#include "precompiled.h" // // Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Renderer9.cpp: Implements a back-end specific class for the D3D9 renderer. #include "common/utilities.h" #include "libGLESv2/main.h" #include "libGLESv2/Buffer.h" #include "libGLESv2/Texture.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/FramebufferAttachment.h" #include "libGLESv2/Renderbuffer.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/renderer/d3d/IndexDataManager.h" #include "libGLESv2/renderer/d3d/TextureD3D.h" #include "libGLESv2/renderer/d3d/d3d9/Renderer9.h" #include "libGLESv2/renderer/d3d/d3d9/renderer9_utils.h" #include "libGLESv2/renderer/d3d/d3d9/formatutils9.h" #include "libGLESv2/renderer/d3d/d3d9/ShaderExecutable9.h" #include "libGLESv2/renderer/d3d/d3d9/SwapChain9.h" #include "libGLESv2/renderer/d3d/d3d9/TextureStorage9.h" #include "libGLESv2/renderer/d3d/d3d9/Image9.h" #include "libGLESv2/renderer/d3d/d3d9/Blit9.h" #include "libGLESv2/renderer/d3d/d3d9/RenderTarget9.h" #include "libGLESv2/renderer/d3d/d3d9/VertexBuffer9.h" #include "libGLESv2/renderer/d3d/d3d9/IndexBuffer9.h" #include "libGLESv2/renderer/d3d/d3d9/Buffer9.h" #include "libGLESv2/renderer/d3d/d3d9/Query9.h" #include "libGLESv2/renderer/d3d/d3d9/Fence9.h" #include "libGLESv2/renderer/d3d/d3d9/VertexArray9.h" #include "libGLESv2/angletypes.h" #include "libEGL/Display.h" #include "third_party/trace_event/trace_event.h" // Can also be enabled by defining FORCE_REF_RAST in the project's predefined macros #define REF_RAST 0 // The "Debug This Pixel..." feature in PIX often fails when using the // D3D9Ex interfaces. In order to get debug pixel to work on a Vista/Win 7 // machine, define "ANGLE_ENABLE_D3D9EX=0" in your project file. #if !defined(ANGLE_ENABLE_D3D9EX) // Enables use of the IDirect3D9Ex interface, when available #define ANGLE_ENABLE_D3D9EX 1 #endif // !defined(ANGLE_ENABLE_D3D9EX) #if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) #define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 #endif const D3DFORMAT D3DFMT_INTZ = ((D3DFORMAT)(MAKEFOURCC('I','N','T','Z'))); const D3DFORMAT D3DFMT_NULL = ((D3DFORMAT)(MAKEFOURCC('N','U','L','L'))); namespace rx { static const D3DFORMAT RenderTargetFormats[] = { D3DFMT_A1R5G5B5, // D3DFMT_A2R10G10B10, // The color_ramp conformance test uses ReadPixels with UNSIGNED_BYTE causing it to think that rendering skipped a colour value. D3DFMT_A8R8G8B8, D3DFMT_R5G6B5, // D3DFMT_X1R5G5B5, // Has no compatible OpenGL ES renderbuffer format D3DFMT_X8R8G8B8 }; static const D3DFORMAT DepthStencilFormats[] = { D3DFMT_UNKNOWN, // D3DFMT_D16_LOCKABLE, D3DFMT_D32, // D3DFMT_D15S1, D3DFMT_D24S8, D3DFMT_D24X8, // D3DFMT_D24X4S4, D3DFMT_D16, // D3DFMT_D32F_LOCKABLE, // D3DFMT_D24FS8 }; enum { MAX_VERTEX_CONSTANT_VECTORS_D3D9 = 256, MAX_PIXEL_CONSTANT_VECTORS_SM2 = 32, MAX_PIXEL_CONSTANT_VECTORS_SM3 = 224, MAX_VARYING_VECTORS_SM2 = 8, MAX_VARYING_VECTORS_SM3 = 10, MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 = 4 }; Renderer9::Renderer9(egl::Display *display, EGLNativeDisplayType hDc, EGLint requestedDisplay) : Renderer(display), mDc(hDc) { mD3d9Module = NULL; mD3d9 = NULL; mD3d9Ex = NULL; mDevice = NULL; mDeviceEx = NULL; mDeviceWindow = NULL; mBlit = NULL; mAdapter = D3DADAPTER_DEFAULT; #if REF_RAST == 1 || defined(FORCE_REF_RAST) mDeviceType = D3DDEVTYPE_REF; #else mDeviceType = D3DDEVTYPE_HAL; #endif mDeviceLost = false; mMaxSupportedSamples = 0; mMaskedClearSavedState = NULL; mVertexDataManager = NULL; mIndexDataManager = NULL; mLineLoopIB = NULL; mMaxNullColorbufferLRU = 0; for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { mNullColorbufferCache[i].lruCount = 0; mNullColorbufferCache[i].width = 0; mNullColorbufferCache[i].height = 0; mNullColorbufferCache[i].buffer = NULL; } mAppliedVertexShader = NULL; mAppliedPixelShader = NULL; mAppliedProgramSerial = 0; } Renderer9::~Renderer9() { if (mDevice) { // If the device is lost, reset it first to prevent leaving the driver in an unstable state if (testDeviceLost(false)) { resetDevice(); } } release(); } void Renderer9::release() { releaseDeviceResources(); SafeRelease(mDevice); SafeRelease(mDeviceEx); SafeRelease(mD3d9); SafeRelease(mD3d9Ex); mCompiler.release(); if (mDeviceWindow) { DestroyWindow(mDeviceWindow); mDeviceWindow = NULL; } mD3d9Module = NULL; } Renderer9 *Renderer9::makeRenderer9(Renderer *renderer) { ASSERT(HAS_DYNAMIC_TYPE(rx::Renderer9*, renderer)); return static_cast(renderer); } EGLint Renderer9::initialize() { if (!mCompiler.initialize()) { return EGL_NOT_INITIALIZED; } TRACE_EVENT0("gpu", "GetModuleHandle_d3d9"); mD3d9Module = GetModuleHandle(TEXT("d3d9.dll")); if (mD3d9Module == NULL) { ERR("No D3D9 module found - aborting!\n"); return EGL_NOT_INITIALIZED; } typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex**); Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex")); // Use Direct3D9Ex if available. Among other things, this version is less // inclined to report a lost context, for example when the user switches // desktop. Direct3D9Ex is available in Windows Vista and later if suitable drivers are available. if (ANGLE_ENABLE_D3D9EX && Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &mD3d9Ex))) { TRACE_EVENT0("gpu", "D3d9Ex_QueryInterface"); ASSERT(mD3d9Ex); mD3d9Ex->QueryInterface(IID_IDirect3D9, reinterpret_cast(&mD3d9)); ASSERT(mD3d9); } else { TRACE_EVENT0("gpu", "Direct3DCreate9"); mD3d9 = Direct3DCreate9(D3D_SDK_VERSION); } if (!mD3d9) { ERR("Could not create D3D9 device - aborting!\n"); return EGL_NOT_INITIALIZED; } if (mDc != NULL) { // UNIMPLEMENTED(); // FIXME: Determine which adapter index the device context corresponds to } HRESULT result; // Give up on getting device caps after about one second. { TRACE_EVENT0("gpu", "GetDeviceCaps"); for (int i = 0; i < 10; ++i) { result = mD3d9->GetDeviceCaps(mAdapter, mDeviceType, &mDeviceCaps); if (SUCCEEDED(result)) { break; } else if (result == D3DERR_NOTAVAILABLE) { Sleep(100); // Give the driver some time to initialize/recover } else if (FAILED(result)) // D3DERR_OUTOFVIDEOMEMORY, E_OUTOFMEMORY, D3DERR_INVALIDDEVICE, or another error we can't recover from { ERR("failed to get device caps (0x%x)\n", result); return EGL_NOT_INITIALIZED; } } } if (mDeviceCaps.PixelShaderVersion < D3DPS_VERSION(2, 0)) { ERR("Renderer does not support PS 2.0. aborting!\n"); return EGL_NOT_INITIALIZED; } // When DirectX9 is running with an older DirectX8 driver, a StretchRect from a regular texture to a render target texture is not supported. // This is required by Texture2D::ensureRenderTarget. if ((mDeviceCaps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) == 0) { ERR("Renderer does not support stretctrect from textures!\n"); return EGL_NOT_INITIALIZED; } { TRACE_EVENT0("gpu", "GetAdapterIdentifier"); mD3d9->GetAdapterIdentifier(mAdapter, 0, &mAdapterIdentifier); } mMinSwapInterval = 4; mMaxSwapInterval = 0; if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE) { mMinSwapInterval = std::min(mMinSwapInterval, 0); mMaxSwapInterval = std::max(mMaxSwapInterval, 0); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_ONE) { mMinSwapInterval = std::min(mMinSwapInterval, 1); mMaxSwapInterval = std::max(mMaxSwapInterval, 1); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_TWO) { mMinSwapInterval = std::min(mMinSwapInterval, 2); mMaxSwapInterval = std::max(mMaxSwapInterval, 2); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_THREE) { mMinSwapInterval = std::min(mMinSwapInterval, 3); mMaxSwapInterval = std::max(mMaxSwapInterval, 3); } if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_FOUR) { mMinSwapInterval = std::min(mMinSwapInterval, 4); mMaxSwapInterval = std::max(mMaxSwapInterval, 4); } mMaxSupportedSamples = 0; const d3d9::D3DFormatSet &d3d9Formats = d3d9::GetAllUsedD3DFormats(); for (d3d9::D3DFormatSet::const_iterator i = d3d9Formats.begin(); i != d3d9Formats.end(); ++i) { TRACE_EVENT0("gpu", "getMultiSampleSupport"); MultisampleSupportInfo support = getMultiSampleSupport(*i); mMultiSampleSupport[*i] = support; mMaxSupportedSamples = std::max(mMaxSupportedSamples, support.maxSupportedSamples); } static const TCHAR windowName[] = TEXT("AngleHiddenWindow"); static const TCHAR className[] = TEXT("STATIC"); { TRACE_EVENT0("gpu", "CreateWindowEx"); mDeviceWindow = CreateWindowEx(WS_EX_NOACTIVATE, className, windowName, WS_DISABLED | WS_POPUP, 0, 0, 1, 1, HWND_MESSAGE, NULL, GetModuleHandle(NULL), NULL); } D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters(); DWORD behaviorFlags = D3DCREATE_FPU_PRESERVE | D3DCREATE_NOWINDOWCHANGES; static wchar_t *qt_d3dcreate_multihreaded_var = _wgetenv(L"QT_D3DCREATE_MULTITHREADED"); if (qt_d3dcreate_multihreaded_var && wcsstr(qt_d3dcreate_multihreaded_var, L"1")) behaviorFlags |= D3DCREATE_MULTITHREADED; { TRACE_EVENT0("gpu", "D3d9_CreateDevice"); result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, &presentParameters, &mDevice); } if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_DEVICELOST) { return EGL_BAD_ALLOC; } if (FAILED(result)) { TRACE_EVENT0("gpu", "D3d9_CreateDevice2"); result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &presentParameters, &mDevice); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_NOTAVAILABLE || result == D3DERR_DEVICELOST); return EGL_BAD_ALLOC; } } if (mD3d9Ex) { TRACE_EVENT0("gpu", "mDevice_QueryInterface"); result = mDevice->QueryInterface(IID_IDirect3DDevice9Ex, (void**)&mDeviceEx); ASSERT(SUCCEEDED(result)); } { TRACE_EVENT0("gpu", "ShaderCache initialize"); mVertexShaderCache.initialize(mDevice); mPixelShaderCache.initialize(mDevice); } D3DDISPLAYMODE currentDisplayMode; mD3d9->GetAdapterDisplayMode(mAdapter, ¤tDisplayMode); // Check vertex texture support // Only Direct3D 10 ready devices support all the necessary vertex texture formats. // We test this using D3D9 by checking support for the R16F format. mVertexTextureSupport = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0) && SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_VERTEXTEXTURE, D3DRTYPE_TEXTURE, D3DFMT_R16F)); initializeDevice(); d3d9::InitializeVertexTranslations(this); return EGL_SUCCESS; } // do any one-time device initialization // NOTE: this is also needed after a device lost/reset // to reset the scene status and ensure the default states are reset. void Renderer9::initializeDevice() { // Permanent non-default states mDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE); mDevice->SetRenderState(D3DRS_LASTPIXEL, FALSE); if (mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0)) { mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, (DWORD&)mDeviceCaps.MaxPointSize); } else { mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, 0x3F800000); // 1.0f } markAllStateDirty(); mSceneStarted = false; ASSERT(!mBlit && !mVertexDataManager && !mIndexDataManager); mBlit = new Blit9(this); mVertexDataManager = new rx::VertexDataManager(this); mIndexDataManager = new rx::IndexDataManager(this); } D3DPRESENT_PARAMETERS Renderer9::getDefaultPresentParameters() { D3DPRESENT_PARAMETERS presentParameters = {0}; // The default swap chain is never actually used. Surface will create a new swap chain with the proper parameters. presentParameters.AutoDepthStencilFormat = D3DFMT_UNKNOWN; presentParameters.BackBufferCount = 1; presentParameters.BackBufferFormat = D3DFMT_UNKNOWN; presentParameters.BackBufferWidth = 1; presentParameters.BackBufferHeight = 1; presentParameters.EnableAutoDepthStencil = FALSE; presentParameters.Flags = 0; presentParameters.hDeviceWindow = mDeviceWindow; presentParameters.MultiSampleQuality = 0; presentParameters.MultiSampleType = D3DMULTISAMPLE_NONE; presentParameters.