// // Copyright 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // TextureD3D.cpp: Implementations of the Texture interfaces shared betweeen the D3D backends. #include "libGLESv2/renderer/d3d/TextureD3D.h" #include "libGLESv2/renderer/d3d/TextureStorage.h" #include "libGLESv2/renderer/d3d/ImageD3D.h" #include "libGLESv2/Buffer.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/Texture.h" #include "libGLESv2/main.h" #include "libGLESv2/formatutils.h" #include "libGLESv2/renderer/BufferImpl.h" #include "libGLESv2/renderer/RenderTarget.h" #include "libGLESv2/renderer/Renderer.h" #include "libEGL/Surface.h" #include "common/mathutil.h" #include "common/utilities.h" namespace rx { bool IsRenderTargetUsage(GLenum usage) { return (usage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); } TextureD3D::TextureD3D(Renderer *renderer) : mRenderer(renderer), mUsage(GL_NONE), mDirtyImages(true), mImmutable(false) { } TextureD3D::~TextureD3D() { } TextureD3D *TextureD3D::makeTextureD3D(TextureImpl *texture) { ASSERT(HAS_DYNAMIC_TYPE(TextureD3D*, texture)); return static_cast(texture); } TextureStorage *TextureD3D::getNativeTexture() { // ensure the underlying texture is created initializeStorage(false); TextureStorage *storage = getBaseLevelStorage(); if (storage) { updateStorage(); } return storage; } GLint TextureD3D::getBaseLevelWidth() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getWidth() : 0); } GLint TextureD3D::getBaseLevelHeight() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getHeight() : 0); } GLint TextureD3D::getBaseLevelDepth() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getDepth() : 0); } // Note: "base level image" is loosely defined to be any image from the base level, // where in the base of 2D array textures and cube maps there are several. Don't use // the base level image for anything except querying texture format and size. GLenum TextureD3D::getBaseLevelInternalFormat() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getInternalFormat() : GL_NONE); } void TextureD3D::setImage(const gl::PixelUnpackState &unpack, GLenum type, const void *pixels, Image *image) { // No-op if (image->getWidth() == 0 || image->getHeight() == 0 || image->getDepth() == 0) { return; } // We no longer need the "GLenum format" parameter to TexImage to determine what data format "pixels" contains. // From our image internal format we know how many channels to expect, and "type" gives the format of pixel's components. const void *pixelData = pixels; if (unpack.pixelBuffer.id() != 0) { // Do a CPU readback here, if we have an unpack buffer bound and the fast GPU path is not supported gl::Buffer *pixelBuffer = unpack.pixelBuffer.get(); ptrdiff_t offset = reinterpret_cast(pixels); // TODO: setImage/subImage is the only place outside of renderer that asks for a buffers raw data. // This functionality should be moved into renderer and the getData method of BufferImpl removed. const void *bufferData = pixelBuffer->getImplementation()->getData(); pixelData = static_cast(bufferData) + offset; } if (pixelData != NULL) { image->loadData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), unpack.alignment, type, pixelData); mDirtyImages = true; } } bool TextureD3D::subImage(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels, const gl::ImageIndex &index) { const void *pixelData = pixels; // CPU readback & copy where direct GPU copy is not supported if (unpack.pixelBuffer.id() != 0) { gl::Buffer *pixelBuffer = unpack.pixelBuffer.get(); ptrdiff_t offset = reinterpret_cast(pixels); // TODO: setImage/subImage is the only place outside of renderer that asks for a buffers raw data. // This functionality should be moved into renderer and the getData method of BufferImpl removed. const void *bufferData = pixelBuffer->getImplementation()->getData(); pixelData = static_cast(bufferData) + offset; } if (pixelData != NULL) { Image *image = getImage(index); ASSERT(image); image->loadData(xoffset, yoffset, zoffset, width, height, depth, unpack.alignment, type, pixelData); mDirtyImages = true; } return true; } void TextureD3D::setCompressedImage(GLsizei imageSize, const void *pixels, Image *image) { if (pixels != NULL) { image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), pixels); mDirtyImages = true; } } bool TextureD3D::subImageCompressed(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels, Image *image) { if (pixels != NULL) { image->loadCompressedData(xoffset, yoffset, zoffset, width, height, depth, pixels); mDirtyImages = true; } return true; } bool TextureD3D::isFastUnpackable(const gl::PixelUnpackState &unpack, GLenum sizedInternalFormat) { return unpack.pixelBuffer.id() != 0 && mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat); } bool TextureD3D::fastUnpackPixels(const gl::PixelUnpackState &unpack, const void *pixels, const gl::Box &destArea, GLenum sizedInternalFormat, GLenum type, RenderTarget *destRenderTarget) { if (destArea.width <= 0 && destArea.height <= 0 && destArea.depth <= 0) { return true; } // In order to perform the fast copy through the shader, we must have the right format, and be able // to create a render target. ASSERT(mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat)); ptrdiff_t offset = reinterpret_cast(pixels); return mRenderer->fastCopyBufferToTexture(unpack, offset, destRenderTarget, sizedInternalFormat, type, destArea); } GLint TextureD3D::creationLevels(GLsizei width, GLsizei height, GLsizei depth) const { if ((gl::isPow2(width) && gl::isPow2(height) && gl::isPow2(depth)) || mRenderer->getRendererExtensions().textureNPOT) { // Maximum number of levels return gl::log2(std::max(std::max(width, height), depth)) + 1; } else { // OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps. return 