// // Copyright 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // TextureD3D.cpp: Implementations of the Texture interfaces shared betweeen the D3D backends. #include "libGLESv2/Buffer.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/Texture.h" #include "libGLESv2/main.h" #include "libGLESv2/formatutils.h" #include "libGLESv2/renderer/BufferImpl.h" #include "libGLESv2/renderer/RenderTarget.h" #include "libGLESv2/renderer/d3d/BufferD3D.h" #include "libGLESv2/renderer/d3d/TextureD3D.h" #include "libGLESv2/renderer/d3d/TextureStorage.h" #include "libGLESv2/renderer/d3d/ImageD3D.h" #include "libGLESv2/renderer/d3d/RendererD3D.h" #include "libEGL/Surface.h" #include "common/mathutil.h" #include "common/utilities.h" namespace rx { namespace { gl::Error GetUnpackPointer(const gl::PixelUnpackState &unpack, const void *pixels, const uint8_t **pointerOut) { if (unpack.pixelBuffer.id() != 0) { // Do a CPU readback here, if we have an unpack buffer bound and the fast GPU path is not supported gl::Buffer *pixelBuffer = unpack.pixelBuffer.get(); ptrdiff_t offset = reinterpret_cast(pixels); // TODO: this is the only place outside of renderer that asks for a buffers raw data. // This functionality should be moved into renderer and the getData method of BufferImpl removed. BufferD3D *bufferD3D = BufferD3D::makeBufferD3D(pixelBuffer->getImplementation()); ASSERT(bufferD3D); const uint8_t *bufferData = NULL; gl::Error error = bufferD3D->getData(&bufferData); if (error.isError()) { return error; } *pointerOut = bufferData + offset; } else { *pointerOut = static_cast(pixels); } return gl::Error(GL_NO_ERROR); } bool IsRenderTargetUsage(GLenum usage) { return (usage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); } } TextureD3D::TextureD3D(RendererD3D *renderer) : mRenderer(renderer), mUsage(GL_NONE), mDirtyImages(true), mImmutable(false), mTexStorage(NULL) { } TextureD3D::~TextureD3D() { } TextureD3D *TextureD3D::makeTextureD3D(TextureImpl *texture) { ASSERT(HAS_DYNAMIC_TYPE(TextureD3D*, texture)); return static_cast(texture); } TextureStorage *TextureD3D::getNativeTexture() { // ensure the underlying texture is created initializeStorage(false); if (mTexStorage) { updateStorage(); } return mTexStorage; } GLint TextureD3D::getBaseLevelWidth() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getWidth() : 0); } GLint TextureD3D::getBaseLevelHeight() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getHeight() : 0); } GLint TextureD3D::getBaseLevelDepth() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getDepth() : 0); } // Note: "base level image" is loosely defined to be any image from the base level, // where in the base of 2D array textures and cube maps there are several. Don't use // the base level image for anything except querying texture format and size. GLenum TextureD3D::getBaseLevelInternalFormat() const { const Image *baseImage = getBaseLevelImage(); return (baseImage ? baseImage->getInternalFormat() : GL_NONE); } bool TextureD3D::shouldUseSetData(const Image *image) const { if (!mRenderer->getWorkarounds().setDataFasterThanImageUpload) { return false; } gl::InternalFormat internalFormat = gl::GetInternalFormatInfo(image->getInternalFormat()); // We can only handle full updates for depth-stencil textures, so to avoid complications // disable them entirely. if (internalFormat.depthBits > 0 || internalFormat.stencilBits > 0) { return false; } // TODO(jmadill): Handle compressed internal formats return (mTexStorage && !internalFormat.compressed); } gl::Error TextureD3D::setImage(const gl::PixelUnpackState &unpack, GLenum type, const void *pixels, const gl::ImageIndex &index) { Image *image = getImage(index); ASSERT(image); // No-op if (image->getWidth() == 0 || image->getHeight() == 0 || image->getDepth() == 0) { return gl::Error(GL_NO_ERROR); } // We no longer need the "GLenum format" parameter to TexImage to determine what data format "pixels" contains. // From our image internal format we know how many channels to expect, and "type" gives the format of pixel's components. const uint8_t *pixelData = NULL; gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData); if (error.isError()) { return error; } if (pixelData != NULL) { gl::Error error(GL_NO_ERROR); if (shouldUseSetData(image)) { error = mTexStorage->setData(index, image, NULL, type, unpack, pixelData); } else { error = image->loadData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), unpack.alignment, type, pixelData); } if (error.isError()) { return error; } mDirtyImages = true; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D::subImage(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels, const gl::ImageIndex &index) { // CPU readback & copy where direct GPU copy is not supported const uint8_t *pixelData = NULL; gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData); if (error.isError()) { return error; } if (pixelData != NULL) { Image *image = getImage(index); ASSERT(image); gl::Box region(xoffset, yoffset, zoffset, width, height, depth); if (shouldUseSetData(image)) { return mTexStorage->setData(index, image, ®ion, type, unpack, pixelData); } gl::Error error = image->loadData(xoffset, yoffset, zoffset, width, height, depth, unpack.alignment, type, pixelData); if (error.isError()) { return error; } error = commitRegion(index, region); if (error.isError()) { return error; } mDirtyImages = true; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D::setCompressedImage(const gl::PixelUnpackState &unpack, GLsizei imageSize, const void *pixels, Image *image) { // We no longer need the "GLenum format" parameter to TexImage to determine what data format "pixels" contains. // From our image internal format we know how many channels to expect, and "type" gives the format of pixel's components. const uint8_t *pixelData = NULL; gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData); if (error.isError()) { return error; } if (pixelData != NULL) { gl::Error error = image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), pixelData); if (error.isError()) { return error; } mDirtyImages = true; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D::subImageCompressed(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels, Image *image) { const uint8_t *pixelData = NULL; gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData); if (error.isError()) { return error; } if (pixelData != NULL) { gl::Error error = image->loadCompressedData(xoffset, yoffset, zoffset, width, height, depth, pixelData); if (error.isError()) { return error; } mDirtyImages = true; } return gl::Error(GL_NO_ERROR); } bool TextureD3D::isFastUnpackable(const gl::PixelUnpackState &unpack, GLenum sizedInternalFormat) { return unpack.pixelBuffer.id() != 0 && mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat); } gl::Error TextureD3D::fastUnpackPixels(const