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT; presentParameters.SwapEffect = D3DSWAPEFFECT_DISCARD; presentParameters.Windowed = TRUE; return presentParameters; } int Renderer9::generateConfigs(ConfigDesc **configDescList) { D3DDISPLAYMODE currentDisplayMode; mD3d9->GetAdapterDisplayMode(mAdapter, ¤tDisplayMode); unsigned int numRenderFormats = ArraySize(RenderTargetFormats); unsigned int numDepthFormats = ArraySize(DepthStencilFormats); (*configDescList) = new ConfigDesc[numRenderFormats * numDepthFormats]; int numConfigs = 0; for (unsigned int formatIndex = 0; formatIndex < numRenderFormats; formatIndex++) { D3DFORMAT renderTargetFormat = RenderTargetFormats[formatIndex]; HRESULT result = mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, renderTargetFormat); if (SUCCEEDED(result)) { for (unsigned int depthStencilIndex = 0; depthStencilIndex < numDepthFormats; depthStencilIndex++) { D3DFORMAT depthStencilFormat = DepthStencilFormats[depthStencilIndex]; HRESULT result = D3D_OK; if(depthStencilFormat != D3DFMT_UNKNOWN) { result = mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, depthStencilFormat); } if (SUCCEEDED(result)) { if(depthStencilFormat != D3DFMT_UNKNOWN) { result = mD3d9->CheckDepthStencilMatch(mAdapter, mDeviceType, currentDisplayMode.Format, renderTargetFormat, depthStencilFormat); } if (SUCCEEDED(result)) { ConfigDesc newConfig; newConfig.renderTargetFormat = d3d9_gl::GetInternalFormat(renderTargetFormat); newConfig.depthStencilFormat = d3d9_gl::GetInternalFormat(depthStencilFormat); newConfig.multiSample = 0; // FIXME: enumerate multi-sampling newConfig.fastConfig = (currentDisplayMode.Format == renderTargetFormat); newConfig.es3Capable = false; (*configDescList)[numConfigs++] = newConfig; } } } } } return numConfigs; } void Renderer9::deleteConfigs(ConfigDesc *configDescList) { delete [] (configDescList); } void Renderer9::startScene() { if (!mSceneStarted) { long result = mDevice->BeginScene(); if (SUCCEEDED(result)) { // This is defensive checking against the device being // lost at unexpected times. mSceneStarted = true; } } } void Renderer9::endScene() { if (mSceneStarted) { // EndScene can fail if the device was lost, for example due // to a TDR during a draw call. mDevice->EndScene(); mSceneStarted = false; } } void Renderer9::sync(bool block) { HRESULT result; IDirect3DQuery9* query = allocateEventQuery(); if (!query) { return; } result = query->Issue(D3DISSUE_END); ASSERT(SUCCEEDED(result)); do { result = query->GetData(NULL, 0, D3DGETDATA_FLUSH); if(block && result == S_FALSE) { // Keep polling, but allow other threads to do something useful first Sleep(0); // explicitly check for device loss // some drivers seem to return S_FALSE even if the device is lost // instead of D3DERR_DEVICELOST like they should if (testDeviceLost(false)) { result = D3DERR_DEVICELOST; } } } while(block && result == S_FALSE); freeEventQuery(query); if (d3d9::isDeviceLostError(result)) { notifyDeviceLost(); } } SwapChain *Renderer9::createSwapChain(HWND window, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat) { return new rx::SwapChain9(this, window, shareHandle, backBufferFormat, depthBufferFormat); } IDirect3DQuery9* Renderer9::allocateEventQuery() { IDirect3DQuery9 *query = NULL; if (mEventQueryPool.empty()) { HRESULT result = mDevice->CreateQuery(D3DQUERYTYPE_EVENT, &query); UNUSED_ASSERTION_VARIABLE(result); ASSERT(SUCCEEDED(result)); } else { query = mEventQueryPool.back(); mEventQueryPool.pop_back(); } return query; } void Renderer9::freeEventQuery(IDirect3DQuery9* query) { if (mEventQueryPool.size() > 1000) { SafeRelease(query); } else { mEventQueryPool.push_back(query); } } IDirect3DVertexShader9 *Renderer9::createVertexShader(const DWORD *function, size_t length) { return mVertexShaderCache.create(function, length); } IDirect3DPixelShader9 *Renderer9::createPixelShader(const DWORD *function, size_t length) { return mPixelShaderCache.create(function, length); } HRESULT Renderer9::createVertexBuffer(UINT Length, DWORD Usage, IDirect3DVertexBuffer9 **ppVertexBuffer) { D3DPOOL Pool = getBufferPool(Usage); return mDevice->CreateVertexBuffer(Length, Usage, 0, Pool, ppVertexBuffer, NULL); } VertexBuffer *Renderer9::createVertexBuffer() { return new VertexBuffer9(this); } HRESULT Renderer9::createIndexBuffer(UINT Length, DWORD Usage, D3DFORMAT Format, IDirect3DIndexBuffer9 **ppIndexBuffer) { D3DPOOL Pool = getBufferPool(Usage); return mDevice->CreateIndexBuffer(Length, Usage, Format, Pool, ppIndexBuffer, NULL); } IndexBuffer *Renderer9::createIndexBuffer() { return new IndexBuffer9(this); } BufferImpl *Renderer9::createBuffer() { return new Buffer9(this); } VertexArrayImpl *Renderer9::createVertexArray() { return new VertexArray9(this); } QueryImpl *Renderer9::createQuery(GLenum type) { return new Query9(this, type); } FenceImpl *Renderer9::createFence() { return new Fence9(this); } bool Renderer9::supportsFastCopyBufferToTexture(GLenum internalFormat) const { // Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3. return false; } bool Renderer9::fastCopyBufferToTexture(const gl::PixelUnpackState &unpack, unsigned int offset, RenderTarget *destRenderTarget, GLenum destinationFormat, GLenum sourcePixelsType, const gl::Box &destArea) { // Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3. UNREACHABLE(); return false; } void Renderer9::generateSwizzle(gl::Texture *texture) { // Swizzled textures are not available in ES2 or D3D9 UNREACHABLE(); } void Renderer9::setSamplerState(gl::SamplerType type, int index, const gl::SamplerState &samplerState) { bool *forceSetSamplers = (type == gl::SAMPLER_PIXEL) ? mForceSetPixelSamplerStates : mForceSetVertexSamplerStates; gl::SamplerState *appliedSamplers = (type == gl::SAMPLER_PIXEL) ? mCurPixelSamplerStates: mCurVertexSamplerStates; if (forceSetSamplers[index] || memcmp(&samplerState, &appliedSamplers[index], sizeof(gl::SamplerState)) != 0) { int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0; int d3dSampler = index + d3dSamplerOffset; mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU, gl_d3d9::ConvertTextureWrap(samplerState.wrapS)); mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV, gl_d3d9::ConvertTextureWrap(samplerState.wrapT)); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAGFILTER, gl_d3d9::ConvertMagFilter(samplerState.magFilter, samplerState.maxAnisotropy)); D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter; gl_d3d9::ConvertMinFilter(samplerState.minFilter, &d3dMinFilter, &d3dMipFilter, samplerState.maxAnisotropy); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter); mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, samplerState.baseLevel); if (getRendererExtensions().textureFilterAnisotropic) { mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, (DWORD)samplerState.maxAnisotropy); } } forceSetSamplers[index] = false; appliedSamplers[index] = samplerState; } void Renderer9::setTexture(gl::SamplerType type, int index, gl::Texture *texture) { int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0; int d3dSampler = index + d3dSamplerOffset; IDirect3DBaseTexture9 *d3dTexture = NULL; unsigned int serial = 0; bool forceSetTexture = false; unsigned int *appliedSerials = (type == gl::SAMPLER_PIXEL) ? mCurPixelTextureSerials : mCurVertexTextureSerials; if (texture) { TextureStorageInterface *texStorage = texture->getNativeTexture(); if (texStorage) { TextureStorage9 *storage9 = TextureStorage9::makeTextureStorage9(texStorage->getStorageInstance()); d3dTexture = storage9->getBaseTexture(); } // If we get NULL back from getBaseTexture here, something went wrong // in the texture class and we're unexpectedly missing the d3d texture ASSERT(d3dTexture != NULL); serial = texture->getTextureSerial(); forceSetTexture = texture->hasDirtyImages(); } if (forceSetTexture || appliedSerials[index] != serial) { mDevice->SetTexture(d3dSampler, d3dTexture); } appliedSerials[index] = serial; } bool Renderer9::setUniformBuffers(const gl::Buffer* /*vertexUniformBuffers*/[], const gl::Buffer* /*fragmentUniformBuffers*/[]) { // No effect in ES2/D3D9 return true; } void Renderer9::setRasterizerState(const gl::RasterizerState &rasterState) { bool rasterStateChanged = mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0; if (rasterStateChanged) { // Set the cull mode if (rasterState.cullFace) { mDevice->SetRenderState(D3DRS_CULLMODE, gl_d3d9::ConvertCullMode(rasterState.cullMode, rasterState.frontFace)); } else { mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); } if (rasterState.polygonOffsetFill) { if (mCurDepthSize > 0) { mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *(DWORD*)&rasterState.polygonOffsetFactor); float depthBias = ldexp(rasterState.polygonOffsetUnits, -static_cast(mCurDepthSize)); mDevice->SetRenderState(D3DRS_DEPTHBIAS, *(DWORD*)&depthBias); } } else { mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0); mDevice->SetRenderState(D3DRS_DEPTHBIAS, 0); } mCurRasterState = rasterState; } mForceSetRasterState = false; } void Renderer9::setBlendState(gl::Framebuffer *framebuffer, const gl::BlendState &blendState, const gl::ColorF &blendColor, unsigned int sampleMask) { bool blendStateChanged = mForceSetBlendState || memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0; bool blendColorChanged = mForceSetBlendState || memcmp(&blendColor, &mCurBlendColor, sizeof(gl::ColorF)) != 0; bool sampleMaskChanged = mForceSetBlendState || sampleMask != mCurSampleMask; if (blendStateChanged || blendColorChanged) { if (blendState.blend) { mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA && blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA && blendState.destBlendRGB != GL_CONSTANT_ALPHA && blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA) { mDevice->SetRenderState(D3DRS_BLENDFACTOR, gl_d3d9::ConvertColor(blendColor)); } else { mDevice->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(gl::unorm<8>(blendColor.alpha), gl::unorm<8>(blendColor.alpha), gl::unorm<8>(blendColor.alpha), gl::unorm<8>(blendColor.alpha))); } mDevice->SetRenderState(D3DRS_SRCBLEND, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendRGB)); mDevice->SetRenderState(D3DRS_DESTBLEND, gl_d3d9::ConvertBlendFunc(blendState.destBlendRGB)); mDevice->SetRenderState(D3DRS_BLENDOP, gl_d3d9::ConvertBlendOp(blendState.blendEquationRGB)); if (blendState.sourceBlendRGB != blendState.sourceBlendAlpha || blendState.destBlendRGB != blendState.destBlendAlpha || blendState.blendEquationRGB != blendState.blendEquationAlpha) { mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); mDevice->SetRenderState(D3DRS_SRCBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendAlpha)); mDevice->SetRenderState(D3DRS_DESTBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.destBlendAlpha)); mDevice->SetRenderState(D3DRS_BLENDOPALPHA, gl_d3d9::ConvertBlendOp(blendState.blendEquationAlpha)); } else { mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE); } } else { mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); } if (blendState.sampleAlphaToCoverage) { FIXME("Sample alpha to coverage is unimplemented."); } gl::FramebufferAttachment *attachment = framebuffer->getFirstColorbuffer(); GLenum internalFormat = attachment ? attachment->getInternalFormat() : GL_NONE; // Set the color mask bool zeroColorMaskAllowed = getAdapterVendor() != VENDOR_ID_AMD; // Apparently some ATI cards have a bug where a draw with a zero color // write mask can cause later draws to have incorrect results. Instead, // set a nonzero color write mask but modify the blend state so that no // drawing is done. // http://code.google.com/p/angleproject/issues/detail?id=169 DWORD colorMask = gl_d3d9::ConvertColorMask(gl::GetRedBits(internalFormat) > 0 && blendState.colorMaskRed, gl::GetGreenBits(internalFormat) > 0 && blendState.colorMaskGreen, gl::GetBlueBits(internalFormat) > 0 && blendState.colorMaskBlue, gl::GetAlphaBits(internalFormat) > 0 && blendState.colorMaskAlpha); if (colorMask == 0 && !zeroColorMaskAllowed) { // Enable green channel, but set blending so nothing will be drawn. mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_GREEN); mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); mDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO); mDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); mDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD); } else { mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, colorMask); } mDevice->SetRenderState(D3DRS_DITHERENABLE, blendState.dither ? TRUE : FALSE); mCurBlendState = blendState; mCurBlendColor = blendColor; } if (sampleMaskChanged) { // Set the multisample mask mDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE); mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, static_cast(sampleMask)); mCurSampleMask = sampleMask; } mForceSetBlendState = false; } void Renderer9::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef, int stencilBackRef, bool frontFaceCCW) { bool depthStencilStateChanged = mForceSetDepthStencilState || memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0; bool stencilRefChanged = mForceSetDepthStencilState || stencilRef != mCurStencilRef || stencilBackRef != mCurStencilBackRef; bool frontFaceCCWChanged = mForceSetDepthStencilState || frontFaceCCW != mCurFrontFaceCCW; if (depthStencilStateChanged) { if (depthStencilState.depthTest) { mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE); mDevice->SetRenderState(D3DRS_ZFUNC, gl_d3d9::ConvertComparison(depthStencilState.depthFunc)); } else { mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE); } mCurDepthStencilState = depthStencilState; } if (depthStencilStateChanged || stencilRefChanged || frontFaceCCWChanged) { if (depthStencilState.stencilTest && mCurStencilSize > 0) { mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE); mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE); // FIXME: Unsupported by D3D9 const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF; const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK; const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK; ASSERT(depthStencilState.stencilWritemask == depthStencilState.stencilBackWritemask); ASSERT(stencilRef == stencilBackRef); ASSERT(depthStencilState.stencilMask == depthStencilState.stencilBackMask); // get the maximum size of the stencil ref unsigned int maxStencil = (1 << mCurStencilSize) - 1; mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, depthStencilState.stencilWritemask); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC, gl_d3d9::ConvertComparison(depthStencilState.stencilFunc)); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (stencilRef < (int)maxStencil) ? stencilRef : maxStencil); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, depthStencilState.stencilMask); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL, gl_d3d9::ConvertStencilOp(depthStencilState.stencilFail)); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL, gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthFail)); mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS, gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthPass)); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, depthStencilState.stencilBackWritemask); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC, gl_d3d9::ConvertComparison(depthStencilState.stencilBackFunc)); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (stencilBackRef < (int)maxStencil) ? stencilBackRef : maxStencil); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, depthStencilState.stencilBackMask); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL, gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackFail)); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL, gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthFail)); mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS, gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthPass)); } else { mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); } mDevice->SetRenderState(D3DRS_ZWRITEENABLE, depthStencilState.depthMask ? TRUE : FALSE); mCurStencilRef = stencilRef; mCurStencilBackRef = stencilBackRef; mCurFrontFaceCCW = frontFaceCCW; } mForceSetDepthStencilState = false; } void Renderer9::setScissorRectangle(const gl::Rectangle &scissor, bool enabled) { bool scissorChanged = mForceSetScissor || memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 || enabled != mScissorEnabled; if (scissorChanged) { if (enabled) { RECT rect; rect.left = gl::clamp(scissor.x, 0, static_cast(mRenderTargetDesc.width)); rect.top = gl::clamp(scissor.y, 0, static_cast(mRenderTargetDesc.height)); rect.right = gl::clamp(scissor.x + scissor.width, 0, static_cast(mRenderTargetDesc.width)); rect.bottom = gl::clamp(scissor.y + scissor.height, 0, static_cast(mRenderTargetDesc.height)); mDevice->SetScissorRect(&rect); } mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, enabled ? TRUE : FALSE); mScissorEnabled = enabled; mCurScissor = scissor; } mForceSetScissor = false; } bool Renderer9::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace, bool ignoreViewport) { gl::Rectangle actualViewport = viewport; float actualZNear = gl::clamp01(zNear); float actualZFar = gl::clamp01(zFar); if (ignoreViewport) { actualViewport.x = 0; actualViewport.y = 0; actualViewport.width = mRenderTargetDesc.width; actualViewport.height = mRenderTargetDesc.height; actualZNear = 0.0f; actualZFar = 1.0f; } D3DVIEWPORT9 dxViewport; dxViewport.X = gl::clamp(actualViewport.x, 0, static_cast(mRenderTargetDesc.width)); dxViewport.Y = gl::clamp(actualViewport.y, 0, static_cast(mRenderTargetDesc.height)); dxViewport.Width = gl::clamp(actualViewport.width, 0, static_cast(mRenderTargetDesc.width) - static_cast(dxViewport.X)); dxViewport.Height = gl::clamp(actualViewport.height, 0, static_cast(mRenderTargetDesc.height) - static_cast(dxViewport.Y)); dxViewport.MinZ = actualZNear; dxViewport.MaxZ = actualZFar; if (dxViewport.Width <= 0 || dxViewport.Height <= 0) { return false; // Nothing to render } float depthFront = !gl::IsTriangleMode(drawMode) ? 0.0f : (frontFace == GL_CCW ? 1.0f : -1.0f); bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 || actualZNear != mCurNear || actualZFar != mCurFar || mCurDepthFront != depthFront; if (viewportChanged) { mDevice->SetViewport(&dxViewport); mCurViewport = actualViewport; mCurNear = actualZNear; mCurFar = actualZFar; mCurDepthFront = depthFront; dx_VertexConstants vc = {0}; dx_PixelConstants pc = {0}; vc.viewAdjust[0] = (float)((actualViewport.width - (int)dxViewport.Width) + 2 * (actualViewport.x - (int)dxViewport.X) - 1) / dxViewport.Width; vc.viewAdjust[1] = (float)((actualViewport.height - (int)dxViewport.Height) + 2 * (actualViewport.y - (int)dxViewport.Y) - 1) / dxViewport.Height; vc.viewAdjust[2] = (float)actualViewport.width / dxViewport.Width; vc.viewAdjust[3] = (float)actualViewport.height / dxViewport.Height; pc.viewCoords[0] = actualViewport.width * 0.5f; pc.viewCoords[1] = actualViewport.height * 0.5f; pc.viewCoords[2] = actualViewport.x + (actualViewport.width * 0.5f); pc.viewCoords[3] = actualViewport.y + (actualViewport.height * 0.5f); pc.depthFront[0] = (actualZFar - actualZNear) * 0.5f; pc.depthFront[1] = (actualZNear + actualZFar) * 0.5f; pc.depthFront[2] = depthFront; vc.depthRange[0] = actualZNear; vc.depthRange[1] = actualZFar; vc.depthRange[2] = actualZFar - actualZNear; pc.depthRange[0] = actualZNear; pc.depthRange[1] = actualZFar; pc.depthRange[2] = actualZFar - actualZNear; if (memcmp(&vc, &mVertexConstants, sizeof(dx_VertexConstants)) != 0) { mVertexConstants = vc; mDxUniformsDirty = true; } if (memcmp(&pc, &mPixelConstants, sizeof(dx_PixelConstants)) != 0) { mPixelConstants = pc; mDxUniformsDirty = true; } } mForceSetViewport = false; return true; } bool Renderer9::applyPrimitiveType(GLenum mode, GLsizei count) { switch (mode) { case GL_POINTS: mPrimitiveType = D3DPT_POINTLIST; mPrimitiveCount = count; break; case GL_LINES: mPrimitiveType = D3DPT_LINELIST; mPrimitiveCount = count / 2; break; case GL_LINE_LOOP: mPrimitiveType = D3DPT_LINESTRIP; mPrimitiveCount = count - 1; // D3D doesn't support line loops, so we draw the last line separately break; case