1; } } int TextureD3D::mipLevels() const { return gl::log2(std::max(std::max(getBaseLevelWidth(), getBaseLevelHeight()), getBaseLevelDepth())) + 1; } TextureD3D_2D::TextureD3D_2D(Renderer *renderer) : TextureD3D(renderer), mTexStorage(NULL) { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage()); } } TextureD3D_2D::~TextureD3D_2D() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { delete mImageArray[i]; } SafeDelete(mTexStorage); } Image *TextureD3D_2D::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer == 0); return mImageArray[level]; } Image *TextureD3D_2D::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(!index.hasLayer()); ASSERT(index.type == GL_TEXTURE_2D); return mImageArray[index.mipIndex]; } GLsizei TextureD3D_2D::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 1; } GLsizei TextureD3D_2D::getWidth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getWidth(); else return 0; } GLsizei TextureD3D_2D::getHeight(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getHeight(); else return 0; } GLenum TextureD3D_2D::getInternalFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getInternalFormat(); else return GL_NONE; } GLenum TextureD3D_2D::getActualFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getActualFormat(); else return GL_NONE; } bool TextureD3D_2D::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } void TextureD3D_2D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); bool fastUnpacked = false; redefineImage(level, sizedInternalFormat, width, height); // Attempt a fast gpu copy of the pixel data to the surface if (isFastUnpackable(unpack, sizedInternalFormat) && isLevelComplete(level)) { gl::ImageIndex index = gl::ImageIndex::Make2D(level); // Will try to create RT storage if it does not exist RenderTarget *destRenderTarget = getRenderTarget(index); gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), 1); if (destRenderTarget && fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget)) { // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } } if (!fastUnpacked) { TextureD3D::setImage(unpack, type, pixels, mImageArray[level]); } } void TextureD3D_2D::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height); TextureD3D::setCompressedImage(imageSize, pixels, mImageArray[level]); } void TextureD3D_2D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0); bool fastUnpacked = false; gl::ImageIndex index = gl::ImageIndex::Make2D(level); if (isFastUnpackable(unpack, getInternalFormat(level)) && isLevelComplete(level)) { RenderTarget *renderTarget = getRenderTarget(index); gl::Box destArea(xoffset, yoffset, 0, width, height, 1); if (renderTarget && fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, renderTarget)) { // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } } if (!fastUnpacked && TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpack, pixels, index)) { commitRect(level, xoffset, yoffset, width, height); } } void TextureD3D_2D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0); if (TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, pixels, mImageArray[level])) { commitRect(level, xoffset, yoffset, width, height); } } void TextureD3D_2D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE); redefineImage(level, sizedInternalFormat, width, height); if (!mImageArray[level]->isRenderableFormat()) { mImageArray[level]->copy(0, 0, 0, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); mImageArray[level]->markClean(); if (width != 0 && height != 0 && isValidLevel(level)) { gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImage2D(source, sourceRect, format, 0, 0, mTexStorage, level); } } } void TextureD3D_2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D && zoffset == 0); // can only make our texture storage to a render target if level 0 is defined (with a width & height) and // the current level we're copying to is defined (with appropriate format, width & height) bool canCreateRenderTarget = isLevelComplete(level) && isLevelComplete(0); if (!mImageArray[level]->isRenderableFormat() || (!mTexStorage && !canCreateRenderTarget)) { mImageArray[level]->copy(xoffset, yoffset, 0, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); if (isValidLevel(level)) { updateStorageLevel(level); gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImage2D(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, mTexStorage, level); } } } void TextureD3D_2D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_2D && depth == 1); for (int level = 0; level < levels; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, levelWidth, levelHeight, 1, true); } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true); } mImmutable = true; bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage2D(internalformat, renderTarget, width, height, levels); setCompleteTexStorage(storage); } void TextureD3D_2D::bindTexImage(egl::Surface *surface) { GLenum internalformat = surface->getFormat(); mImageArray[0]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, surface->getWidth(), surface->getHeight(), 1, true); if (mTexStorage) { SafeDelete(mTexStorage); } mTexStorage = mRenderer->createTextureStorage2D(surface->getSwapChain()); mDirtyImages = true; } void TextureD3D_2D::releaseTexImage() { if (mTexStorage) { SafeDelete(mTexStorage); } for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->redefine(mRenderer, GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true); } } void TextureD3D_2D::generateMipmaps() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, getBaseLevelInternalFormat(), std::max(getBaseLevelWidth() >> level, 1), std::max(getBaseLevelHeight() >> level, 1)); } if (mTexStorage && mTexStorage->isRenderTarget()) { mTexStorage->generateMipmaps(); for (int level = 1; level < levelCount; level++) { mImageArray[level]->markClean(); } } else { for (int level = 1; level < levelCount; level++) { mRenderer->generateMipmap(mImageArray[level], mImageArray[level - 1]); } } } unsigned int TextureD3D_2D::getRenderTargetSerial(const gl::ImageIndex &index) { ASSERT(!index.hasLayer()); return (ensureRenderTarget() ? mTexStorage->getRenderTargetSerial(index) : 0); } RenderTarget *TextureD3D_2D::getRenderTarget(const gl::ImageIndex &index) { ASSERT(!index.hasLayer()); // ensure the underlying texture is created if (!ensureRenderTarget()) { return NULL; } updateStorageLevel(index.mipIndex); return mTexStorage->getRenderTarget(index); } bool TextureD3D_2D::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : false); } bool TextureD3D_2D::isLevelComplete(int level) const { if (isImmutable()) { return true; } const Image *baseImage = getBaseLevelImage(); GLsizei width = baseImage->getWidth(); GLsizei height = baseImage->getHeight(); if (width <= 0 || height <= 0) { return false; } // The base image level is complete if the width and height are positive if (level == 0) { return true; } ASSERT(level >= 1 && level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ImageD3D *image = mImageArray[level]; if (image->getInternalFormat() != baseImage->getInternalFormat()) { return false; } if (image->getWidth() != std::max(1, width >> level)) { return false; } if (image->getHeight() != std::max(1, height >> level)) { return false; } return true; } // Constructs a native texture resource from the texture images void TextureD3D_2D::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return; } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return; } bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage)); setCompleteTexStorage(createCompleteStorage(createRenderTarget)); ASSERT(mTexStorage); // flush image data to the storage updateStorage(); } TextureStorage *TextureD3D_2D::createCompleteStorage(bool renderTarget) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1)); return mRenderer->createTextureStorage2D(internalFormat, renderTarget, width, height, levels); } void TextureD3D_2D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; if (mTexStorage && mTexStorage->isManaged()) { for (int level = 0; level < mTexStorage->getLevelCount(); level++) { mImageArray[level]->setManagedSurface2D(mTexStorage, level); } } mDirtyImages = true; } void TextureD3D_2D::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (mImageArray[level]->isDirty() && isLevelComplete(level)) { updateStorageLevel(level); } } } bool TextureD3D_2D::ensureRenderTarget() { initializeStorage(true); if (getBaseLevelWidth() > 0 && getBaseLevelHeight() > 0) { ASSERT(mTexStorage); if (!mTexStorage->isRenderTarget()) { TextureStorage *newRenderTargetStorage = createCompleteStorage(true); if (!mRenderer->copyToRenderTarget2D(newRenderTargetStorage, mTexStorage)) { delete newRenderTargetStorage; return gl::error(GL_OUT_OF_MEMORY, false); } setCompleteTexStorage(newRenderTargetStorage); } } return (mTexStorage && mTexStorage->isRenderTarget()); } TextureStorage *TextureD3D_2D::getBaseLevelStorage() { return mTexStorage; } const ImageD3D *TextureD3D_2D::getBaseLevelImage() const { return mImageArray[0]; } void TextureD3D_2D::updateStorageLevel(int level) { ASSERT(level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ASSERT(isLevelComplete(level)); if (mImageArray[level]->isDirty()) { commitRect(level, 0, 0, getWidth(level), getHeight(level)); } } void TextureD3D_2D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, width, height, 1, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || internalformat != storageFormat) // Discard mismatched storage { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->markDirty(); } SafeDelete(mTexStorage); mDirtyImages = true; } } } void TextureD3D_2D::commitRect(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height) { if (isValidLevel(level)) { ImageD3D *image = mImageArray[level]; if (image->copyToStorage2D(mTexStorage, level, xoffset, yoffset, width, height)) { image->markClean(); } } } TextureD3D_Cube::TextureD3D_Cube(Renderer *renderer) : TextureD3D(renderer), mTexStorage(NULL) { for (int i = 0; i < 6; i++) { for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j) { mImageArray[i][j] = ImageD3D::makeImageD3D(renderer->createImage()); } } } TextureD3D_Cube::~TextureD3D_Cube() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < 6; i++) { for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j) { SafeDelete(mImageArray[i][j]); } } SafeDelete(mTexStorage); } Image *TextureD3D_Cube::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer < 6); return mImageArray[layer][level]; } Image *TextureD3D_Cube::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(index.layerIndex < 6); return mImageArray[index.layerIndex][index.mipIndex]; } GLsizei TextureD3D_Cube::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 6; } GLenum TextureD3D_Cube::getInternalFormat(GLint level, GLint layer) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[layer][level]->getInternalFormat(); else return GL_NONE; } bool TextureD3D_Cube::isDepth(GLint level, GLint layer) const { return gl::GetInternalFormatInfo(getInternalFormat(level, layer)).depthBits > 0; } void TextureD3D_Cube::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1); int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); redefineImage(faceIndex, level, sizedInternalFormat, width, height); TextureD3D::setImage(unpack, type, pixels, mImageArray[faceIndex][level]); } void TextureD3D_Cube::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const void *pixels) { ASSERT(depth == 1); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); redefineImage(faceIndex, level, format, width, height); TextureD3D::setCompressedImage(imageSize, pixels, mImageArray[faceIndex][level]); } void TextureD3D_Cube::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1 && zoffset == 0); int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); if (TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpack, pixels, index)) { commitRect(faceIndex, level, xoffset, yoffset, width, height); } } void TextureD3D_Cube::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels) { ASSERT(depth == 1 && zoffset == 0); int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); if (TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, pixels, mImageArray[faceIndex][level])) { commitRect(faceIndex, level, xoffset, yoffset, width, height); } } void TextureD3D_Cube::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE); redefineImage(faceIndex, level, sizedInternalFormat, width, height); if (!mImageArray[faceIndex][level]->isRenderableFormat()) { mImageArray[faceIndex][level]->copy(0, 0, 0, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); mImageArray[faceIndex][level]->markClean(); ASSERT(width == height); if (width > 0 && isValidFaceLevel(faceIndex, level)) { gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImageCube(source, sourceRect, format, 0, 0, mTexStorage, target, level); } } } void TextureD3D_Cube::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); // We can only make our texture storage to a render target if the level we're copying *to* is complete // and the base level is cube-complete. The base level must be cube complete (common case) because we cannot // rely on the "getBaseLevel*" methods reliably otherwise. bool canCreateRenderTarget = isFaceLevelComplete(faceIndex, level) && isCubeComplete(); if (!mImageArray[faceIndex][level]->isRenderableFormat() || (!mTexStorage && !canCreateRenderTarget)) { mImageArray[faceIndex][level]->copy(0, 0, 0, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); if (isValidFaceLevel(faceIndex, level)) { updateStorageFaceLevel(faceIndex, level); gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImageCube(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, mTexStorage, target, level); } } } void TextureD3D_Cube::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(width == height); ASSERT(depth == 1); for (int level = 0; level < levels; level++) { GLsizei mipSize = std::max(1, width >> level); for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, internalformat, mipSize, mipSize, 1, true); } } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, GL_NONE, 0, 0, 0, true); } } mImmutable = true; bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorageCube(internalformat, renderTarget, width, levels); setCompleteTexStorage(storage); } // Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81. bool TextureD3D_Cube::isCubeComplete() const { int baseWidth = getBaseLevelWidth(); int baseHeight = getBaseLevelHeight(); GLenum baseFormat = getBaseLevelInternalFormat(); if (baseWidth <= 0 || baseWidth != baseHeight) { return false; } for (int faceIndex = 1; faceIndex < 6; faceIndex++) { const ImageD3D &faceBaseImage = *mImageArray[faceIndex][0]; if (faceBaseImage.getWidth() != baseWidth || faceBaseImage.getHeight() != baseHeight || faceBaseImage.getInternalFormat() != baseFormat ) { return false; } } return true; } void TextureD3D_Cube::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_Cube::releaseTexImage() { UNREACHABLE(); } void TextureD3D_Cube::generateMipmaps() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 1; level < levelCount; level++) { int faceLevelSize = (std::max(mImageArray[faceIndex][0]->getWidth() >> level, 1)); redefineImage(faceIndex, level, mImageArray[faceIndex][0]->getInternalFormat(), faceLevelSize, faceLevelSize); } } if (mTexStorage && mTexStorage->isRenderTarget()) { mTexStorage->generateMipmaps(); for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 1; level < levelCount; level++) { mImageArray[faceIndex][level]->markClean(); } } } else { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 1; level < levelCount; level++) { mRenderer->generateMipmap(mImageArray[faceIndex][level], mImageArray[faceIndex][level - 1]); } } } } unsigned int TextureD3D_Cube::getRenderTargetSerial(const gl::ImageIndex &index) { return (ensureRenderTarget() ? mTexStorage->getRenderTargetSerial(index) : 0); } RenderTarget *TextureD3D_Cube::getRenderTarget(const gl::ImageIndex &index) { ASSERT(gl::IsCubemapTextureTarget(index.type)); // ensure the underlying texture is created if (!ensureRenderTarget()) { return NULL; } updateStorageFaceLevel(index.layerIndex, index.mipIndex); return mTexStorage->getRenderTarget(index); } void TextureD3D_Cube::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return; } // do not attempt to create storage for nonexistant data if (!isFaceLevelComplete(0, 0)) { return; } bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage)); setCompleteTexStorage(createCompleteStorage(createRenderTarget)); ASSERT(mTexStorage); // flush image data to the storage updateStorage(); } TextureStorage *TextureD3D_Cube::createCompleteStorage(bool renderTarget) const { GLsizei size = getBaseLevelWidth(); ASSERT(size > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(size, size, 1)); return mRenderer->createTextureStorageCube(getBaseLevelInternalFormat(), renderTarget, size, levels); } void TextureD3D_Cube::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; if (mTexStorage && mTexStorage->isManaged()) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 0; level < mTexStorage->getLevelCount(); level++) { mImageArray[faceIndex][level]->setManagedSurfaceCube(mTexStorage, faceIndex, level); } } } mDirtyImages = true; } void TextureD3D_Cube::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int face = 0; face < 6; face++) { for (int level = 0; level < storageLevels; level++) { if (mImageArray[face][level]->isDirty() && isFaceLevelComplete(face, level)) { updateStorageFaceLevel(face, level); } } } } bool TextureD3D_Cube::ensureRenderTarget() { initializeStorage(true); if (getBaseLevelWidth() > 0) { ASSERT(mTexStorage); if (!mTexStorage->isRenderTarget()) { TextureStorage *newRenderTargetStorage = createCompleteStorage(true); if (!mRenderer->copyToRenderTargetCube(newRenderTargetStorage, mTexStorage)) { delete newRenderTargetStorage; return gl::error(GL_OUT_OF_MEMORY, false); } setCompleteTexStorage(newRenderTargetStorage); } } return (mTexStorage && mTexStorage->isRenderTarget()); } TextureStorage *TextureD3D_Cube::getBaseLevelStorage() { return mTexStorage; } const ImageD3D *TextureD3D_Cube::getBaseLevelImage() const { // Note: if we are not cube-complete, there is no single base level image that can describe all // cube faces, so this method is only well-defined for a cube-complete base level. return mImageArray[0][0]; } bool TextureD3D_Cube::isValidFaceLevel(int faceIndex, int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_Cube::isFaceLevelComplete(int faceIndex, int level) const { ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL); if (isImmutable()) { return true; } int baseSize = getBaseLevelWidth(); if (baseSize <= 0) { return false; } // "isCubeComplete" checks for base level completeness and we must call that // to determine if any face at level 0 is complete. We omit that check here // to avoid re-checking cube-completeness for every face at level 0. if (level == 0) { return true; } // Check that non-zero levels are consistent with the base level. const ImageD3D *faceLevelImage = mImageArray[faceIndex][level]; if (faceLevelImage->getInternalFormat() != getBaseLevelInternalFormat()) { return false; } if (faceLevelImage->getWidth() != std::max(1, baseSize >> level)) { return false; } return true; } void TextureD3D_Cube::updateStorageFaceLevel(int faceIndex, int level) { ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL); ImageD3D *image = mImageArray[faceIndex][level]; if (image->isDirty()) { commitRect(faceIndex, level, 0, 0, image->getWidth(), image->getHeight()); } } void TextureD3D_Cube::redefineImage(int faceIndex, GLint level, GLenum internalformat, GLsizei width, GLsizei height) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, internalformat, width, height, 1, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || internalformat != storageFormat) // Discard mismatched storage { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->markDirty(); } } SafeDelete(mTexStorage); mDirtyImages = true; } } } void TextureD3D_Cube::commitRect(int faceIndex, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height) { if (isValidFaceLevel(faceIndex, level)) { ImageD3D *image = mImageArray[faceIndex][level]; if (image->copyToStorageCube(mTexStorage, faceIndex, level, xoffset, yoffset, width, height)) image->markClean(); } } TextureD3D_3D::TextureD3D_3D(Renderer *renderer) : TextureD3D(renderer), mTexStorage(NULL) { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage()); } } TextureD3D_3D::~TextureD3D_3D() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { delete mImageArray[i]; } SafeDelete(mTexStorage); } Image *TextureD3D_3D::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer == 0); return mImageArray[level]; } Image *TextureD3D_3D::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(!index.hasLayer()); ASSERT(index.type == GL_TEXTURE_3D); return mImageArray[index.mipIndex]; } GLsizei TextureD3D_3D::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 1; } GLsizei TextureD3D_3D::getWidth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getWidth(); else return 0; } GLsizei TextureD3D_3D::getHeight(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getHeight(); else return 0; } GLsizei TextureD3D_3D::getDepth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getDepth(); else return 0; } GLenum TextureD3D_3D::getInternalFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getInternalFormat(); else return GL_NONE; } bool TextureD3D_3D::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } void TextureD3D_3D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); redefineImage(level, sizedInternalFormat, width, height, depth); bool fastUnpacked = false; // Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer if (isFastUnpackable(unpack, sizedInternalFormat)) { // Will try to create RT storage if it does not exist gl::ImageIndex index = gl::ImageIndex::Make3D(level); RenderTarget *destRenderTarget = getRenderTarget(index); gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), getDepth(level)); if (destRenderTarget && fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget)) { // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } } if (!fastUnpacked) { TextureD3D::setImage(unpack, type, pixels, mImageArray[level]); } } void TextureD3D_3D::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height, depth); TextureD3D::setCompressedImage(imageSize, pixels, mImageArray[level]); } void TextureD3D_3D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); bool fastUnpacked = false; gl::ImageIndex index = gl::ImageIndex::Make3D(level); // Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer if (isFastUnpackable(unpack, getInternalFormat(level))) { RenderTarget *destRenderTarget = getRenderTarget(index); gl::Box destArea(xoffset, yoffset, zoffset, width, height, depth); if (destRenderTarget && fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, destRenderTarget)) { // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } } if (!fastUnpacked && TextureD3D::subImage(xoffset, yoffset, zoffset, width, height, depth, format, type, unpack, pixels, index)) { commitRect(level, xoffset, yoffset, zoffset, width, height, depth); } } void TextureD3D_3D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); if (TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, depth, format, imageSize, pixels, mImageArray[level])) { commitRect(level, xoffset, yoffset, zoffset, width, height, depth); } } void TextureD3D_3D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { UNIMPLEMENTED(); } void TextureD3D_3D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_3D); // can only make our texture storage to a render target if level 0 is defined (with a width & height) and // the current level we're copying to is defined (with appropriate format, width & height) bool canCreateRenderTarget = isLevelComplete(level) && isLevelComplete(0); if (!mImageArray[level]->isRenderableFormat() || (!mTexStorage && !canCreateRenderTarget)) { mImageArray[level]->copy(xoffset, yoffset, zoffset, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); if (isValidLevel(level)) { updateStorageLevel(level); gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImage3D(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, zoffset, mTexStorage, level); } } } void TextureD3D_3D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_3D); for (int level = 0; level < levels; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); GLsizei levelDepth = std::max(1, depth >> level); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, internalformat, levelWidth, levelHeight, levelDepth, true); } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, GL_NONE, 0, 0, 0, true); } mImmutable = true; bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage3D(internalformat, renderTarget, width, height, depth, levels); setCompleteTexStorage(storage); } void TextureD3D_3D::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_3D::releaseTexImage() { UNREACHABLE(); } void TextureD3D_3D::generateMipmaps() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, getBaseLevelInternalFormat(), std::max(getBaseLevelWidth() >> level, 1), std::max(getBaseLevelHeight() >> level, 1), std::max(getBaseLevelDepth() >> level, 1)); } if (mTexStorage && mTexStorage->isRenderTarget()) { mTexStorage->generateMipmaps(); for (int level = 1; level < levelCount; level++) { mImageArray[level]->markClean(); } } else { for (int level = 1; level < levelCount; level++) { mRenderer->generateMipmap(mImageArray[level], mImageArray[level - 1]); } } } unsigned int TextureD3D_3D::getRenderTargetSerial(const gl::ImageIndex &index) { return (ensureRenderTarget() ? mTexStorage->getRenderTargetSerial(index) : 0); } RenderTarget *TextureD3D_3D::getRenderTarget(const gl::ImageIndex &index) { // ensure the underlying texture is created if (!ensureRenderTarget()) { return NULL; } if (index.hasLayer()) { updateStorage(); } else { updateStorageLevel(index.mipIndex); } return mTexStorage->getRenderTarget(index); } void TextureD3D_3D::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return; } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return; } bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); setCompleteTexStorage(createCompleteStorage(createRenderTarget)); ASSERT(mTexStorage); // flush image data to the storage updateStorage(); } TextureStorage *TextureD3D_3D::createCompleteStorage(bool renderTarget) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getBaseLevelDepth(); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0 && depth > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, depth)); return mRenderer->createTextureStorage3D(internalFormat, renderTarget, width, height, depth, levels); } void TextureD3D_3D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; // We do not support managed 3D storage, as that is D3D9/ES2-only ASSERT(!mTexStorage->isManaged()); } void TextureD3D_3D::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (mImageArray[level]->isDirty() && isLevelComplete(level)) { updateStorageLevel(level); } } } bool TextureD3D_3D::ensureRenderTarget() { initializeStorage(true); if (getBaseLevelWidth() > 0 && getBaseLevelHeight() > 0 && getBaseLevelDepth() > 0) { ASSERT(mTexStorage); if (!mTexStorage->isRenderTarget()) { TextureStorage *newRenderTargetStorage = createCompleteStorage(true); if (!mRenderer->copyToRenderTarget3D(newRenderTargetStorage, mTexStorage)) { delete newRenderTargetStorage; return gl::error(GL_OUT_OF_MEMORY, false); } setCompleteTexStorage(newRenderTargetStorage); } } return (mTexStorage && mTexStorage->isRenderTarget()); } TextureStorage *TextureD3D_3D::getBaseLevelStorage() { return mTexStorage; } const ImageD3D *TextureD3D_3D::getBaseLevelImage() const { return mImageArray[0]; } bool TextureD3D_3D::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_3D::isLevelComplete(int level) const { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL); if (isImmutable()) { return true; } GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getBaseLevelDepth(); if (width <= 0 || height <= 0 || depth <= 0) { return false; } if (level == 0) { return true; } ImageD3D *levelImage = mImageArray[level]; if (levelImage->getInternalFormat() != getBaseLevelInternalFormat()) { return false; } if (levelImage->getWidth() != std::max(1, width >> level)) { return false; } if (levelImage->getHeight() != std::max(1, height >> level)) { return false; } if (levelImage->getDepth() != std::max(1, depth >> level)) { return false; } return true; } void TextureD3D_3D::updateStorageLevel(int level) { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ASSERT(isLevelComplete(level)); if (mImageArray[level]->isDirty()) { commitRect(level, 0, 0, 0, getWidth(level), getHeight(level), getDepth(level)); } } void TextureD3D_3D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const int storageDepth = std::max(1, getBaseLevelDepth() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, internalformat, width, height, depth, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || depth != storageDepth || internalformat != storageFormat) // Discard mismatched storage { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->markDirty(); } SafeDelete(mTexStorage); mDirtyImages = true; } } } void TextureD3D_3D::commitRect(GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth) { if (isValidLevel(level)) { ImageD3D *image = mImageArray[level]; if (image->copyToStorage3D(mTexStorage, level, xoffset, yoffset, zoffset, width, height, depth)) { image->markClean(); } } } TextureD3D_2DArray::TextureD3D_2DArray(Renderer *renderer) : TextureD3D(renderer), mTexStorage(NULL) { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level) { mLayerCounts[level] = 0; mImageArray[level] = NULL; } } TextureD3D_2DArray::~TextureD3D_2DArray() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. deleteImages(); SafeDelete(mTexStorage); } Image *TextureD3D_2DArray::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer < mLayerCounts[level]); return mImageArray[level][layer]; } Image *TextureD3D_2DArray::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(index.layerIndex < mLayerCounts[index.mipIndex]); ASSERT(index.type == GL_TEXTURE_2D_ARRAY); return mImageArray[index.mipIndex][index.layerIndex]; } GLsizei TextureD3D_2DArray::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return mLayerCounts[level]; } GLsizei TextureD3D_2DArray::getWidth(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getWidth() : 0; } GLsizei TextureD3D_2DArray::getHeight(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getHeight() : 0; } GLsizei TextureD3D_2DArray::getLayers(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) ? mLayerCounts[level] : 0; } GLenum TextureD3D_2DArray::getInternalFormat(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getInternalFormat() : GL_NONE; } bool TextureD3D_2DArray::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } void TextureD3D_2DArray::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); redefineImage(level, sizedInternalFormat, width, height, depth); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(sizedInternalFormat); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment); for (int i = 0; i < depth; i++) { const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; TextureD3D::setImage(unpack, type, layerPixels, mImageArray[level][i]); } } void TextureD3D_2DArray::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height, depth); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1); for (int i = 0; i < depth; i++) { const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; TextureD3D::setCompressedImage(imageSize, layerPixels, mImageArray[level][i]); } } void TextureD3D_2DArray::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(getInternalFormat(level)); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment); for (int i = 0; i < depth; i++) { int layer = zoffset + i; const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer); if (TextureD3D::subImage(xoffset, yoffset, zoffset, width, height, 1, format, type, unpack, layerPixels, index)) { commitRect(level, xoffset, yoffset, layer, width, height); } } } void TextureD3D_2DArray::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1); for (int i = 0; i < depth; i++) { int layer = zoffset + i; const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; if (TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, 1, format, imageSize, layerPixels, mImageArray[level][layer])) { commitRect(level, xoffset, yoffset, layer, width, height); } } } void TextureD3D_2DArray::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { UNIMPLEMENTED(); } void TextureD3D_2DArray::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D_ARRAY); // can only make our texture storage to a render target if level 0 is defined (with a width & height) and // the current level we're copying to is defined (with appropriate format, width & height) bool canCreateRenderTarget = isLevelComplete(level) && isLevelComplete(0); if (!mImageArray[level][0]->isRenderableFormat() || (!mTexStorage && !canCreateRenderTarget)) { mImageArray[level][zoffset]->copy(xoffset, yoffset, 0, x, y, width, height, source); mDirtyImages = true; } else { ensureRenderTarget(); if (isValidLevel(level)) { updateStorageLevel(level); gl::Rectangle sourceRect; sourceRect.x = x; sourceRect.width = width; sourceRect.y = y; sourceRect.height = height; mRenderer->copyImage2DArray(source, sourceRect, gl::GetInternalFormatInfo(getInternalFormat(0)).format, xoffset, yoffset, zoffset, mTexStorage, level); } } } void TextureD3D_2DArray::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_2D_ARRAY); deleteImages(); for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); mLayerCounts[level] = (level < levels ? depth : 0); if (mLayerCounts[level] > 0) { // Create new images for this level mImageArray[level] = new ImageD3D*[mLayerCounts[level]]; for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage()); mImageArray[level][layer]->redefine(mRenderer, GL_TEXTURE_2D_ARRAY, internalformat, levelWidth, levelHeight, 1, true); } } } mImmutable = true; bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage2DArray(internalformat, renderTarget, width, height, depth, levels); setCompleteTexStorage(storage); } void