gl::PixelUnpackState &unpack, const void *pixels, const gl::Box &destArea, GLenum sizedInternalFormat, GLenum type, RenderTarget *destRenderTarget) { // No-op if (destArea.width <= 0 && destArea.height <= 0 && destArea.depth <= 0) { return gl::Error(GL_NO_ERROR); } // In order to perform the fast copy through the shader, we must have the right format, and be able // to create a render target. ASSERT(mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat)); uintptr_t offset = reinterpret_cast(pixels); gl::Error error = mRenderer->fastCopyBufferToTexture(unpack, offset, destRenderTarget, sizedInternalFormat, type, destArea); if (error.isError()) { return error; } return gl::Error(GL_NO_ERROR); } GLint TextureD3D::creationLevels(GLsizei width, GLsizei height, GLsizei depth) const { if ((gl::isPow2(width) && gl::isPow2(height) && gl::isPow2(depth)) || mRenderer->getRendererExtensions().textureNPOT) { // Maximum number of levels return gl::log2(std::max(std::max(width, height), depth)) + 1; } else { // OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps. return 1; } } int TextureD3D::mipLevels() const { return gl::log2(std::max(std::max(getBaseLevelWidth(), getBaseLevelHeight()), getBaseLevelDepth())) + 1; } TextureStorage *TextureD3D::getStorage() { ASSERT(mTexStorage); return mTexStorage; } Image *TextureD3D::getBaseLevelImage() const { return getImage(getImageIndex(0, 0)); } gl::Error TextureD3D::generateMipmaps() { GLint mipCount = mipLevels(); if (mipCount == 1) { return gl::Error(GL_NO_ERROR); // no-op } // Set up proper mipmap chain in our Image array. initMipmapsImages(); // We know that all layers have the same dimension, for the texture to be complete GLint layerCount = static_cast(getLayerCount(0)); // When making mipmaps with the setData workaround enabled, the texture storage has // the image data already. For non-render-target storage, we have to pull it out into // an image layer. if (mRenderer->getWorkarounds().setDataFasterThanImageUpload && mTexStorage) { if (!mTexStorage->isRenderTarget()) { // Copy from the storage mip 0 to Image mip 0 for (GLint layer = 0; layer < layerCount; ++layer) { gl::ImageIndex srcIndex = getImageIndex(0, layer); Image *image = getImage(srcIndex); gl::Rectangle area(0, 0, image->getWidth(), image->getHeight()); gl::Error error = image->copy(0, 0, 0, area, srcIndex, mTexStorage); if (error.isError()) { return error; } } } else { gl::Error error = updateStorage(); if (error.isError()) { return error; } } } bool renderableStorage = (mTexStorage && mTexStorage->isRenderTarget()); for (GLint layer = 0; layer < layerCount; ++layer) { for (GLint mip = 1; mip < mipCount; ++mip) { ASSERT(getLayerCount(mip) == layerCount); gl::ImageIndex sourceIndex = getImageIndex(mip - 1, layer); gl::ImageIndex destIndex = getImageIndex(mip, layer); if (renderableStorage) { // GPU-side mipmapping gl::Error error = mTexStorage->generateMipmap(sourceIndex, destIndex); if (error.isError()) { return error; } } else { // CPU-side mipmapping gl::Error error = mRenderer->generateMipmap(getImage(destIndex), getImage(sourceIndex)); if (error.isError()) { return error; } } } } return gl::Error(GL_NO_ERROR); } bool TextureD3D::isBaseImageZeroSize() const { Image *baseImage = getBaseLevelImage(); if (!baseImage || baseImage->getWidth() <= 0) { return true; } if (!gl::IsCubemapTextureTarget(baseImage->getTarget()) && baseImage->getHeight() <= 0) { return true; } if (baseImage->getTarget() == GL_TEXTURE_3D && baseImage->getDepth() <= 0) { return true; } if (baseImage->getTarget() == GL_TEXTURE_2D_ARRAY && getLayerCount(0) <= 0) { return true; } return false; } gl::Error TextureD3D::ensureRenderTarget() { gl::Error error = initializeStorage(true); if (error.isError()) { return error; } if (!isBaseImageZeroSize()) { ASSERT(mTexStorage); if (!mTexStorage->isRenderTarget()) { TextureStorage *newRenderTargetStorage = NULL; error = createCompleteStorage(true, &newRenderTargetStorage); if (error.isError()) { return error; } error = mTexStorage->copyToStorage(newRenderTargetStorage); if (error.isError()) { SafeDelete(newRenderTargetStorage); return error; } error = setCompleteTexStorage(newRenderTargetStorage); if (error.isError()) { SafeDelete(newRenderTargetStorage); return error; } } } return gl::Error(GL_NO_ERROR); } bool TextureD3D::canCreateRenderTargetForImage(const gl::ImageIndex &index) const { Image *image = getImage(index); bool levelsComplete = (isImageComplete(index) && isImageComplete(getImageIndex(0, 0))); return (image->isRenderableFormat() && levelsComplete); } gl::Error TextureD3D::commitRegion(const gl::ImageIndex &index, const gl::Box ®ion) { if (mTexStorage) { ASSERT(isValidIndex(index)); Image *image = getImage(index); ImageD3D *imageD3D = ImageD3D::makeImageD3D(image); gl::Error error = imageD3D->copyToStorage(mTexStorage, index, region); if (error.isError()) { return error; } image->markClean(); } return gl::Error(GL_NO_ERROR); } TextureD3D_2D::TextureD3D_2D(RendererD3D *renderer) : TextureD3D(renderer) { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage()); } } TextureD3D_2D::~TextureD3D_2D() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { delete mImageArray[i]; } SafeDelete(mTexStorage); } Image *TextureD3D_2D::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer == 0); return mImageArray[level]; } Image *TextureD3D_2D::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(!index.hasLayer()); ASSERT(index.type == GL_TEXTURE_2D); return mImageArray[index.mipIndex]; } GLsizei TextureD3D_2D::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 1; } GLsizei TextureD3D_2D::getWidth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getWidth(); else return 0; } GLsizei TextureD3D_2D::getHeight(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getHeight(); else return 0; } GLenum TextureD3D_2D::getInternalFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getInternalFormat(); else return GL_NONE; } GLenum TextureD3D_2D::getActualFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getActualFormat(); else return GL_NONE; } bool TextureD3D_2D::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } gl::Error TextureD3D_2D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); bool fastUnpacked = false; redefineImage(level, sizedInternalFormat, width, height); gl::ImageIndex index = gl::ImageIndex::Make2D(level); // Attempt a fast gpu copy of the pixel data to the surface if (isFastUnpackable(unpack, sizedInternalFormat) && isLevelComplete(level)) { // Will try to create RT storage if it does not exist RenderTarget *destRenderTarget = NULL; gl::Error error = getRenderTarget(index, &destRenderTarget); if (error.isError()) { return error; } gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), 1); error = fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget); if (error.isError()) { return error; } // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } if (!fastUnpacked) { gl::Error error = TextureD3D::setImage(unpack, type, pixels, index); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height); return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[level]); } gl::Error TextureD3D_2D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0); bool fastUnpacked = false; gl::ImageIndex index = gl::ImageIndex::Make2D(level); gl::Box destArea(xoffset, yoffset, 0, width, height, 1); if (isFastUnpackable(unpack, getInternalFormat(level)) && isLevelComplete(level)) { RenderTarget *renderTarget = NULL; gl::Error error = getRenderTarget(index, &renderTarget); if (error.isError()) { return error; } error = fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, renderTarget); if (error.isError()) { return error; } // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } if (!fastUnpacked) { return TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpack, pixels, index); } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0); gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, unpack, pixels, mImageArray[level]); if (error.isError()) { return error; } gl::ImageIndex index = gl::ImageIndex::Make2D(level); gl::Box region(xoffset, yoffset, 0, width, height, 1); return commitRegion(index, region); } gl::Error TextureD3D_2D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE); redefineImage(level, sizedInternalFormat, width, height); gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::Make2D(level); if (!canCreateRenderTargetForImage(index)) { gl::Error error = mImageArray[level]->copy(0, 0, 0, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } mImageArray[level]->markClean(); if (width != 0 && height != 0 && isValidLevel(level)) { gl::Error error = mRenderer->copyImage2D(source, sourceRect, format, 0, 0, mTexStorage, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D && zoffset == 0); // can only make our texture storage to a render target if level 0 is defined (with a width & height) and // the current level we're copying to is defined (with appropriate format, width & height) gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::Make2D(level); if (!canCreateRenderTargetForImage(index)) { gl::Error error = mImageArray[level]->copy(xoffset, yoffset, 0, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } if (isValidLevel(level)) { error = updateStorageLevel(level); if (error.isError()) { return error; } error = mRenderer->copyImage2D(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, mTexStorage, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_2D && depth == 1); for (int level = 0; level < levels; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, levelWidth, levelHeight, 1, true); } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true); } // TODO(geofflang): Verify storage creation had no errors bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage2D(internalformat, renderTarget, width, height, levels); gl::Error error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } mImmutable = true; return gl::Error(GL_NO_ERROR); } void TextureD3D_2D::bindTexImage(egl::Surface *surface) { GLenum internalformat = surface->getFormat(); mImageArray[0]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, surface->getWidth(), surface->getHeight(), 1, true); if (mTexStorage) { SafeDelete(mTexStorage); } mTexStorage = mRenderer->createTextureStorage2D(surface->getSwapChain()); mDirtyImages = true; } void TextureD3D_2D::releaseTexImage() { if (mTexStorage) { SafeDelete(mTexStorage); } for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->redefine(mRenderer, GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true); } } void TextureD3D_2D::initMipmapsImages() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, getBaseLevelInternalFormat(), std::max(getBaseLevelWidth() >> level, 1), std::max(getBaseLevelHeight() >> level, 1)); } } unsigned int TextureD3D_2D::getRenderTargetSerial(const gl::ImageIndex &index) { ASSERT(!index.hasLayer()); return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0); } gl::Error TextureD3D_2D::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT) { ASSERT(!index.hasLayer()); // ensure the underlying texture is created gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } error = updateStorageLevel(index.mipIndex); if (error.isError()) { return error; } return mTexStorage->getRenderTarget(index, outRT); } bool TextureD3D_2D::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : false); } bool TextureD3D_2D::isLevelComplete(int level) const { if (isImmutable()) { return true; } const Image *baseImage = getBaseLevelImage(); GLsizei width = baseImage->getWidth(); GLsizei height = baseImage->getHeight(); if (width <= 0 || height <= 0) { return false; } // The base image level is complete if the width and height are positive if (level == 0) { return true; } ASSERT(level >= 1 && level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ImageD3D *image = mImageArray[level]; if (image->getInternalFormat() != baseImage->getInternalFormat()) { return false; } if (image->getWidth() != std::max(1, width >> level)) { return false; } if (image->getHeight() != std::max(1, height >> level)) { return false; } return true; } bool TextureD3D_2D::isImageComplete(const gl::ImageIndex &index) const { return isLevelComplete(index.mipIndex); } // Constructs a native texture resource from the texture images gl::Error TextureD3D_2D::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return gl::Error(GL_NO_ERROR); } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return gl::Error(GL_NO_ERROR); } bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage)); TextureStorage *storage = NULL; gl::Error error = createCompleteStorage(createRenderTarget, &storage); if (error.isError()) { return error; } error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } ASSERT(mTexStorage); // flush image data to the storage error = updateStorage(); if (error.isError()) { return error; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::createCompleteStorage(bool renderTarget, TextureStorage **outTexStorage) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1)); // TODO(geofflang): Determine if the texture creation succeeded *outTexStorage = mRenderer->createTextureStorage2D(internalFormat, renderTarget, width, height, levels); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { if (newCompleteTexStorage && newCompleteTexStorage->isManaged()) { for (int level = 0; level < newCompleteTexStorage->getLevelCount(); level++) { gl::Error error = mImageArray[level]->setManagedSurface2D(newCompleteTexStorage, level); if (error.isError()) { return error; } } } SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (mImageArray[level]->isDirty() && isLevelComplete(level)) { gl::Error