GL_LINE_STRIP: mPrimitiveType = D3DPT_LINESTRIP; mPrimitiveCount = count - 1; break; case GL_TRIANGLES: mPrimitiveType = D3DPT_TRIANGLELIST; mPrimitiveCount = count / 3; break; case GL_TRIANGLE_STRIP: mPrimitiveType = D3DPT_TRIANGLESTRIP; mPrimitiveCount = count - 2; break; case GL_TRIANGLE_FAN: mPrimitiveType = D3DPT_TRIANGLEFAN; mPrimitiveCount = count - 2; break; default: UNREACHABLE(); return false; } return mPrimitiveCount > 0; } gl::FramebufferAttachment *Renderer9::getNullColorbuffer(gl::FramebufferAttachment *depthbuffer) { if (!depthbuffer) { ERR("Unexpected null depthbuffer for depth-only FBO."); return NULL; } GLsizei width = depthbuffer->getWidth(); GLsizei height = depthbuffer->getHeight(); // search cached nullcolorbuffers for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { if (mNullColorbufferCache[i].buffer != NULL && mNullColorbufferCache[i].width == width && mNullColorbufferCache[i].height == height) { mNullColorbufferCache[i].lruCount = ++mMaxNullColorbufferLRU; return mNullColorbufferCache[i].buffer; } } gl::Renderbuffer *nullRenderbuffer = new gl::Renderbuffer(0, new gl::Colorbuffer(this, width, height, GL_NONE, 0)); gl::RenderbufferAttachment *nullbuffer = new gl::RenderbufferAttachment(nullRenderbuffer); // add nullbuffer to the cache NullColorbufferCacheEntry *oldest = &mNullColorbufferCache[0]; for (int i = 1; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { if (mNullColorbufferCache[i].lruCount < oldest->lruCount) { oldest = &mNullColorbufferCache[i]; } } delete oldest->buffer; oldest->buffer = nullbuffer; oldest->lruCount = ++mMaxNullColorbufferLRU; oldest->width = width; oldest->height = height; return nullbuffer; } bool Renderer9::applyRenderTarget(gl::Framebuffer *framebuffer) { // if there is no color attachment we must synthesize a NULL colorattachment // to keep the D3D runtime happy. This should only be possible if depth texturing. gl::FramebufferAttachment *attachment = framebuffer->getColorbuffer(0); if (!attachment) { attachment = getNullColorbuffer(framebuffer->getDepthbuffer()); } if (!attachment) { ERR("unable to locate renderbuffer for FBO."); return false; } bool renderTargetChanged = false; unsigned int renderTargetSerial = attachment->getSerial(); if (renderTargetSerial != mAppliedRenderTargetSerial) { // Apply the render target on the device IDirect3DSurface9 *renderTargetSurface = NULL; RenderTarget *renderTarget = attachment->getRenderTarget(); if (renderTarget) { renderTargetSurface = RenderTarget9::makeRenderTarget9(renderTarget)->getSurface(); } if (!renderTargetSurface) { ERR("render target pointer unexpectedly null."); return false; // Context must be lost } mDevice->SetRenderTarget(0, renderTargetSurface); SafeRelease(renderTargetSurface); mAppliedRenderTargetSerial = renderTargetSerial; renderTargetChanged = true; } gl::FramebufferAttachment *depthStencil = framebuffer->getDepthbuffer(); unsigned int depthbufferSerial = 0; unsigned int stencilbufferSerial = 0; if (depthStencil) { depthbufferSerial = depthStencil->getSerial(); } else if (framebuffer->getStencilbuffer()) { depthStencil = framebuffer->getStencilbuffer(); stencilbufferSerial = depthStencil->getSerial(); } if (depthbufferSerial != mAppliedDepthbufferSerial || stencilbufferSerial != mAppliedStencilbufferSerial || !mDepthStencilInitialized) { unsigned int depthSize = 0; unsigned int stencilSize = 0; // Apply the depth stencil on the device if (depthStencil) { IDirect3DSurface9 *depthStencilSurface = NULL; RenderTarget *depthStencilRenderTarget = depthStencil->getDepthStencil(); if (depthStencilRenderTarget) { depthStencilSurface = RenderTarget9::makeRenderTarget9(depthStencilRenderTarget)->getSurface(); } if (!depthStencilSurface) { ERR("depth stencil pointer unexpectedly null."); return false; // Context must be lost } mDevice->SetDepthStencilSurface(depthStencilSurface); SafeRelease(depthStencilSurface); depthSize = depthStencil->getDepthSize(); stencilSize = depthStencil->getStencilSize(); } else { mDevice->SetDepthStencilSurface(NULL); } if (!mDepthStencilInitialized || depthSize != mCurDepthSize) { mCurDepthSize = depthSize; mForceSetRasterState = true; } if (!mDepthStencilInitialized || stencilSize != mCurStencilSize) { mCurStencilSize = stencilSize; mForceSetDepthStencilState = true; } mAppliedDepthbufferSerial = depthbufferSerial; mAppliedStencilbufferSerial = stencilbufferSerial; mDepthStencilInitialized = true; } if (renderTargetChanged || !mRenderTargetDescInitialized) { mForceSetScissor = true; mForceSetViewport = true; mForceSetBlendState = true; mRenderTargetDesc.width = attachment->getWidth(); mRenderTargetDesc.height = attachment->getHeight(); mRenderTargetDesc.format = attachment->getActualFormat(); mRenderTargetDescInitialized = true; } return true; } GLenum Renderer9::applyVertexBuffer(gl::ProgramBinary *programBinary, const gl::VertexAttribute vertexAttributes[], const gl::VertexAttribCurrentValueData currentValues[], GLint first, GLsizei count, GLsizei instances) { TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS]; GLenum err = mVertexDataManager->prepareVertexData(vertexAttributes, currentValues, programBinary, first, count, attributes, instances); if (err != GL_NO_ERROR) { return err; } return mVertexDeclarationCache.applyDeclaration(mDevice, attributes, programBinary, instances, &mRepeatDraw); } // Applies the indices and element array bindings to the Direct3D 9 device GLenum Renderer9::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) { GLenum err = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo); if (err == GL_NO_ERROR) { // Directly binding the storage buffer is not supported for d3d9 ASSERT(indexInfo->storage == NULL); if (indexInfo->serial != mAppliedIBSerial) { IndexBuffer9* indexBuffer = IndexBuffer9::makeIndexBuffer9(indexInfo->indexBuffer); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = indexInfo->serial; } } return err; } void Renderer9::applyTransformFeedbackBuffers(gl::Buffer *transformFeedbackBuffers[], GLintptr offsets[]) { UNREACHABLE(); } void Renderer9::drawArrays(GLenum mode, GLsizei count, GLsizei instances, bool transformFeedbackActive) { ASSERT(!transformFeedbackActive); startScene(); if (mode == GL_LINE_LOOP) { drawLineLoop(count, GL_NONE, NULL, 0, NULL); } else if (instances > 0) { StaticIndexBufferInterface *countingIB = mIndexDataManager->getCountingIndices(count); if (countingIB) { if (mAppliedIBSerial != countingIB->getSerial()) { IndexBuffer9 *indexBuffer = IndexBuffer9::makeIndexBuffer9(countingIB->getIndexBuffer()); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = countingIB->getSerial(); } for (int i = 0; i < mRepeatDraw; i++) { mDevice->DrawIndexedPrimitive(mPrimitiveType, 0, 0, count, 0, mPrimitiveCount); } } else { ERR("Could not create a counting index buffer for glDrawArraysInstanced."); return gl::error(GL_OUT_OF_MEMORY); } } else // Regular case { mDevice->DrawPrimitive(mPrimitiveType, 0, mPrimitiveCount); } } void Renderer9::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo, GLsizei /*instances*/) { startScene(); if (mode == GL_POINTS) { drawIndexedPoints(count, type, indices, indexInfo.minIndex, elementArrayBuffer); } else if (mode == GL_LINE_LOOP) { drawLineLoop(count, type, indices, indexInfo.minIndex, elementArrayBuffer); } else { for (int i = 0; i < mRepeatDraw; i++) { GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; mDevice->DrawIndexedPrimitive(mPrimitiveType, -(INT)indexInfo.minIndex, indexInfo.minIndex, vertexCount, indexInfo.startIndex, mPrimitiveCount); } } } void Renderer9::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer) { // Get the raw indices for an indexed draw if (type != GL_NONE && elementArrayBuffer) { gl::Buffer *indexBuffer = elementArrayBuffer; BufferImpl *storage = indexBuffer->getImplementation(); intptr_t offset = reinterpret_cast(indices); indices = static_cast(storage->getData()) + offset; } unsigned int startIndex = 0; if (getRendererExtensions().elementIndexUint) { if (!mLineLoopIB) { mLineLoopIB = new StreamingIndexBufferInterface(this); if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT)) { delete mLineLoopIB; mLineLoopIB = NULL; ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } } // Checked by Renderer9::applyPrimitiveType ASSERT(count >= 0); if (static_cast(count) + 1 > (std::numeric_limits::max() / sizeof(unsigned int))) { ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP, too many indices required."); return gl::error(GL_OUT_OF_MEMORY); } const unsigned int spaceNeeded = (static_cast(count) + 1) * sizeof(unsigned int); if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT)) { ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } void* mappedMemory = NULL; unsigned int offset = 0; if (!mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset)) { ERR("Could not map index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } startIndex = static_cast(offset) / 4; unsigned int *data = reinterpret_cast(mappedMemory); switch (type) { case GL_NONE: // Non-indexed draw for (int i = 0; i < count; i++) { data[i] = i; } data[count] = 0; break; case GL_UNSIGNED_BYTE: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_SHORT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_INT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; default: UNREACHABLE(); } if (!mLineLoopIB->unmapBuffer()) { ERR("Could not unmap index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } } else { if (!mLineLoopIB) { mLineLoopIB = new StreamingIndexBufferInterface(this); if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_SHORT)) { delete mLineLoopIB; mLineLoopIB = NULL; ERR("Could not create a 16-bit looping index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } } // Checked by Renderer9::applyPrimitiveType ASSERT(count >= 0); if (static_cast(count) + 1 > (std::numeric_limits::max() / sizeof(unsigned short))) { ERR("Could not create a 16-bit looping index buffer for GL_LINE_LOOP, too many indices required."); return gl::error(GL_OUT_OF_MEMORY); } const unsigned int spaceNeeded = (static_cast(count) + 1) * sizeof(unsigned short); if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT)) { ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } void* mappedMemory = NULL; unsigned int offset; if (mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset)) { ERR("Could not map index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } startIndex = static_cast(offset) / 2; unsigned short *data = reinterpret_cast(mappedMemory); switch (type) { case GL_NONE: // Non-indexed draw for (int i = 0; i < count; i++) { data[i] = i; } data[count] = 0; break; case