TextureD3D_2DArray::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_2DArray::releaseTexImage() { UNREACHABLE(); } void TextureD3D_2DArray::generateMipmaps() { int baseWidth = getBaseLevelWidth(); int baseHeight = getBaseLevelHeight(); int baseDepth = getBaseLevelDepth(); GLenum baseFormat = getBaseLevelInternalFormat(); // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, baseFormat, std::max(baseWidth >> level, 1), std::max(baseHeight >> level, 1), baseDepth); } if (mTexStorage && mTexStorage->isRenderTarget()) { mTexStorage->generateMipmaps(); for (int level = 1; level < levelCount; level++) { for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer]->markClean(); } } } else { for (int level = 1; level < levelCount; level++) { for (int layer = 0; layer < mLayerCounts[level]; layer++) { mRenderer->generateMipmap(mImageArray[level][layer], mImageArray[level - 1][layer]); } } } } unsigned int TextureD3D_2DArray::getRenderTargetSerial(const gl::ImageIndex &index) { return (ensureRenderTarget() ? mTexStorage->getRenderTargetSerial(index) : 0); } RenderTarget *TextureD3D_2DArray::getRenderTarget(const gl::ImageIndex &index) { // ensure the underlying texture is created if (!ensureRenderTarget()) { return NULL; } updateStorageLevel(index.mipIndex); return mTexStorage->getRenderTarget(index); } void TextureD3D_2DArray::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return; } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return; } bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); setCompleteTexStorage(createCompleteStorage(createRenderTarget)); ASSERT(mTexStorage); // flush image data to the storage updateStorage(); } TextureStorage *TextureD3D_2DArray::createCompleteStorage(bool renderTarget) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getLayers(0); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0 && depth > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1)); return mRenderer->createTextureStorage2DArray(internalFormat, renderTarget, width, height, depth, levels); } void TextureD3D_2DArray::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; // We do not support managed 2D array storage, as managed storage is ES2/D3D9 only ASSERT(!mTexStorage->isManaged()); } void TextureD3D_2DArray::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (isLevelComplete(level)) { updateStorageLevel(level); } } } bool TextureD3D_2DArray::ensureRenderTarget() { initializeStorage(true); if (getBaseLevelWidth() > 0 && getBaseLevelHeight() > 0 && getLayers(0) > 0) { ASSERT(mTexStorage); if (!mTexStorage->isRenderTarget()) { TextureStorage *newRenderTargetStorage = createCompleteStorage(true); if (!mRenderer->copyToRenderTarget2DArray(newRenderTargetStorage, mTexStorage)) { delete newRenderTargetStorage; return gl::error(GL_OUT_OF_MEMORY, false); } setCompleteTexStorage(newRenderTargetStorage); } } return (mTexStorage && mTexStorage->isRenderTarget()); } const ImageD3D *TextureD3D_2DArray::getBaseLevelImage() const { return (mLayerCounts[0] > 0 ? mImageArray[0][0] : NULL); } TextureStorage *TextureD3D_2DArray::getBaseLevelStorage() { return mTexStorage; } bool TextureD3D_2DArray::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_2DArray::isLevelComplete(int level) const { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray)); if (isImmutable()) { return true; } GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei layers = getLayers(0); if (width <= 0 || height <= 0 || layers <= 0) { return false; } if (level == 0) { return true; } if (getInternalFormat(level) != getInternalFormat(0)) { return false; } if (getWidth(level) != std::max(1, width >> level)) { return false; } if (getHeight(level) != std::max(1, height >> level)) { return false; } if (getLayers(level) != layers) { return false; } return true; } void TextureD3D_2DArray::updateStorageLevel(int level) { ASSERT(level >= 0 && level < (int)ArraySize(mLayerCounts)); ASSERT(isLevelComplete(level)); for (int layer = 0; layer < mLayerCounts[level]; layer++) { ASSERT(mImageArray[level] != NULL && mImageArray[level][layer] != NULL); if (mImageArray[level][layer]->isDirty()) { commitRect(level, 0, 0, layer, getWidth(level), getHeight(level)); } } } void TextureD3D_2DArray::deleteImages() { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level) { for (int layer = 0; layer < mLayerCounts[level]; ++layer) { delete mImageArray[level][layer]; } delete[] mImageArray[level]; mImageArray[level] = NULL; mLayerCounts[level] = 0; } } void TextureD3D_2DArray::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const int storageDepth = getLayers(0); const GLenum storageFormat = getBaseLevelInternalFormat(); for (int layer = 0; layer < mLayerCounts[level]; layer++) { delete mImageArray[level][layer]; } delete[] mImageArray[level]; mImageArray[level] = NULL; mLayerCounts[level] = depth; if (depth > 0) { mImageArray[level] = new ImageD3D*[depth](); for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage()); mImageArray[level][layer]->redefine(mRenderer, GL_TEXTURE_2D_ARRAY, internalformat, width, height, 1, false); } } if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || depth != storageDepth || internalformat != storageFormat) // Discard mismatched storage { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer]->markDirty(); } } delete mTexStorage; mTexStorage = NULL; mDirtyImages = true; } } } void TextureD3D_2DArray::commitRect(GLint level, GLint xoffset, GLint yoffset, GLint layerTarget, GLsizei width, GLsizei height) { if (isValidLevel(level) && layerTarget < getLayers(level)) { ImageD3D *image = mImageArray[level][layerTarget]; if (image->copyToStorage2DArray(mTexStorage, level, xoffset, yoffset, layerTarget, width, height)) { image->markClean(); } } } }