error = updateStorageLevel(level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2D::updateStorageLevel(int level) { ASSERT(level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ASSERT(isLevelComplete(level)); if (mImageArray[level]->isDirty()) { gl::ImageIndex index = gl::ImageIndex::Make2D(level); gl::Box region(0, 0, 0, getWidth(level), getHeight(level), 1); gl::Error error = commitRegion(index, region); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } void TextureD3D_2D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_2D, internalformat, width, height, 1, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || internalformat != storageFormat) // Discard mismatched storage { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->markDirty(); } SafeDelete(mTexStorage); mDirtyImages = true; } } } gl::ImageIndexIterator TextureD3D_2D::imageIterator() const { return gl::ImageIndexIterator::Make2D(0, mTexStorage->getLevelCount()); } gl::ImageIndex TextureD3D_2D::getImageIndex(GLint mip, GLint /*layer*/) const { // "layer" does not apply to 2D Textures. return gl::ImageIndex::Make2D(mip); } bool TextureD3D_2D::isValidIndex(const gl::ImageIndex &index) const { return (mTexStorage && index.type == GL_TEXTURE_2D && index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount()); } TextureD3D_Cube::TextureD3D_Cube(RendererD3D *renderer) : TextureD3D(renderer) { for (int i = 0; i < 6; i++) { for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j) { mImageArray[i][j] = ImageD3D::makeImageD3D(renderer->createImage()); } } } TextureD3D_Cube::~TextureD3D_Cube() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < 6; i++) { for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j) { SafeDelete(mImageArray[i][j]); } } SafeDelete(mTexStorage); } Image *TextureD3D_Cube::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer < 6); return mImageArray[layer][level]; } Image *TextureD3D_Cube::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(index.layerIndex < 6); return mImageArray[index.layerIndex][index.mipIndex]; } GLsizei TextureD3D_Cube::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 6; } GLenum TextureD3D_Cube::getInternalFormat(GLint level, GLint layer) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[layer][level]->getInternalFormat(); else return GL_NONE; } bool TextureD3D_Cube::isDepth(GLint level, GLint layer) const { return gl::GetInternalFormatInfo(getInternalFormat(level, layer)).depthBits > 0; } gl::Error TextureD3D_Cube::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); redefineImage(index.layerIndex, level, sizedInternalFormat, width, height); return TextureD3D::setImage(unpack, type, pixels, index); } gl::Error TextureD3D_Cube::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); redefineImage(faceIndex, level, format, width, height); return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[faceIndex][level]); } gl::Error TextureD3D_Cube::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1 && zoffset == 0); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); return TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpack, pixels, index); } gl::Error TextureD3D_Cube::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(depth == 1 && zoffset == 0); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, unpack, pixels, mImageArray[index.layerIndex][level]); if (error.isError()) { return error; } gl::Box region(xoffset, yoffset, 0, width, height, 1); return commitRegion(index, region); } gl::Error TextureD3D_Cube::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE); redefineImage(faceIndex, level, sizedInternalFormat, width, height); gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); if (!canCreateRenderTargetForImage(index)) { gl::Error error = mImageArray[faceIndex][level]->copy(0, 0, 0, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } mImageArray[faceIndex][level]->markClean(); ASSERT(width == height); if (width > 0 && isValidFaceLevel(faceIndex, level)) { error = mRenderer->copyImageCube(source, sourceRect, format, 0, 0, mTexStorage, target, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_Cube::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target); gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level); if (!canCreateRenderTargetForImage(index)) { gl::Error error =mImageArray[faceIndex][level]->copy(0, 0, 0, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } if (isValidFaceLevel(faceIndex, level)) { error = updateStorageFaceLevel(faceIndex, level); if (error.isError()) { return error; } error = mRenderer->copyImageCube(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, mTexStorage, target, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_Cube::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(width == height); ASSERT(depth == 1); for (int level = 0; level < levels; level++) { GLsizei mipSize = std::max(1, width >> level); for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, internalformat, mipSize, mipSize, 1, true); } } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, GL_NONE, 0, 0, 0, true); } } // TODO(geofflang): Verify storage creation had no errors bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorageCube(internalformat, renderTarget, width, levels); gl::Error error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } mImmutable = true; return gl::Error(GL_NO_ERROR); } // Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81. bool TextureD3D_Cube::isCubeComplete() const { int baseWidth = getBaseLevelWidth(); int baseHeight = getBaseLevelHeight(); GLenum baseFormat = getBaseLevelInternalFormat(); if (baseWidth <= 0 || baseWidth != baseHeight) { return false; } for (int faceIndex = 1; faceIndex < 6; faceIndex++) { const ImageD3D &faceBaseImage = *mImageArray[faceIndex][0]; if (faceBaseImage.getWidth() != baseWidth || faceBaseImage.getHeight() != baseHeight || faceBaseImage.getInternalFormat() != baseFormat ) { return false; } } return true; } void TextureD3D_Cube::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_Cube::releaseTexImage() { UNREACHABLE(); } void TextureD3D_Cube::initMipmapsImages() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 1; level < levelCount; level++) { int faceLevelSize = (std::max(mImageArray[faceIndex][0]->getWidth() >> level, 1)); redefineImage(faceIndex, level, mImageArray[faceIndex][0]->getInternalFormat(), faceLevelSize, faceLevelSize); } } } unsigned int TextureD3D_Cube::getRenderTargetSerial(const gl::ImageIndex &index) { return (ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0); } gl::Error TextureD3D_Cube::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT) { ASSERT(gl::IsCubemapTextureTarget(index.type)); // ensure the underlying texture is created gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } error = updateStorageFaceLevel(index.layerIndex, index.mipIndex); if (error.isError()) { return error; } return mTexStorage->getRenderTarget(index, outRT); } gl::Error TextureD3D_Cube::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return gl::Error(GL_NO_ERROR); } // do not attempt to create storage for nonexistant data if (!isFaceLevelComplete(0, 0)) { return gl::Error(GL_NO_ERROR); } bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage)); TextureStorage *storage = NULL; gl::Error error = createCompleteStorage(createRenderTarget, &storage); if (error.isError()) { return error; } error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } ASSERT(mTexStorage); // flush image data to the storage error = updateStorage(); if (error.isError()) { return error; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_Cube::createCompleteStorage(bool renderTarget, TextureStorage **outTexStorage) const { GLsizei size = getBaseLevelWidth(); ASSERT(size > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(size, size, 1)); // TODO (geofflang): detect if storage creation succeeded *outTexStorage = mRenderer->createTextureStorageCube(getBaseLevelInternalFormat(), renderTarget, size, levels); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_Cube::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { if (newCompleteTexStorage && newCompleteTexStorage->isManaged()) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { for (int level = 0; level < newCompleteTexStorage->getLevelCount(); level++) { gl::Error error = mImageArray[faceIndex][level]->setManagedSurfaceCube(newCompleteTexStorage, faceIndex, level); if (error.isError()) { return error; } } } } SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_Cube::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int face = 0; face < 6; face++) { for (int level = 0; level < storageLevels; level++) { if (mImageArray[face][level]->isDirty() && isFaceLevelComplete(face, level)) { gl::Error error = updateStorageFaceLevel(face, level); if (error.isError()) { return error; } } } } return gl::Error(GL_NO_ERROR); } bool TextureD3D_Cube::isValidFaceLevel(int faceIndex, int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_Cube::isFaceLevelComplete(int faceIndex, int level) const { ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL); if (isImmutable()) { return true; } int baseSize = getBaseLevelWidth(); if (baseSize <= 0) { return false; } // "isCubeComplete" checks for base level completeness and we must call that // to determine if any face at level 0 is complete. We omit that check here // to avoid re-checking cube-completeness for every face at level 0. if (level == 0) { return true; } // Check that non-zero levels are consistent with the base level. const ImageD3D *faceLevelImage = mImageArray[faceIndex][level]; if (faceLevelImage->getInternalFormat() != getBaseLevelInternalFormat()) { return false; } if (faceLevelImage->getWidth() != std::max(1, baseSize >> level)) { return false; } return true; } bool TextureD3D_Cube::isImageComplete(const gl::ImageIndex &index) const { return isFaceLevelComplete(index.layerIndex, index.mipIndex); } gl::Error TextureD3D_Cube::updateStorageFaceLevel(int faceIndex, int level) { ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL); ImageD3D *image = mImageArray[faceIndex][level]; if (image->isDirty()) { GLenum faceTarget = gl::TextureCubeMap::layerIndexToTarget(faceIndex); gl::ImageIndex index = gl::ImageIndex::MakeCube(faceTarget, level); gl::Box region(0, 0, 0, image->getWidth(), image->getHeight(), 1); gl::Error error = commitRegion(index, region); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } void TextureD3D_Cube::redefineImage(int faceIndex, GLint level, GLenum internalformat, GLsizei width, GLsizei height) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[faceIndex][level]->redefine(mRenderer, GL_TEXTURE_CUBE_MAP, internalformat, width, height, 1, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || internalformat != storageFormat) // Discard mismatched storage { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int faceIndex = 0; faceIndex < 6; faceIndex++) { mImageArray[faceIndex][level]->markDirty(); } } SafeDelete(mTexStorage); mDirtyImages = true; } } } gl::ImageIndexIterator TextureD3D_Cube::imageIterator() const { return gl::ImageIndexIterator::MakeCube(0, mTexStorage->getLevelCount()); } gl::ImageIndex TextureD3D_Cube::getImageIndex(GLint mip, GLint layer) const { // The "layer" of the image index corresponds to the cube face return gl::ImageIndex::MakeCube(gl::TextureCubeMap::layerIndexToTarget(layer), mip); } bool TextureD3D_Cube::isValidIndex(const gl::ImageIndex &index) const { return (mTexStorage && gl::IsCubemapTextureTarget(index.type) && index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount()); } TextureD3D_3D::TextureD3D_3D(RendererD3D *renderer) : TextureD3D(renderer) { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage()); } } TextureD3D_3D::~TextureD3D_3D() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i) { delete mImageArray[i]; } SafeDelete(mTexStorage); } Image *TextureD3D_3D::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer == 0); return mImageArray[level]; } Image *TextureD3D_3D::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(!index.hasLayer()); ASSERT(index.type == GL_TEXTURE_3D); return mImageArray[index.mipIndex]; } GLsizei TextureD3D_3D::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return 1; } GLsizei TextureD3D_3D::getWidth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getWidth(); else return 0; } GLsizei TextureD3D_3D::getHeight(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getHeight(); else return 0; } GLsizei TextureD3D_3D::getDepth(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getDepth(); else return 0; } GLenum TextureD3D_3D::getInternalFormat(GLint level) const { if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS) return mImageArray[level]->getInternalFormat(); else return GL_NONE; } bool TextureD3D_3D::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } gl::Error TextureD3D_3D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); redefineImage(level, sizedInternalFormat, width, height, depth); bool fastUnpacked = false; gl::ImageIndex index = gl::ImageIndex::Make3D(level); // Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer if (isFastUnpackable(unpack, sizedInternalFormat)) { // Will try to create RT storage if it does not exist RenderTarget *destRenderTarget = NULL; gl::Error error = getRenderTarget(index, &destRenderTarget); if (error.isError()) { return error; } gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), getDepth(level)); error = fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget); if (error.isError()) { return error; } // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } if (!fastUnpacked) { gl::Error error = TextureD3D::setImage(unpack, type, pixels, index); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height,GLsizei depth, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height, depth); return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[level]); } gl::Error TextureD3D_3D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); bool fastUnpacked = false; gl::ImageIndex index = gl::ImageIndex::Make3D(level); // Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer if (isFastUnpackable(unpack, getInternalFormat(level))) { RenderTarget *destRenderTarget = NULL; gl::Error error = getRenderTarget(index, &destRenderTarget); if (error.isError()) { return error; } gl::Box destArea(xoffset, yoffset, zoffset, width, height, depth); error = fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, destRenderTarget); if (error.isError()) { return error; } // Ensure we don't overwrite our newly initialized data mImageArray[level]->markClean(); fastUnpacked = true; } if (!fastUnpacked) { return TextureD3D::subImage(xoffset, yoffset, zoffset, width, height, depth, format, type, unpack, pixels, index); } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_3D); gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, depth, format, imageSize, unpack, pixels, mImageArray[level]); if (error.isError()) { return error; } gl::ImageIndex index = gl::ImageIndex::Make3D(level); gl::Box region(xoffset, yoffset, zoffset, width, height, depth); return commitRegion(index, region); } gl::Error TextureD3D_3D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { UNIMPLEMENTED(); return gl::Error(GL_INVALID_OPERATION, "Copying 3D textures is unimplemented."); } gl::Error TextureD3D_3D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_3D); gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::Make3D(level); if (canCreateRenderTargetForImage(index)) { gl::Error error = mImageArray[level]->copy(xoffset, yoffset, zoffset, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } if (isValidLevel(level)) { error = updateStorageLevel(level); if (error.isError()) { return error; } error = mRenderer->copyImage3D(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format, xoffset, yoffset, zoffset, mTexStorage, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_3D); for (int level = 0; level < levels; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); GLsizei levelDepth = std::max(1, depth >> level); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, internalformat, levelWidth, levelHeight, levelDepth, true); } for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, GL_NONE, 0, 0, 0, true); } // TODO(geofflang): Verify storage creation had no errors bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage3D(internalformat, renderTarget, width, height, depth, levels); gl::Error error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } mImmutable = true; return gl::Error(GL_NO_ERROR); } void TextureD3D_3D::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_3D::releaseTexImage() { UNREACHABLE(); } void TextureD3D_3D::initMipmapsImages() { // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, getBaseLevelInternalFormat(), std::max(getBaseLevelWidth() >> level, 1), std::max(getBaseLevelHeight() >> level, 1), std::max(getBaseLevelDepth() >> level, 1)); } } unsigned int TextureD3D_3D::getRenderTargetSerial(const gl::ImageIndex &index) { return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0); } gl::Error TextureD3D_3D::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT) { // ensure the underlying texture is created gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } if (index.hasLayer()) { error = updateStorage(); if (error.isError()) { return error; } } else { error = updateStorageLevel(index.mipIndex); if (error.isError()) { return error; } } return mTexStorage->getRenderTarget(index, outRT); } gl::Error TextureD3D_3D::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return gl::Error(GL_NO_ERROR); } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return gl::Error(GL_NO_ERROR); } bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); TextureStorage *storage = NULL; gl::Error error = createCompleteStorage(createRenderTarget, &storage); if (error.isError()) { return error; } error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } ASSERT(mTexStorage); // flush image data to the storage error = updateStorage(); if (error.isError()) { return error; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::createCompleteStorage(bool renderTarget, TextureStorage **outStorage) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getBaseLevelDepth(); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0 && depth > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, depth)); // TODO: Verify creation of the storage succeeded *outStorage = mRenderer->createTextureStorage3D(internalFormat, renderTarget, width, height, depth, levels); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; // We do not support managed 3D storage, as that is D3D9/ES2-only ASSERT(!mTexStorage->isManaged()); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_3D::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (mImageArray[level]->isDirty() && isLevelComplete(level)) { gl::Error error = updateStorageLevel(level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } bool TextureD3D_3D::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_3D::isLevelComplete(int level) const { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL); if (isImmutable()) { return true; } GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getBaseLevelDepth(); if (width <= 0 || height <= 0 || depth <= 0) { return false; } if (level == 0) { return true; } ImageD3D *levelImage = mImageArray[level]; if (levelImage->getInternalFormat() != getBaseLevelInternalFormat()) { return false; } if (levelImage->getWidth() != std::max(1, width >> level)) { return false; } if (levelImage->getHeight() != std::max(1, height >> level)) { return false; } if (levelImage->getDepth() != std::max(1, depth >> level)) { return false; } return true; } bool TextureD3D_3D::isImageComplete(const gl::ImageIndex &index) const { return isLevelComplete(index.mipIndex); } gl::Error TextureD3D_3D::updateStorageLevel(int level) { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL); ASSERT(isLevelComplete(level)); if (mImageArray[level]->isDirty()) { gl::ImageIndex index = gl::ImageIndex::Make3D(level); gl::Box region(0, 0, 0, getWidth(level), getHeight(level), getDepth(level)); gl::Error error = commitRegion(index, region); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } void TextureD3D_3D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const int storageDepth = std::max(1, getBaseLevelDepth() >> level); const GLenum storageFormat = getBaseLevelInternalFormat(); mImageArray[level]->redefine(mRenderer, GL_TEXTURE_3D, internalformat, width, height, depth, false); if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || depth != storageDepth || internalformat != storageFormat) // Discard mismatched storage { for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { mImageArray[i]->markDirty(); } SafeDelete(mTexStorage); mDirtyImages = true; } } } gl::ImageIndexIterator TextureD3D_3D::imageIterator() const { return gl::ImageIndexIterator::Make3D(0, mTexStorage->getLevelCount(), gl::ImageIndex::ENTIRE_LEVEL, gl::ImageIndex::ENTIRE_LEVEL); } gl::ImageIndex TextureD3D_3D::getImageIndex(GLint mip, GLint /*layer*/) const { // The "layer" here does not apply to 3D images. We use one Image per mip. return gl::ImageIndex::Make3D(mip); } bool TextureD3D_3D::isValidIndex(const gl::ImageIndex &index) const { return (mTexStorage && index.type == GL_TEXTURE_3D && index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount()); } TextureD3D_2DArray::TextureD3D_2DArray(RendererD3D *renderer) : TextureD3D(renderer) { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level) { mLayerCounts[level] = 0; mImageArray[level] = NULL; } } TextureD3D_2DArray::~TextureD3D_2DArray() { // Delete the Images before the TextureStorage. // Images might be relying on the TextureStorage for some of their data. // If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images. deleteImages(); SafeDelete(mTexStorage); } Image *TextureD3D_2DArray::getImage(int level, int layer) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(layer < mLayerCounts[level]); return mImageArray[level][layer]; } Image *TextureD3D_2DArray::getImage(const gl::ImageIndex &index) const { ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); ASSERT(index.layerIndex < mLayerCounts[index.mipIndex]); ASSERT(index.type == GL_TEXTURE_2D_ARRAY); return mImageArray[index.mipIndex][index.layerIndex]; } GLsizei TextureD3D_2DArray::getLayerCount(int level) const { ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS); return mLayerCounts[level]; } GLsizei TextureD3D_2DArray::getWidth(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getWidth() : 0; } GLsizei TextureD3D_2DArray::getHeight(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getHeight() : 0; } GLenum TextureD3D_2DArray::getInternalFormat(GLint level) const { return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getInternalFormat() : GL_NONE; } bool TextureD3D_2DArray::isDepth(GLint level) const { return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0; } gl::Error TextureD3D_2DArray::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth, GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type); redefineImage(level, sizedInternalFormat, width, height, depth); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(sizedInternalFormat); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment); for (int i = 0; i < depth; i++) { const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, i); gl::Error error = TextureD3D::setImage(unpack, type, layerPixels, index); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::setCompressedImage(GLenum target, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); // compressed formats don't have separate sized internal formats-- we can just use the compressed format directly redefineImage(level, format, width, height, depth); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1); for (int i = 0; i < depth; i++) { const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; gl::Error error = TextureD3D::setCompressedImage(unpack, imageSize, layerPixels, mImageArray[level][i]); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(getInternalFormat(level)); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment); for (int i = 0; i < depth; i++) { int layer = zoffset + i; const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer); gl::Error error = TextureD3D::subImage(xoffset, yoffset, zoffset, width, height, 1, format, type, unpack, layerPixels, index); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels) { ASSERT(target == GL_TEXTURE_2D_ARRAY); const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format); GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1); for (int i = 0; i < depth; i++) { int layer = zoffset + i; const void *layerPixels = pixels ? (reinterpret_cast(pixels) + (inputDepthPitch * i)) : NULL; gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, 1, format, imageSize, unpack, layerPixels, mImageArray[level][layer]); if (error.isError()) { return error; } gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer); gl::Box region(xoffset, yoffset, 0, width, height, 1); error = commitRegion(index, region); if (error.isError()) { return error; } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { UNIMPLEMENTED(); return gl::Error(GL_INVALID_OPERATION, "Copying 2D array textures is unimplemented."); } gl::Error TextureD3D_2DArray::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source) { ASSERT(target == GL_TEXTURE_2D_ARRAY); gl::Rectangle sourceRect(x, y, width, height); gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, zoffset); if (canCreateRenderTargetForImage(index)) { gl::Error error = mImageArray[level][zoffset]->copy(xoffset, yoffset, 0, sourceRect, source); if (error.isError()) { return error; } mDirtyImages = true; } else { gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } if (isValidLevel(level)) { error = updateStorageLevel(level); if (error.isError()) { return error; } error = mRenderer->copyImage2DArray(source, sourceRect, gl::GetInternalFormatInfo(getInternalFormat(0)).format, xoffset, yoffset, zoffset, mTexStorage, level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { ASSERT(target == GL_TEXTURE_2D_ARRAY); deleteImages(); for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { GLsizei levelWidth = std::max(1, width >> level); GLsizei levelHeight = std::max(1, height >> level); mLayerCounts[level] = (level < levels ? depth : 0); if (mLayerCounts[level] > 0) { // Create new images for this level mImageArray[level] = new ImageD3D*[mLayerCounts[level]]; for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage()); mImageArray[level][layer]->redefine(mRenderer, GL_TEXTURE_2D_ARRAY, internalformat, levelWidth, levelHeight, 1, true); } } } // TODO(geofflang): Verify storage creation had no errors bool renderTarget = IsRenderTargetUsage(mUsage); TextureStorage *storage = mRenderer->createTextureStorage2DArray(internalformat, renderTarget, width, height, depth, levels); gl::Error error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } mImmutable = true; return gl::Error(GL_NO_ERROR); } void TextureD3D_2DArray::bindTexImage(egl::Surface *surface) { UNREACHABLE(); } void TextureD3D_2DArray::releaseTexImage() { UNREACHABLE(); } void