GL_UNSIGNED_BYTE: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_SHORT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; case GL_UNSIGNED_INT: for (int i = 0; i < count; i++) { data[i] = static_cast(indices)[i]; } data[count] = static_cast(indices)[0]; break; default: UNREACHABLE(); } if (!mLineLoopIB->unmapBuffer()) { ERR("Could not unmap index buffer for GL_LINE_LOOP."); return gl::error(GL_OUT_OF_MEMORY); } } if (mAppliedIBSerial != mLineLoopIB->getSerial()) { IndexBuffer9 *indexBuffer = IndexBuffer9::makeIndexBuffer9(mLineLoopIB->getIndexBuffer()); mDevice->SetIndices(indexBuffer->getBuffer()); mAppliedIBSerial = mLineLoopIB->getSerial(); } mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count); } template static void drawPoints(IDirect3DDevice9* device, GLsizei count, const GLvoid *indices, int minIndex) { for (int i = 0; i < count; i++) { unsigned int indexValue = static_cast(static_cast(indices)[i]) - minIndex; device->DrawPrimitive(D3DPT_POINTLIST, indexValue, 1); } } void Renderer9::drawIndexedPoints(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer) { // Drawing index point lists is unsupported in d3d9, fall back to a regular DrawPrimitive call // for each individual point. This call is not expected to happen often. if (elementArrayBuffer) { BufferImpl *storage = elementArrayBuffer->getImplementation(); intptr_t offset = reinterpret_cast(indices); indices = static_cast(storage->getData()) + offset; } switch (type) { case GL_UNSIGNED_BYTE: drawPoints(mDevice, count, indices, minIndex); break; case GL_UNSIGNED_SHORT: drawPoints(mDevice, count, indices, minIndex); break; case GL_UNSIGNED_INT: drawPoints(mDevice, count, indices, minIndex); break; default: UNREACHABLE(); } } void Renderer9::applyShaders(gl::ProgramBinary *programBinary, const gl::VertexFormat inputLayout[], const gl::Framebuffer *framebuffer, bool rasterizerDiscard, bool transformFeedbackActive) { ASSERT(!transformFeedbackActive); ASSERT(!rasterizerDiscard); ShaderExecutable *vertexExe = programBinary->getVertexExecutableForInputLayout(inputLayout); ShaderExecutable *pixelExe = programBinary->getPixelExecutableForFramebuffer(framebuffer); IDirect3DVertexShader9 *vertexShader = (vertexExe ? ShaderExecutable9::makeShaderExecutable9(vertexExe)->getVertexShader() : NULL); IDirect3DPixelShader9 *pixelShader = (pixelExe ? ShaderExecutable9::makeShaderExecutable9(pixelExe)->getPixelShader() : NULL); if (vertexShader != mAppliedVertexShader) { mDevice->SetVertexShader(vertexShader); mAppliedVertexShader = vertexShader; } if (pixelShader != mAppliedPixelShader) { mDevice->SetPixelShader(pixelShader); mAppliedPixelShader = pixelShader; } // D3D9 has a quirk where creating multiple shaders with the same content // can return the same shader pointer. Because GL programs store different data // per-program, checking the program serial guarantees we upload fresh // uniform data even if our shader pointers are the same. // https://code.google.com/p/angleproject/issues/detail?id=661 unsigned int programSerial = programBinary->getSerial(); if (programSerial != mAppliedProgramSerial) { programBinary->dirtyAllUniforms(); mDxUniformsDirty = true; mAppliedProgramSerial = programSerial; } } void Renderer9::applyUniforms(const gl::ProgramBinary &programBinary) { const std::vector &uniformArray = programBinary.getUniforms(); for (size_t uniformIndex = 0; uniformIndex < uniformArray.size(); uniformIndex++) { gl::LinkedUniform *targetUniform = uniformArray[uniformIndex]; if (targetUniform->dirty) { GLfloat *f = (GLfloat*)targetUniform->data; GLint *i = (GLint*)targetUniform->data; switch (targetUniform->type) { case GL_SAMPLER_2D: case GL_SAMPLER_CUBE: break; case GL_BOOL: case GL_BOOL_VEC2: case GL_BOOL_VEC3: case GL_BOOL_VEC4: applyUniformnbv(targetUniform, i); break; case GL_FLOAT: case GL_FLOAT_VEC2: case GL_FLOAT_VEC3: case GL_FLOAT_VEC4: case GL_FLOAT_MAT2: case GL_FLOAT_MAT3: case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; case GL_INT: case GL_INT_VEC2: case GL_INT_VEC3: case GL_INT_VEC4: applyUniformniv(targetUniform, i); break; default: UNREACHABLE(); } } } // Driver uniforms if (mDxUniformsDirty) { mDevice->SetVertexShaderConstantF(0, (float*)&mVertexConstants, sizeof(dx_VertexConstants) / sizeof(float[4])); mDevice->SetPixelShaderConstantF(0, (float*)&mPixelConstants, sizeof(dx_PixelConstants) / sizeof(float[4])); mDxUniformsDirty = false; } } void Renderer9::applyUniformnfv(gl::LinkedUniform *targetUniform, const GLfloat *v) { if (targetUniform->isReferencedByFragmentShader()) { mDevice->SetPixelShaderConstantF(targetUniform->psRegisterIndex, v, targetUniform->registerCount); } if (targetUniform->isReferencedByVertexShader()) { mDevice->SetVertexShaderConstantF(targetUniform->vsRegisterIndex, v, targetUniform->registerCount); } } void Renderer9::applyUniformniv(gl::LinkedUniform *targetUniform, const GLint *v) { ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9); GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4]; for (unsigned int i = 0; i < targetUniform->registerCount; i++) { vector[i][0] = (GLfloat)v[4 * i + 0]; vector[i][1] = (GLfloat)v[4 * i + 1]; vector[i][2] = (GLfloat)v[4 * i + 2]; vector[i][3] = (GLfloat)v[4 * i + 3]; } applyUniformnfv(targetUniform, (GLfloat*)vector); } void Renderer9::applyUniformnbv(gl::LinkedUniform *targetUniform, const GLint *v) { ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9); GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4]; for (unsigned int i = 0; i < targetUniform->registerCount; i++) { vector[i][0] = (v[4 * i + 0] == GL_FALSE) ? 0.0f : 1.0f; vector[i][1] = (v[4 * i + 1] == GL_FALSE) ? 0.0f : 1.0f; vector[i][2] = (v[4 * i + 2] == GL_FALSE) ? 0.0f : 1.0f; vector[i][3] = (v[4 * i + 3] == GL_FALSE) ? 0.0f : 1.0f; } applyUniformnfv(targetUniform, (GLfloat*)vector); } void Renderer9::clear(const gl::ClearParameters &clearParams, gl::Framebuffer *frameBuffer) { if (clearParams.colorClearType != GL_FLOAT) { // Clearing buffers with non-float values is not supported by Renderer9 and ES 2.0 UNREACHABLE(); return; } bool clearColor = clearParams.clearColor[0]; for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { if (clearParams.clearColor[i] != clearColor) { // Clearing individual buffers other than buffer zero is not supported by Renderer9 and ES 2.0 UNREACHABLE(); return; } } float depth = gl::clamp01(clearParams.depthClearValue); DWORD stencil = clearParams.stencilClearValue & 0x000000FF; unsigned int stencilUnmasked = 0x0; if (clearParams.clearStencil && frameBuffer->hasStencil()) { unsigned int stencilSize = gl::GetStencilBits(frameBuffer->getStencilbuffer()->getActualFormat()); stencilUnmasked = (0x1 << stencilSize) - 1; } const bool needMaskedStencilClear = clearParams.clearStencil && (clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked; bool needMaskedColorClear = false; D3DCOLOR color = D3DCOLOR_ARGB(255, 0, 0, 0); if (clearColor) { gl::FramebufferAttachment *attachment = frameBuffer->getFirstColorbuffer(); GLenum internalFormat = attachment->getInternalFormat(); GLenum actualFormat = attachment->getActualFormat(); GLuint internalRedBits = gl::GetRedBits(internalFormat); GLuint internalGreenBits = gl::GetGreenBits(internalFormat); GLuint internalBlueBits = gl::GetBlueBits(internalFormat); GLuint internalAlphaBits = gl::GetAlphaBits(internalFormat); GLuint actualRedBits = gl::GetRedBits(actualFormat); GLuint actualGreenBits = gl::GetGreenBits(actualFormat); GLuint actualBlueBits = gl::GetBlueBits(actualFormat); GLuint actualAlphaBits = gl::GetAlphaBits(actualFormat); color = D3DCOLOR_ARGB(gl::unorm<8>((internalAlphaBits == 0 && actualAlphaBits > 0) ? 1.0f : clearParams.colorFClearValue.alpha), gl::unorm<8>((internalRedBits == 0 && actualRedBits > 0) ? 0.0f : clearParams.colorFClearValue.red), gl::unorm<8>((internalGreenBits == 0 && actualGreenBits > 0) ? 0.0f : clearParams.colorFClearValue.green), gl::unorm<8>((internalBlueBits == 0 && actualBlueBits > 0) ? 0.0f : clearParams.colorFClearValue.blue)); if ((internalRedBits > 0 && !clearParams.colorMaskRed) || (internalGreenBits > 0 && !clearParams.colorMaskGreen) || (internalBlueBits > 0 && !clearParams.colorMaskBlue) || (internalAlphaBits > 0 && !clearParams.colorMaskAlpha)) { needMaskedColorClear = true; } } if (needMaskedColorClear || needMaskedStencilClear) { // State which is altered in all paths from this point to the clear call is saved. // State which is altered in only some paths will be flagged dirty in the case that // that path is taken. HRESULT hr; if (mMaskedClearSavedState == NULL) { hr = mDevice->BeginStateBlock(); ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY); mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_ZENABLE, FALSE); mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE); mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0); mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); mDevice->SetPixelShader(NULL); mDevice->SetVertexShader(NULL); mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE); mDevice->SetStreamSource(0, NULL, 0, 0); mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR); mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR); mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color); mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF); for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { mDevice->SetStreamSourceFreq(i, 1); } hr = mDevice->EndStateBlock(&mMaskedClearSavedState); ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY); } ASSERT(mMaskedClearSavedState != NULL); if (mMaskedClearSavedState != NULL) { hr = mMaskedClearSavedState->Capture(); ASSERT(SUCCEEDED(hr)); } mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_ZENABLE, FALSE); mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE); mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0); if (clearColor) { mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, gl_d3d9::ConvertColorMask(clearParams.colorMaskRed, clearParams.colorMaskGreen, clearParams.colorMaskBlue, clearParams.colorMaskAlpha)); } else { mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); } if (stencilUnmasked != 0x0 && clearParams.clearStencil) { mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE); mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE); mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS); mDevice->SetRenderState(D3DRS_STENCILREF, stencil); mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, clearParams.stencilWriteMask); mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE); mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE); mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE); } else { mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); } mDevice->SetPixelShader(NULL); mDevice->SetVertexShader(NULL); mDevice->SetFVF(D3DFVF_XYZRHW); mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR); mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR); mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color); mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF); for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++) { mDevice->SetStreamSourceFreq(i, 1); } float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges quad[0][0] = -0.5f; quad[0][1] = mRenderTargetDesc.height - 0.5f; quad[0][2] = 0.0f; quad[0][3] = 1.0f; quad[1][0] = mRenderTargetDesc.width - 0.5f; quad[1][1] = mRenderTargetDesc.height - 0.5f; quad[1][2] = 0.0f; quad[1][3] = 1.0f; quad[2][0] = -0.5f; quad[2][1] = -0.5f; quad[2][2] = 0.0f; quad[2][3] = 1.0f; quad[3][0] = mRenderTargetDesc.width - 0.5f; quad[3][1] = -0.5f; quad[3][2] = 0.0f; quad[3][3] = 1.0f; startScene(); mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4])); if (clearParams.clearDepth) { mDevice->SetRenderState(D3DRS_ZENABLE, TRUE); mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE); mDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil); } if (mMaskedClearSavedState != NULL) { mMaskedClearSavedState->Apply(); } } else if (clearColor || clearParams.clearDepth || clearParams.clearStencil) { DWORD dxClearFlags = 0; if (clearColor) { dxClearFlags |= D3DCLEAR_TARGET; } if (clearParams.clearDepth) { dxClearFlags |= D3DCLEAR_ZBUFFER; } if (clearParams.clearStencil) { dxClearFlags |= D3DCLEAR_STENCIL; } mDevice->Clear(0, NULL, dxClearFlags, color, depth, stencil); } } void Renderer9::markAllStateDirty() { mAppliedRenderTargetSerial = 0; mAppliedDepthbufferSerial = 0; mAppliedStencilbufferSerial = 0; mDepthStencilInitialized = false; mRenderTargetDescInitialized = false; mForceSetDepthStencilState = true; mForceSetRasterState = true; mForceSetScissor = true; mForceSetViewport = true; mForceSetBlendState = true; for (unsigned int i = 0; i < gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++) { mForceSetVertexSamplerStates[i] = true; mCurVertexTextureSerials[i] = 0; } for (unsigned int i = 0; i < gl::MAX_TEXTURE_IMAGE_UNITS; i++) { mForceSetPixelSamplerStates[i] = true; mCurPixelTextureSerials[i] = 0; } mAppliedIBSerial = 0; mAppliedVertexShader = NULL; mAppliedPixelShader = NULL; mAppliedProgramSerial = 0; mDxUniformsDirty = true; mVertexDeclarationCache.markStateDirty(); } void Renderer9::releaseDeviceResources() { for (size_t i = 0; i < mEventQueryPool.size(); i++) { SafeRelease(mEventQueryPool[i]); } mEventQueryPool.clear(); SafeRelease(mMaskedClearSavedState); mVertexShaderCache.clear(); mPixelShaderCache.clear(); SafeDelete(mBlit); SafeDelete(mVertexDataManager); SafeDelete(mIndexDataManager); SafeDelete(mLineLoopIB); for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++) { SafeDelete(mNullColorbufferCache[i].buffer); } } void Renderer9::notifyDeviceLost() { mDeviceLost = true; mDisplay->notifyDeviceLost(); } bool Renderer9::isDeviceLost() { return mDeviceLost; } // set notify to true to broadcast a message to all contexts of the device loss bool Renderer9::testDeviceLost(bool notify) { HRESULT status = getDeviceStatusCode(); bool isLost = FAILED(status); if (isLost) { // ensure we note the device loss -- // we'll probably get this done again by notifyDeviceLost // but best to remember it! // Note that we don't want to clear the device loss status here // -- this needs to be done by resetDevice mDeviceLost = true; if (notify) { notifyDeviceLost(); } } return isLost; } HRESULT Renderer9::getDeviceStatusCode() { HRESULT status = D3D_OK; if (mDeviceEx) { status = mDeviceEx->CheckDeviceState(NULL); } else if (mDevice) { status = mDevice->TestCooperativeLevel(); } return status; } bool Renderer9::testDeviceResettable() { // On D3D9Ex, DEVICELOST represents a hung device that needs to be restarted // DEVICEREMOVED indicates the device has been stopped and must be recreated switch (getDeviceStatusCode()) { case D3DERR_DEVICENOTRESET: case D3DERR_DEVICEHUNG: return true; case D3DERR_DEVICELOST: return (mDeviceEx != NULL); case D3DERR_DEVICEREMOVED: ASSERT(mDeviceEx != NULL); return isRemovedDeviceResettable(); default: return false; } } bool Renderer9::resetDevice() { releaseDeviceResources(); D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters(); HRESULT result = D3D_OK; bool lost = testDeviceLost(false); bool removedDevice = (getDeviceStatusCode() == D3DERR_DEVICEREMOVED); // Device Removed is a feature which is only present with D3D9Ex ASSERT(mDeviceEx != NULL || !removedDevice); for (int attempts = 3; lost && attempts > 0; attempts--) { if (removedDevice) { // Device removed, which may trigger on driver reinstallation, // may cause a longer wait other reset attempts before the // system is ready to handle creating a new device. Sleep(800); lost = !resetRemovedDevice(); } else if (mDeviceEx) { Sleep(500); // Give the graphics driver some CPU time result = mDeviceEx->ResetEx(&presentParameters, NULL); lost = testDeviceLost(false); } else { result = mDevice->TestCooperativeLevel(); while (result == D3DERR_DEVICELOST) { Sleep(100); // Give the graphics driver some CPU time result = mDevice->TestCooperativeLevel(); } if (result == D3DERR_DEVICENOTRESET) { result = mDevice->Reset(&presentParameters); } lost = testDeviceLost(false); } } if (FAILED(result)) { ERR("Reset/ResetEx failed multiple times: 0x%08X", result); return false; } if (removedDevice && lost) { ERR("Device lost reset failed multiple times"); return false; } // If the device was removed, we already finished re-initialization in resetRemovedDevice if (!removedDevice) { // reset device defaults initializeDevice(); } mDeviceLost = false; return true; } bool Renderer9::isRemovedDeviceResettable() const { bool success = false; #ifdef ANGLE_ENABLE_D3D9EX IDirect3D9Ex *d3d9Ex = NULL; typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex**); Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex")); if (Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &d3d9Ex))) { D3DCAPS9 deviceCaps; HRESULT result = d3d9Ex->GetDeviceCaps(mAdapter, mDeviceType, &deviceCaps); success = SUCCEEDED(result); } SafeRelease(d3d9Ex); #else ASSERT(UNREACHABLE()); #endif return success; } bool Renderer9::resetRemovedDevice() { // From http://msdn.microsoft.com/en-us/library/windows/desktop/bb172554(v=vs.85).aspx: // The hardware adapter has been removed. Application must destroy the device, do enumeration of // adapters and create another Direct3D device. If application continues rendering without // calling Reset, the rendering calls will succeed. Applies to Direct3D 9Ex only. release(); return (initialize() == EGL_SUCCESS); } DWORD Renderer9::getAdapterVendor() const { return mAdapterIdentifier.VendorId; } std::string Renderer9::getRendererDescription() const { std::ostringstream rendererString; rendererString << mAdapterIdentifier.Description; if (getShareHandleSupport()) { rendererString << " Direct3D9Ex"; } else { rendererString << " Direct3D9"; } rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion); rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion); return rendererString.str(); } GUID Renderer9::getAdapterIdentifier() const { return mAdapterIdentifier.DeviceIdentifier; } Renderer9::MultisampleSupportInfo Renderer9::getMultiSampleSupport(D3DFORMAT format) { MultisampleSupportInfo support = { 0 }; for (unsigned int multiSampleIndex = 0; multiSampleIndex < ArraySize(support.supportedSamples); multiSampleIndex++) { HRESULT result = mD3d9->CheckDeviceMultiSampleType(mAdapter, mDeviceType, format, TRUE, (D3DMULTISAMPLE_TYPE)multiSampleIndex, NULL); if (SUCCEEDED(result)) { support.supportedSamples[multiSampleIndex] = true; if (multiSampleIndex != D3DMULTISAMPLE_NONMASKABLE) { support.maxSupportedSamples = std::max(support.maxSupportedSamples, multiSampleIndex); } } else { support.supportedSamples[multiSampleIndex] = false; } } return support; } unsigned int Renderer9::getMaxVertexTextureImageUnits() const { META_ASSERT(MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 <= gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS); return mVertexTextureSupport ? MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 : 0; } unsigned int Renderer9::getMaxCombinedTextureImageUnits() const { return gl::MAX_TEXTURE_IMAGE_UNITS + getMaxVertexTextureImageUnits(); } unsigned int Renderer9::getReservedVertexUniformVectors() const { return 2; // dx_ViewAdjust and dx_DepthRange. } unsigned int Renderer9::getReservedFragmentUniformVectors() const { return 3; // dx_ViewCoords, dx_DepthFront and dx_DepthRange. } unsigned int Renderer9::getMaxVertexUniformVectors() const { return MAX_VERTEX_CONSTANT_VECTORS_D3D9 - getReservedVertexUniformVectors(); } unsigned int Renderer9::getMaxFragmentUniformVectors() const { const int maxPixelConstantVectors = (getMajorShaderModel() >= 3) ? MAX_PIXEL_CONSTANT_VECTORS_SM3 : MAX_PIXEL_CONSTANT_VECTORS_SM2; return maxPixelConstantVectors - getReservedFragmentUniformVectors(); } unsigned int Renderer9::getMaxVaryingVectors() const { return (getMajorShaderModel() >= 3) ? MAX_VARYING_VECTORS_SM3 : MAX_VARYING_VECTORS_SM2; } unsigned int Renderer9::getMaxVertexShaderUniformBuffers() const { return 0; } unsigned int Renderer9::getMaxFragmentShaderUniformBuffers() const { return 0; } unsigned int Renderer9::getReservedVertexUniformBuffers() const { return 0; } unsigned int Renderer9::getReservedFragmentUniformBuffers() const { return 0; } unsigned int Renderer9::getMaxTransformFeedbackBuffers() const { return 0; } unsigned int Renderer9::getMaxTransformFeedbackSeparateComponents() const { return 0; } unsigned int Renderer9::getMaxTransformFeedbackInterleavedComponents() const { return 0; } unsigned int Renderer9::getMaxUniformBufferSize() const { return 0; } bool Renderer9::getShareHandleSupport() const { // PIX doesn't seem to support using share handles, so disable them. return (mD3d9Ex != NULL) && !gl::perfActive(); } bool Renderer9::getPostSubBufferSupport() const { return true; } int Renderer9::getMaxRecommendedElementsIndices() const { // ES3 only UNREACHABLE(); return 0; } int Renderer9::getMaxRecommendedElementsVertices() const { // ES3 only UNREACHABLE(); return 0; } bool Renderer9::getSRGBTextureSupport() const { return false; } int Renderer9::getMajorShaderModel() const { return D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion); } DWORD Renderer9::getCapsDeclTypes() const { return mDeviceCaps.DeclTypes; } int