// // Copyright (c) 2013 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // angletypes.h : Defines a variety of structures and enum types that are used throughout libGLESv2 #include "libGLESv2/angletypes.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/VertexAttribute.h" #include "libGLESv2/State.h" #include "libGLESv2/VertexArray.h" #include namespace gl { SamplerState::SamplerState() : minFilter(GL_NEAREST_MIPMAP_LINEAR), magFilter(GL_LINEAR), wrapS(GL_REPEAT), wrapT(GL_REPEAT), wrapR(GL_REPEAT), maxAnisotropy(1.0f), baseLevel(0), maxLevel(1000), minLod(-FLT_MAX), maxLod(FLT_MAX), compareMode(GL_NONE), compareFunc(GL_LEQUAL), swizzleRed(GL_RED), swizzleGreen(GL_GREEN), swizzleBlue(GL_BLUE), swizzleAlpha(GL_ALPHA) {} bool SamplerState::swizzleRequired() const { return swizzleRed != GL_RED || swizzleGreen != GL_GREEN || swizzleBlue != GL_BLUE || swizzleAlpha != GL_ALPHA; } static void MinMax(int a, int b, int *minimum, int *maximum) { if (a < b) { *minimum = a; *maximum = b; } else { *minimum = b; *maximum = a; } } bool ClipRectangle(const Rectangle &source, const Rectangle &clip, Rectangle *intersection) { int minSourceX, maxSourceX, minSourceY, maxSourceY; MinMax(source.x, source.x + source.width, &minSourceX, &maxSourceX); MinMax(source.y, source.y + source.height, &minSourceY, &maxSourceY); int minClipX, maxClipX, minClipY, maxClipY; MinMax(clip.x, clip.x + clip.width, &minClipX, &maxClipX); MinMax(clip.y, clip.y + clip.height, &minClipY, &maxClipY); if (minSourceX >= maxClipX || maxSourceX <= minClipX || minSourceY >= maxClipY || maxSourceY <= minClipY) { if (intersection) { intersection->x = minSourceX; intersection->y = maxSourceY; intersection->width = maxSourceX - minSourceX; intersection->height = maxSourceY - minSourceY; } return false; } else { if (intersection) { intersection->x = std::max(minSourceX, minClipX); intersection->y = std::max(minSourceY, minClipY); intersection->width = std::min(maxSourceX, maxClipX) - std::max(minSourceX, minClipX); intersection->height = std::min(maxSourceY, maxClipY) - std::max(minSourceY, minClipY); } return true; } } VertexFormat::VertexFormat() : mType(GL_NONE), mNormalized(GL_FALSE), mComponents(0), mPureInteger(false) {} VertexFormat::VertexFormat(GLenum type, GLboolean normalized, GLuint components, bool pureInteger) : mType(type), mNormalized(normalized), mComponents(components), mPureInteger(pureInteger) { // Float data can not be normalized, so ignore the user setting if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED) { mNormalized = GL_FALSE; } } VertexFormat::VertexFormat(const VertexAttribute &attrib) : mType(attrib.type), mNormalized(attrib.normalized ? GL_TRUE : GL_FALSE), mComponents(attrib.size), mPureInteger(attrib.pureInteger) { // Ensure we aren't initializing a vertex format which should be using // the current-value type ASSERT(attrib.enabled); // Float data can not be normalized, so ignore the user setting if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED) { mNormalized = GL_FALSE; } } VertexFormat::VertexFormat(const VertexAttribute &attrib, GLenum currentValueType) : mType(attrib.type), mNormalized(attrib.normalized ? GL_TRUE : GL_FALSE), mComponents(attrib.size), mPureInteger(attrib.pureInteger) { if (!attrib.enabled) { mType = currentValueType; mNormalized = GL_FALSE; mComponents = 4; mPureInteger = (currentValueType != GL_FLOAT); } // Float data can not be normalized, so ignore the user setting if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED) { mNormalized = GL_FALSE; } } void VertexFormat::GetInputLayout(VertexFormat *inputLayout, ProgramBinary *programBinary, const State &state) { const VertexAttribute *vertexAttributes = state.getVertexArray()->getVertexAttributes(); for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { int semanticIndex = programBinary->getSemanticIndex(attributeIndex); if (semanticIndex != -1) { inputLayout[semanticIndex] = VertexFormat(vertexAttributes[attributeIndex], state.getVertexAttribCurrentValue(attributeIndex).Type); } } } bool VertexFormat::operator==(const VertexFormat &other) const { return (mType == other.mType && mComponents == other.mComponents && mNormalized == other.mNormalized && mPureInteger == other.mPureInteger ); } bool VertexFormat::operator!=(const VertexFormat &other) const { return !(*this == other); } bool VertexFormat::operator<(const VertexFormat& other) const { if (mType != other.mType) { return mType < other.mType; } if (mNormalized != other.mNormalized) { return mNormalized < other.mNormalized; } if (mComponents != other.mComponents) { return mComponents < other.mComponents; } return mPureInteger < other.mPureInteger; } bool Box::operator==(const Box &other) const { return (x == other.x && y == other.y && z == other.z && width == other.width && height == other.height && depth == other.depth); } bool Box::operator!=(const Box &other) const { return !(*this == other); } }