skip over inactive attributes unsigned int activeAttribute = 0; unsigned int attribute; for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mLinkedAttribute[attribute].name.empty()) { continue; } if (activeAttribute == index) { break; } activeAttribute++; } if (bufsize > 0) { const char *string = mLinkedAttribute[attribute].name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = 1; // Always a single 'type' instance *type = mLinkedAttribute[attribute].type; } GLint ProgramBinary::getActiveAttributeCount() { int count = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { count++; } } return count; } GLint ProgramBinary::getActiveAttributeMaxLength() { int maxLength = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); } } return maxLength; } void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { // Skip over internal uniforms unsigned int activeUniform = 0; unsigned int uniform; for (uniform = 0; uniform < mUniforms.size(); uniform++) { if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0) { continue; } if (activeUniform == index) { break; } activeUniform++; } ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount() if (bufsize > 0) { std::string string = mUniforms[uniform]->name; if (mUniforms[uniform]->isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = mUniforms[uniform]->arraySize; *type = mUniforms[uniform]->type; } GLint ProgramBinary::getActiveUniformCount() { int count = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) { count++; } } return count; } GLint ProgramBinary::getActiveUniformMaxLength() { int maxLength = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) { int length = (int)(mUniforms[uniformIndex]->name.length() + 1); if (mUniforms[uniformIndex]->isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } return maxLength; } void ProgramBinary::validate(InfoLog &infoLog) { applyUniforms(); if (!validateSamplers(&infoLog)) { mValidated = false; } else { mValidated = true; } } bool ProgramBinary::validateSamplers(InfoLog *infoLog) { // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits(); TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF]; for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i) { textureUnitType[i] = TEXTURE_UNKNOWN; } for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) { if (mSamplersPS[i].active) { unsigned int unit = mSamplersPS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersPS[i].textureType != textureUnitType[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersPS[i].textureType; } } } for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) { if (mSamplersVS[i].active) { unsigned int unit = mSamplersVS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (infoLog) { infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersVS[i].textureType != textureUnitType[unit]) { if (infoLog) { infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersVS[i].textureType; } } } return true; } GLint ProgramBinary::getDxDepthRangeLocation() const { return mDxDepthRangeLocation; } GLint ProgramBinary::getDxDepthLocation() const { return mDxDepthLocation; } GLint ProgramBinary::getDxCoordLocation() const { return mDxCoordLocation; } GLint ProgramBinary::getDxHalfPixelSizeLocation() const { return mDxHalfPixelSizeLocation; } GLint ProgramBinary::getDxFrontCCWLocation() const { return mDxFrontCCWLocation; } GLint ProgramBinary::getDxPointsOrLinesLocation() const { return mDxPointsOrLinesLocation; } ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D) { } }