Renderer9::getMinSwapInterval() const { return mMinSwapInterval; } int Renderer9::getMaxSwapInterval() const { return mMaxSwapInterval; } int Renderer9::getMaxSupportedSamples() const { return mMaxSupportedSamples; } GLsizei Renderer9::getMaxSupportedFormatSamples(GLenum internalFormat) const { D3DFORMAT format = gl_d3d9::GetTextureFormat(internalFormat); MultisampleSupportMap::const_iterator itr = mMultiSampleSupport.find(format); return (itr != mMultiSampleSupport.end()) ? mMaxSupportedSamples : 0; } GLsizei Renderer9::getNumSampleCounts(GLenum internalFormat) const { D3DFORMAT format = gl_d3d9::GetTextureFormat(internalFormat); MultisampleSupportMap::const_iterator iter = mMultiSampleSupport.find(format); unsigned int numCounts = 0; if (iter != mMultiSampleSupport.end()) { const MultisampleSupportInfo& info = iter->second; for (int i = 0; i < D3DMULTISAMPLE_16_SAMPLES; i++) { if (i != D3DMULTISAMPLE_NONMASKABLE && info.supportedSamples[i]) { numCounts++; } } } return numCounts; } void Renderer9::getSampleCounts(GLenum internalFormat, GLsizei bufSize, GLint *params) const { D3DFORMAT format = gl_d3d9::GetTextureFormat(internalFormat); MultisampleSupportMap::const_iterator iter = mMultiSampleSupport.find(format); if (iter != mMultiSampleSupport.end()) { const MultisampleSupportInfo& info = iter->second; int bufPos = 0; for (int i = D3DMULTISAMPLE_16_SAMPLES; i >= 0 && bufPos < bufSize; i--) { if (i != D3DMULTISAMPLE_NONMASKABLE && info.supportedSamples[i]) { params[bufPos++] = i; } } } } int Renderer9::getNearestSupportedSamples(D3DFORMAT format, int requested) const { if (requested == 0) { return requested; } MultisampleSupportMap::const_iterator itr = mMultiSampleSupport.find(format); if (itr == mMultiSampleSupport.end()) { if (format == D3DFMT_UNKNOWN) return 0; return -1; } for (unsigned int i = requested; i < ArraySize(itr->second.supportedSamples); ++i) { if (itr->second.supportedSamples[i] && i != D3DMULTISAMPLE_NONMASKABLE) { return i; } } return -1; } bool Renderer9::copyToRenderTarget(TextureStorageInterface2D *dest, TextureStorageInterface2D *source) { bool result = false; if (source && dest) { TextureStorage9_2D *source9 = TextureStorage9_2D::makeTextureStorage9_2D(source->getStorageInstance()); TextureStorage9_2D *dest9 = TextureStorage9_2D::makeTextureStorage9_2D(dest->getStorageInstance()); int levels = source9->getLevelCount(); for (int i = 0; i < levels; ++i) { IDirect3DSurface9 *srcSurf = source9->getSurfaceLevel(i, false); IDirect3DSurface9 *dstSurf = dest9->getSurfaceLevel(i, false); result = copyToRenderTarget(dstSurf, srcSurf, source9->isManaged()); SafeRelease(srcSurf); SafeRelease(dstSurf); if (!result) { return false; } } } return result; } bool Renderer9::copyToRenderTarget(TextureStorageInterfaceCube *dest, TextureStorageInterfaceCube *source) { bool result = false; if (source && dest) { TextureStorage9_Cube *source9 = TextureStorage9_Cube::makeTextureStorage9_Cube(source->getStorageInstance()); TextureStorage9_Cube *dest9 = TextureStorage9_Cube::makeTextureStorage9_Cube(dest->getStorageInstance()); int levels = source9->getLevelCount(); for (int f = 0; f < 6; f++) { for (int i = 0; i < levels; i++) { IDirect3DSurface9 *srcSurf = source9->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, false); IDirect3DSurface9 *dstSurf = dest9->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, true); result = copyToRenderTarget(dstSurf, srcSurf, source9->isManaged()); SafeRelease(srcSurf); SafeRelease(dstSurf); if (!result) { return false; } } } } return result; } bool Renderer9::copyToRenderTarget(TextureStorageInterface3D *dest, TextureStorageInterface3D *source) { // 3D textures are not available in the D3D9 backend. UNREACHABLE(); return false; } bool Renderer9::copyToRenderTarget(TextureStorageInterface2DArray *dest, TextureStorageInterface2DArray *source) { // 2D array textures are not supported by the D3D9 backend. UNREACHABLE(); return false; } D3DPOOL Renderer9::getBufferPool(DWORD usage) const { if (mD3d9Ex != NULL) { return D3DPOOL_DEFAULT; } else { if (!(usage & D3DUSAGE_DYNAMIC)) { return D3DPOOL_MANAGED; } } return D3DPOOL_DEFAULT; } bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, TextureStorageInterface2D *storage, GLint level) { RECT rect; rect.left = sourceRect.x; rect.top = sourceRect.y; rect.right = sourceRect.x + sourceRect.width; rect.bottom = sourceRect.y + sourceRect.height; return mBlit->copy(framebuffer, rect, destFormat, xoffset, yoffset, storage, level); } bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, TextureStorageInterfaceCube *storage, GLenum target, GLint level) { RECT rect; rect.left = sourceRect.x; rect.top = sourceRect.y; rect.right = sourceRect.x + sourceRect.width; rect.bottom = sourceRect.y + sourceRect.height; return mBlit->copy(framebuffer, rect, destFormat, xoffset, yoffset, storage, target, level); } bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, GLint zOffset, TextureStorageInterface3D *storage, GLint level) { // 3D textures are not available in the D3D9 backend. UNREACHABLE(); return false; } bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, GLint zOffset, TextureStorageInterface2DArray *storage, GLint level) { // 2D array textures are not available in the D3D9 backend. UNREACHABLE(); return false; } bool Renderer9::blitRect(gl::Framebuffer *readFramebuffer, const gl::Rectangle &readRect, gl::Framebuffer *drawFramebuffer, const gl::Rectangle &drawRect, const gl::Rectangle *scissor, bool blitRenderTarget, bool blitDepth, bool blitStencil, GLenum filter) { ASSERT(filter == GL_NEAREST); endScene(); if (blitRenderTarget) { gl::FramebufferAttachment *readBuffer = readFramebuffer->getColorbuffer(0); gl::FramebufferAttachment *drawBuffer = drawFramebuffer->getColorbuffer(0); RenderTarget9 *readRenderTarget = NULL; RenderTarget9 *drawRenderTarget = NULL; IDirect3DSurface9* readSurface = NULL; IDirect3DSurface9* drawSurface = NULL; if (readBuffer) { readRenderTarget = RenderTarget9::makeRenderTarget9(readBuffer->getRenderTarget()); } if (drawBuffer) { drawRenderTarget = RenderTarget9::makeRenderTarget9(drawBuffer->getRenderTarget()); } if (readRenderTarget) { readSurface = readRenderTarget->getSurface(); } if (drawRenderTarget) { drawSurface = drawRenderTarget->getSurface(); } if (!readSurface || !drawSurface) { ERR("Failed to retrieve the render target."); return gl::error(GL_OUT_OF_MEMORY, false); } gl::Extents srcSize(readRenderTarget->getWidth(), readRenderTarget->getHeight(), 1); gl::Extents dstSize(drawRenderTarget->getWidth(), drawRenderTarget->getHeight(), 1); RECT srcRect; srcRect.left = readRect.x; srcRect.right = readRect.x + readRect.width; srcRect.top = readRect.y; srcRect.bottom = readRect.y + readRect.height; RECT dstRect; dstRect.left = drawRect.x; dstRect.right = drawRect.x + drawRect.width; dstRect.top = drawRect.y; dstRect.bottom = drawRect.y + drawRect.height; // Clip the rectangles to the scissor rectangle if (scissor) { if (dstRect.left < scissor->x) { srcRect.left += (scissor->x - dstRect.left); dstRect.left = scissor->x; } if (dstRect.top < scissor->y) { srcRect.top += (scissor->y - dstRect.top); dstRect.top = scissor->y; } if (dstRect.right > scissor->x + scissor->width) { srcRect.right -= (dstRect.right - (scissor->x + scissor->width)); dstRect.right = scissor->x + scissor->width; } if (dstRect.bottom > scissor->y + scissor->height) { srcRect.bottom -= (dstRect.bottom - (scissor->y + scissor->height)); dstRect.bottom = scissor->y + scissor->height; } } // Clip the rectangles to the destination size if (dstRect.left < 0) { srcRect.left += -dstRect.left; dstRect.left = 0; } if (dstRect.right > dstSize.width) { srcRect.right -= (dstRect.right - dstSize.width); dstRect.right = dstSize.width; } if (dstRect.top < 0) { srcRect.top += -dstRect.top; dstRect.top = 0; } if (dstRect.bottom > dstSize.height) { srcRect.bottom -= (dstRect.bottom - dstSize.height); dstRect.bottom = dstSize.height; } // Clip the rectangles to the source size if (srcRect.left < 0) { dstRect.left += -srcRect.left; srcRect.left = 0; } if (srcRect.right > srcSize.width) { dstRect.right -= (srcRect.right - srcSize.width); srcRect.right = srcSize.width; } if (srcRect.top < 0) { dstRect.top += -srcRect.top; srcRect.top = 0; } if (srcRect.bottom > srcSize.height) { dstRect.bottom -= (srcRect.bottom - srcSize.height); srcRect.bottom = srcSize.height; } HRESULT result = mDevice->StretchRect(readSurface, &srcRect, drawSurface, &dstRect, D3DTEXF_NONE); SafeRelease(readSurface); SafeRelease(drawSurface); if (FAILED(result)) { ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result); return false; } } if (blitDepth || blitStencil) { gl::FramebufferAttachment *readBuffer = readFramebuffer->getDepthOrStencilbuffer(); gl::FramebufferAttachment *drawBuffer = drawFramebuffer->getDepthOrStencilbuffer(); RenderTarget9 *readDepthStencil = NULL; RenderTarget9 *drawDepthStencil = NULL; IDirect3DSurface9* readSurface = NULL; IDirect3DSurface9* drawSurface = NULL; if (readBuffer) { readDepthStencil = RenderTarget9::makeRenderTarget9(readBuffer->getDepthStencil()); } if (drawBuffer) { drawDepthStencil = RenderTarget9::makeRenderTarget9(drawBuffer->getDepthStencil()); } if (readDepthStencil) { readSurface = readDepthStencil->getSurface(); } if (drawDepthStencil) { drawSurface = drawDepthStencil->getSurface(); } if (!readSurface || !drawSurface) { ERR("Failed to retrieve the render target."); return gl::error(GL_OUT_OF_MEMORY, false); } HRESULT result = mDevice->StretchRect(readSurface, NULL, drawSurface, NULL, D3DTEXF_NONE); SafeRelease(readSurface); SafeRelease(drawSurface); if (FAILED(result)) { ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result); return false; } } return true; } void Renderer9::readPixels(gl::Framebuffer *framebuffer, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLuint outputPitch, const gl::PixelPackState &pack, void* pixels) { ASSERT(pack.pixelBuffer.get() == NULL); RenderTarget9 *renderTarget = NULL; IDirect3DSurface9 *surface = NULL; gl::FramebufferAttachment *colorbuffer = framebuffer->getColorbuffer(0); if (colorbuffer) { renderTarget = RenderTarget9::makeRenderTarget9(colorbuffer->getRenderTarget()); } if (renderTarget) { surface = renderTarget->getSurface(); } if (!surface) { // context must be lost return; } D3DSURFACE_DESC desc; surface->GetDesc(&desc); if (desc.MultiSampleType != D3DMULTISAMPLE_NONE) { UNIMPLEMENTED(); // FIXME: Requires resolve using StretchRect into non-multisampled render target SafeRelease(surface); return gl::error(GL_OUT_OF_MEMORY); } HRESULT result; IDirect3DSurface9 *systemSurface = NULL; bool directToPixels = !pack.reverseRowOrder && pack.alignment <= 4 && getShareHandleSupport() && x == 0 && y == 0 && UINT(width) == desc.Width && UINT(height) == desc.Height && desc.Format == D3DFMT_A8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE; if (directToPixels) { // Use the pixels ptr as a shared handle to write directly into client's memory result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &systemSurface, &pixels); if (FAILED(result)) { // Try again without the shared handle directToPixels = false; } } if (!directToPixels) { result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &systemSurface, NULL); if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); SafeRelease(surface); return gl::error(GL_OUT_OF_MEMORY); } } result = mDevice->GetRenderTargetData(surface, systemSurface); SafeRelease(surface); if (FAILED(result)) { SafeRelease(systemSurface); // It turns out that D3D will sometimes produce more error // codes than those documented. if (d3d9::isDeviceLostError(result)) { notifyDeviceLost(); return gl::error(GL_OUT_OF_MEMORY); } else { UNREACHABLE(); return; } } if (directToPixels) { SafeRelease(systemSurface); return; } RECT rect; rect.left = gl::clamp(x, 0L, static_cast(desc.Width)); rect.top = gl::clamp(y, 0L, static_cast(desc.Height)); rect.right = gl::clamp(x + width, 0L, static_cast(desc.Width)); rect.bottom = gl::clamp(y + height, 0L, static_cast(desc.Height)); D3DLOCKED_RECT lock; result = systemSurface->LockRect(&lock, &rect, D3DLOCK_READONLY); if (FAILED(result)) { UNREACHABLE(); SafeRelease(systemSurface); return; // No sensible error to generate } unsigned char *source; int inputPitch; if (pack.reverseRowOrder) { source = ((unsigned char*)lock.pBits) + lock.Pitch * (rect.bottom - rect.top - 1); inputPitch = -lock.Pitch; } else { source = (unsigned char*)lock.pBits; inputPitch = lock.Pitch; } GLenum sourceInternalFormat = d3d9_gl::GetInternalFormat(desc.Format); GLenum sourceFormat = gl::GetFormat(sourceInternalFormat); GLenum sourceType = gl::GetType(sourceInternalFormat); GLuint sourcePixelSize = gl::GetPixelBytes(sourceInternalFormat); if (sourceFormat == format && sourceType == type) { // Direct copy possible unsigned char *dest = static_cast(pixels); for (int y = 0; y < rect.bottom - rect.top; y++) { memcpy(dest + y * outputPitch, source + y * inputPitch, (rect.right - rect.left) * sourcePixelSize); } } else { GLenum destInternalFormat = gl::GetSizedInternalFormat(format, type); GLuint destPixelSize = gl::GetPixelBytes(destInternalFormat); GLuint sourcePixelSize = gl::GetPixelBytes(sourceInternalFormat); ColorCopyFunction fastCopyFunc = d3d9::GetFastCopyFunction(desc.Format, format, type); if (fastCopyFunc) { // Fast copy is possible through some special function for (int y = 0; y < rect.bottom - rect.top; y++) { for (int x = 0; x < rect.right - rect.left; x++) { void *dest = static_cast(pixels) + y * outputPitch + x * destPixelSize; void *src = static_cast(source) + y * inputPitch + x * sourcePixelSize; fastCopyFunc(src, dest); } } } else { ColorReadFunction readFunc = d3d9::GetColorReadFunction(desc.Format); ColorWriteFunction writeFunc = gl::GetColorWriteFunction(format, type); gl::ColorF temp; for (int y = 0; y < rect.bottom - rect.top; y++) { for (int x = 0; x < rect.right - rect.left; x++) { void *dest = reinterpret_cast(pixels) + y * outputPitch + x * destPixelSize; void *src = source + y * inputPitch + x * sourcePixelSize; // readFunc and writeFunc will be using the same type of color, CopyTexImage // will not allow the copy otherwise. readFunc(src, &temp); writeFunc(&temp, dest); } } } } systemSurface->UnlockRect(); SafeRelease(systemSurface); } RenderTarget *Renderer9::createRenderTarget(SwapChain *swapChain, bool depth) { SwapChain9 *swapChain9 = SwapChain9::makeSwapChain9(swapChain); IDirect3DSurface9 *surface = NULL; if (depth) { surface = swapChain9->getDepthStencil(); } else { surface = swapChain9->getRenderTarget(); } RenderTarget9 *renderTarget = new RenderTarget9(this, surface); return renderTarget; } RenderTarget *Renderer9::createRenderTarget(int width, int height, GLenum format, GLsizei samples) { RenderTarget9 *renderTarget = new RenderTarget9(this, width, height, format, samples); return renderTarget; } ShaderExecutable *Renderer9::loadExecutable(const void *function, size_t length, rx::ShaderType type, const std::vector &transformFeedbackVaryings, bool separatedOutputBuffers) { // Transform feedback is not supported in ES2 or D3D9 ASSERT(transformFeedbackVaryings.size() == 0); ShaderExecutable9 *executable = NULL; switch (type) { case rx::SHADER_VERTEX: { IDirect3DVertexShader9 *vshader = createVertexShader((DWORD*)function, length); if (vshader) { executable = new ShaderExecutable9(function, length, vshader); } } break; case rx::SHADER_PIXEL: { IDirect3DPixelShader9 *pshader = createPixelShader((DWORD*)function, length); if (pshader) { executable = new ShaderExecutable9(function, length, pshader); } } break; default: UNREACHABLE(); break; } return executable; } ShaderExecutable *Renderer9::compileToExecutable(gl::InfoLog &infoLog, const char *shaderHLSL, rx::ShaderType type, const std::vector &transformFeedbackVaryings, bool separatedOutputBuffers, D3DWorkaroundType workaround) { // Transform feedback is not supported in ES2 or D3D9 ASSERT(transformFeedbackVaryings.size() == 0); const char *profile = NULL; switch (type) { case rx::SHADER_VERTEX: profile = getMajorShaderModel() >= 3 ? "vs_3_0" : "vs_2_0"; break; case rx::SHADER_PIXEL: profile = getMajorShaderModel() >= 3 ? "ps_3_0" : "ps_2_0"; break; default: UNREACHABLE(); return NULL; } UINT flags = ANGLE_COMPILE_OPTIMIZATION_LEVEL; if (workaround == ANGLE_D3D_WORKAROUND_SKIP_OPTIMIZATION) { flags = D3DCOMPILE_SKIP_OPTIMIZATION; } else if (workaround == ANGLE_D3D_WORKAROUND_MAX_OPTIMIZATION) { flags = D3DCOMPILE_OPTIMIZATION_LEVEL3; } else ASSERT(workaround == ANGLE_D3D_WORKAROUND_NONE); if (gl::perfActive()) { #ifndef NDEBUG flags = D3DCOMPILE_SKIP_OPTIMIZATION; #endif flags |= D3DCOMPILE_DEBUG; std::string sourcePath = getTempPath(); std::string sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(shaderHLSL); writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size()); } // Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options. // Try the default flags first and if compilation fails, try some alternatives. const UINT extraFlags[] = { flags, flags | D3DCOMPILE_AVOID_FLOW_CONTROL, flags | D3DCOMPILE_PREFER_FLOW_CONTROL }; const static char *extraFlagNames[] = { "default", "avoid flow control", "prefer flow control" }; int attempts = ArraySize(extraFlags); ID3DBlob *binary = (ID3DBlob*)mCompiler.compileToBinary(infoLog, shaderHLSL, profile, extraFlags, extraFlagNames, attempts); if (!binary) { return NULL; } ShaderExecutable *executable = loadExecutable(binary->GetBufferPointer(), binary->GetBufferSize(), type, transformFeedbackVaryings, separatedOutputBuffers); SafeRelease(binary); return executable; } rx::UniformStorage *Renderer9::createUniformStorage(size_t storageSize) { return new UniformStorage(storageSize); } bool Renderer9::boxFilter(IDirect3DSurface9 *source, IDirect3DSurface9 *dest) { return mBlit->boxFilter(source, dest); } D3DPOOL Renderer9::getTexturePool(DWORD usage) const { if (mD3d9Ex != NULL) { return D3DPOOL_DEFAULT; } else { if (!(usage & (D3DUSAGE_DEPTHSTENCIL | D3DUSAGE_RENDERTARGET))) { return D3DPOOL_MANAGED; } } return D3DPOOL_DEFAULT; } bool Renderer9::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged) { if (source && dest) { HRESULT result = D3DERR_OUTOFVIDEOMEMORY; if (fromManaged) { D3DSURFACE_DESC desc; source->GetDesc(&desc); IDirect3DSurface9 *surf = 0; result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &surf, NULL); if (SUCCEEDED(result)) { Image9::copyLockableSurfaces(surf, source); result = mDevice->UpdateSurface(surf, NULL, dest, NULL); SafeRelease(surf); } } else { endScene(); result = mDevice->StretchRect(source, NULL, dest, NULL, D3DTEXF_NONE); } if (FAILED(result)) { ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY); return false; } } return true; } Image *Renderer9::createImage() { return new Image9(); } void Renderer9::generateMipmap(Image *dest, Image *src) { Image9 *src9 = Image9::makeImage9(src); Image9 *dst9 = Image9::makeImage9(dest); Image9::generateMipmap(dst9, src9); } TextureStorage *Renderer9::createTextureStorage2D(SwapChain *swapChain) { SwapChain9 *swapChain9 = SwapChain9::makeSwapChain9(swapChain); return new TextureStorage9_2D(this, swapChain9); } TextureStorage *Renderer9::createTextureStorage2D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, int levels) { return new TextureStorage9_2D(this, internalformat, renderTarget, width, height, levels); } TextureStorage *Renderer9::createTextureStorageCube(GLenum internalformat, bool renderTarget, int size, int levels) { return new TextureStorage9_Cube(this, internalformat, renderTarget, size, levels); } TextureStorage *Renderer9::createTextureStorage3D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels) { // 3D textures are not supported by the D3D9 backend. UNREACHABLE(); return NULL; } TextureStorage *Renderer9::createTextureStorage2DArray(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels) { // 2D array textures are not supported by the D3D9 backend. UNREACHABLE(); return NULL; } Texture2DImpl *Renderer9::createTexture2D() { return new TextureD3D_2D(this); } TextureCubeImpl *Renderer9::createTextureCube() { return new TextureD3D_Cube(this); } Texture3DImpl *Renderer9::createTexture3D() { return new TextureD3D_3D(this); } Texture2DArrayImpl *Renderer9::createTexture2DArray() { return new TextureD3D_2DArray(this); } bool Renderer9::getLUID(LUID *adapterLuid) const { adapterLuid->HighPart = 0; adapterLuid->LowPart = 0; if (mD3d9Ex) { mD3d9Ex->GetAdapterLUID(mAdapter, adapterLuid); return true; } return false; } GLenum Renderer9::getNativeTextureFormat(GLenum internalFormat) const { return d3d9_gl::GetInternalFormat(gl_d3d9::GetTextureFormat(internalFormat)); } rx::VertexConversionType Renderer9::getVertexConversionType(const gl::VertexFormat &vertexFormat) const { return d3d9::GetVertexConversionType(vertexFormat); } GLenum Renderer9::getVertexComponentType(const gl::VertexFormat &vertexFormat) const { D3DDECLTYPE declType = d3d9::GetNativeVertexFormat(vertexFormat); return d3d9::GetDeclTypeComponentType(declType); } void Renderer9::generateCaps(gl::Caps *outCaps, gl::TextureCapsMap *outTextureCaps, gl::Extensions *outExtensions) const { d3d9_gl::GenerateCaps(mD3d9, mDevice, mDeviceType, mAdapter, outCaps, outTextureCaps, outExtensions); } }