TextureD3D_2DArray::initMipmapsImages() { int baseWidth = getBaseLevelWidth(); int baseHeight = getBaseLevelHeight(); int baseDepth = getBaseLevelDepth(); GLenum baseFormat = getBaseLevelInternalFormat(); // Purge array levels 1 through q and reset them to represent the generated mipmap levels. int levelCount = mipLevels(); for (int level = 1; level < levelCount; level++) { redefineImage(level, baseFormat, std::max(baseWidth >> level, 1), std::max(baseHeight >> level, 1), baseDepth); } } unsigned int TextureD3D_2DArray::getRenderTargetSerial(const gl::ImageIndex &index) { return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0); } gl::Error TextureD3D_2DArray::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT) { // ensure the underlying texture is created gl::Error error = ensureRenderTarget(); if (error.isError()) { return error; } error = updateStorageLevel(index.mipIndex); if (error.isError()) { return error; } return mTexStorage->getRenderTarget(index, outRT); } gl::Error TextureD3D_2DArray::initializeStorage(bool renderTarget) { // Only initialize the first time this texture is used as a render target or shader resource if (mTexStorage) { return gl::Error(GL_NO_ERROR); } // do not attempt to create storage for nonexistant data if (!isLevelComplete(0)) { return gl::Error(GL_NO_ERROR); } bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE); TextureStorage *storage = NULL; gl::Error error = createCompleteStorage(createRenderTarget, &storage); if (error.isError()) { return error; } error = setCompleteTexStorage(storage); if (error.isError()) { SafeDelete(storage); return error; } ASSERT(mTexStorage); // flush image data to the storage error = updateStorage(); if (error.isError()) { return error; } return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::createCompleteStorage(bool renderTarget, TextureStorage **outStorage) const { GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei depth = getLayerCount(0); GLenum internalFormat = getBaseLevelInternalFormat(); ASSERT(width > 0 && height > 0 && depth > 0); // use existing storage level count, when previously specified by TexStorage*D GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1)); // TODO(geofflang): Verify storage creation succeeds *outStorage = mRenderer->createTextureStorage2DArray(internalFormat, renderTarget, width, height, depth, levels); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::setCompleteTexStorage(TextureStorage *newCompleteTexStorage) { SafeDelete(mTexStorage); mTexStorage = newCompleteTexStorage; mDirtyImages = true; // We do not support managed 2D array storage, as managed storage is ES2/D3D9 only ASSERT(!mTexStorage->isManaged()); return gl::Error(GL_NO_ERROR); } gl::Error TextureD3D_2DArray::updateStorage() { ASSERT(mTexStorage != NULL); GLint storageLevels = mTexStorage->getLevelCount(); for (int level = 0; level < storageLevels; level++) { if (isLevelComplete(level)) { gl::Error error = updateStorageLevel(level); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } bool TextureD3D_2DArray::isValidLevel(int level) const { return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0); } bool TextureD3D_2DArray::isLevelComplete(int level) const { ASSERT(level >= 0 && level < (int)ArraySize(mImageArray)); if (isImmutable()) { return true; } GLsizei width = getBaseLevelWidth(); GLsizei height = getBaseLevelHeight(); GLsizei layers = getLayerCount(0); if (width <= 0 || height <= 0 || layers <= 0) { return false; } if (level == 0) { return true; } if (getInternalFormat(level) != getInternalFormat(0)) { return false; } if (getWidth(level) != std::max(1, width >> level)) { return false; } if (getHeight(level) != std::max(1, height >> level)) { return false; } if (getLayerCount(level) != layers) { return false; } return true; } bool TextureD3D_2DArray::isImageComplete(const gl::ImageIndex &index) const { return isLevelComplete(index.mipIndex); } gl::Error TextureD3D_2DArray::updateStorageLevel(int level) { ASSERT(level >= 0 && level < (int)ArraySize(mLayerCounts)); ASSERT(isLevelComplete(level)); for (int layer = 0; layer < mLayerCounts[level]; layer++) { ASSERT(mImageArray[level] != NULL && mImageArray[level][layer] != NULL); if (mImageArray[level][layer]->isDirty()) { gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer); gl::Box region(0, 0, 0, getWidth(level), getHeight(level), 1); gl::Error error = commitRegion(index, region); if (error.isError()) { return error; } } } return gl::Error(GL_NO_ERROR); } void TextureD3D_2DArray::deleteImages() { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level) { for (int layer = 0; layer < mLayerCounts[level]; ++layer) { delete mImageArray[level][layer]; } delete[] mImageArray[level]; mImageArray[level] = NULL; mLayerCounts[level] = 0; } } void TextureD3D_2DArray::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { // If there currently is a corresponding storage texture image, it has these parameters const int storageWidth = std::max(1, getBaseLevelWidth() >> level); const int storageHeight = std::max(1, getBaseLevelHeight() >> level); const int storageDepth = getLayerCount(0); const GLenum storageFormat = getBaseLevelInternalFormat(); for (int layer = 0; layer < mLayerCounts[level]; layer++) { delete mImageArray[level][layer]; } delete[] mImageArray[level]; mImageArray[level] = NULL; mLayerCounts[level] = depth; if (depth > 0) { mImageArray[level] = new ImageD3D*[depth](); for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage()); mImageArray[level][layer]->redefine(mRenderer, GL_TEXTURE_2D_ARRAY, internalformat, width, height, 1, false); } } if (mTexStorage) { const int storageLevels = mTexStorage->getLevelCount(); if ((level >= storageLevels && storageLevels != 0) || width != storageWidth || height != storageHeight || depth != storageDepth || internalformat != storageFormat) // Discard mismatched storage { for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { for (int layer = 0; layer < mLayerCounts[level]; layer++) { mImageArray[level][layer]->markDirty(); } } delete mTexStorage; mTexStorage = NULL; mDirtyImages = true; } } } gl::ImageIndexIterator TextureD3D_2DArray::imageIterator() const { return gl::ImageIndexIterator::Make2DArray(0, mTexStorage->getLevelCount(), mLayerCounts); } gl::ImageIndex TextureD3D_2DArray::getImageIndex(GLint mip, GLint layer) const { return gl::ImageIndex::Make2DArray(mip, layer); } bool TextureD3D_2DArray::isValidIndex(const gl::ImageIndex &index) const { // Check for having a storage and the right type of index if (!mTexStorage || index.type != GL_TEXTURE_2D_ARRAY) { return false; } // Check the mip index if (index.mipIndex < 0 || index.mipIndex >= mTexStorage->getLevelCount()) { return false; } // Check the layer index return (!index.hasLayer() || (index.layerIndex >= 0 && index.layerIndex < mLayerCounts[index.mipIndex])); } }