// // Copyright (c) 2013-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // validationES.h: Validation functions for generic OpenGL ES entry point parameters #include "libGLESv2/validationES.h" #include "libGLESv2/validationES2.h" #include "libGLESv2/validationES3.h" #include "libGLESv2/Context.h" #include "libGLESv2/Texture.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/FramebufferAttachment.h" #include "libGLESv2/formatutils.h" #include "libGLESv2/main.h" #include "libGLESv2/Query.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/TransformFeedback.h" #include "libGLESv2/VertexArray.h" #include "libGLESv2/renderer/BufferImpl.h" #include "common/mathutil.h" #include "common/utilities.h" // FIXME(jmadill): remove this when we support buffer data caching #include "libGLESv2/renderer/d3d/BufferD3D.h" namespace gl { bool ValidCap(const Context *context, GLenum cap) { switch (cap) { case GL_CULL_FACE: case GL_POLYGON_OFFSET_FILL: case GL_SAMPLE_ALPHA_TO_COVERAGE: case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: return true; case GL_PRIMITIVE_RESTART_FIXED_INDEX: case GL_RASTERIZER_DISCARD: return (context->getClientVersion() >= 3); default: return false; } } bool ValidTextureTarget(const Context *context, GLenum target) { switch (target) { case GL_TEXTURE_2D: case GL_TEXTURE_CUBE_MAP: return true; case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: return (context->getClientVersion() >= 3); default: return false; } } // This function differs from ValidTextureTarget in that the target must be // usable as the destination of a 2D operation-- so a cube face is valid, but // GL_TEXTURE_CUBE_MAP is not. // Note: duplicate of IsInternalTextureTarget bool ValidTexture2DDestinationTarget(const Context *context, GLenum target) { switch (target) { case GL_TEXTURE_2D: case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: return true; case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_3D: return (context->getClientVersion() >= 3); default: return false; } } bool ValidFramebufferTarget(GLenum target) { META_ASSERT(GL_DRAW_FRAMEBUFFER_ANGLE == GL_DRAW_FRAMEBUFFER && GL_READ_FRAMEBUFFER_ANGLE == GL_READ_FRAMEBUFFER); switch (target) { case GL_FRAMEBUFFER: return true; case GL_READ_FRAMEBUFFER: return true; case GL_DRAW_FRAMEBUFFER: return true; default: return false; } } bool ValidBufferTarget(const Context *context, GLenum target) { switch (target) { case GL_ARRAY_BUFFER: case GL_ELEMENT_ARRAY_BUFFER: return true; case GL_PIXEL_PACK_BUFFER: case GL_PIXEL_UNPACK_BUFFER: return context->getExtensions().pixelBufferObject; case GL_COPY_READ_BUFFER: case GL_COPY_WRITE_BUFFER: case GL_TRANSFORM_FEEDBACK_BUFFER: case GL_UNIFORM_BUFFER: return (context->getClientVersion() >= 3); default: return false; } } bool ValidBufferParameter(const Context *context, GLenum pname) { switch (pname) { case GL_BUFFER_USAGE: case GL_BUFFER_SIZE: return true; // GL_BUFFER_MAP_POINTER is a special case, and may only be // queried with GetBufferPointerv case GL_BUFFER_ACCESS_FLAGS: case GL_BUFFER_MAPPED: case GL_BUFFER_MAP_OFFSET: case GL_BUFFER_MAP_LENGTH: return (context->getClientVersion() >= 3); default: return false; } } bool ValidMipLevel(const Context *context, GLenum target, GLint level) { size_t maxDimension = 0; switch (target) { case GL_TEXTURE_2D: maxDimension = context->getCaps().max2DTextureSize; break; case GL_TEXTURE_CUBE_MAP: case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: maxDimension = context->getCaps().maxCubeMapTextureSize; break; case GL_TEXTURE_3D: maxDimension = context->getCaps().max3DTextureSize; break; case GL_TEXTURE_2D_ARRAY: maxDimension = context->getCaps().max2DTextureSize; break; default: UNREACHABLE(); } return level <= gl::log2(maxDimension); } bool ValidImageSize(const Context *context, GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth) { if (level < 0 || width < 0 || height < 0 || depth < 0) { return false; } if (!context->getExtensions().textureNPOT && (level != 0 && (!gl::isPow2(width) || !gl::isPow2(height) || !gl::isPow2(depth)))) { return false; } if (!ValidMipLevel(context, target, level)) { return false; } return true; } bool ValidCompressedImageSize(const Context *context, GLenum internalFormat, GLsizei width, GLsizei height) { const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(internalFormat); if (!formatInfo.compressed) { return false; } if (width < 0 || (static_cast(width) > formatInfo.compressedBlockWidth && width % formatInfo.compressedBlockWidth != 0) || height < 0 || (static_cast(height) > formatInfo.compressedBlockHeight && height % formatInfo.compressedBlockHeight != 0)) { return false; } return true; } bool ValidQueryType(const Context *context, GLenum queryType) { META_ASSERT(GL_ANY_SAMPLES_PASSED == GL_ANY_SAMPLES_PASSED_EXT); META_ASSERT(GL_ANY_SAMPLES_PASSED_CONSERVATIVE == GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT); switch (queryType) { case GL_ANY_SAMPLES_PASSED: case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: return true; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: return (context->getClientVersion() >= 3); default: return false; } } bool ValidProgram(Context *context, GLuint id) { // ES3 spec (section 2.11.1) -- "Commands that accept shader or program object names will generate the // error INVALID_VALUE if the provided name is not the name of either a shader or program object and // INVALID_OPERATION if the provided name identifies an object that is not the expected type." if (context->getProgram(id) != NULL) { return true; } else if (context->getShader(id) != NULL) { // ID is the wrong type context->recordError(Error(GL_INVALID_OPERATION)); return false; } else { // No shader/program object has this ID context->recordError(Error(GL_INVALID_VALUE)); return false; } } bool ValidateAttachmentTarget(gl::Context *context, GLenum attachment) { if (attachment >= GL_COLOR_ATTACHMENT0_EXT && attachment <= GL_COLOR_ATTACHMENT15_EXT) { const unsigned int colorAttachment = (attachment - GL_COLOR_ATTACHMENT0_EXT); if (colorAttachment >= context->getCaps().maxColorAttachments) { context->recordError(Error(GL_INVALID_VALUE)); return false; } } else { switch (attachment) { case GL_DEPTH_ATTACHMENT: case GL_STENCIL_ATTACHMENT: break; case GL_DEPTH_STENCIL_ATTACHMENT: if (context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_ENUM)); return false; } break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } } return true; } bool ValidateRenderbufferStorageParameters(gl::Context *context, GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, bool angleExtension) { switch (target) { case GL_RENDERBUFFER: break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } if (width < 0 || height < 0 || samples < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } const TextureCaps &formatCaps = context->getTextureCaps().get(internalformat); if (!formatCaps.renderable) { context->recordError(Error(GL_INVALID_ENUM)); return false; } // ANGLE_framebuffer_multisample does not explicitly state that the internal format must be // sized but it does state that the format must be in the ES2.0 spec table 4.5 which contains // only sized internal formats. The ES3 spec (section 4.4.2) does, however, state that the // internal format must be sized and not an integer format if samples is greater than zero. const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(internalformat); if (formatInfo.pixelBytes == 0) { context->recordError(Error(GL_INVALID_ENUM)); return false; } if ((formatInfo.componentType == GL_UNSIGNED_INT || formatInfo.componentType == GL_INT) && samples > 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (static_cast(std::max(width, height)) > context->getCaps().maxRenderbufferSize) { context->recordError(Error(GL_INVALID_VALUE)); return false; } // ANGLE_framebuffer_multisample states that the value of samples must be less than or equal // to MAX_SAMPLES_ANGLE (Context::getMaxSupportedSamples) while the ES3.0 spec (section 4.4.2) // states that samples must be less than or equal to the maximum samples for the specified // internal format. if (angleExtension) { ASSERT(context->getExtensions().framebufferMultisample); if (static_cast(samples) > context->getExtensions().maxSamples) { context->recordError(Error(GL_INVALID_VALUE)); return false; } // Check if this specific format supports enough samples if (static_cast(samples) > formatCaps.getMaxSamples()) { context->recordError(Error(GL_OUT_OF_MEMORY)); return false; } } else { if (static_cast(samples) > formatCaps.getMaxSamples()) { context->recordError(Error(GL_INVALID_VALUE)); return false; } } GLuint handle = context->getState().getRenderbufferId(); if (handle == 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateFramebufferRenderbufferParameters(gl::Context *context, GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer) { if (!ValidFramebufferTarget(target)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } gl::Framebuffer *framebuffer = context->getState().getTargetFramebuffer(target); GLuint framebufferHandle = context->getState().getTargetFramebuffer(target)->id(); if (!framebuffer || (framebufferHandle == 0 && renderbuffer != 0)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (!ValidateAttachmentTarget(context, attachment)) { return false; } // [OpenGL ES 2.0.25] Section 4.4.3 page 112 // [OpenGL ES 3.0.2] Section 4.4.2 page 201 // 'renderbuffer' must be either zero or the name of an existing renderbuffer object of // type 'renderbuffertarget', otherwise an INVALID_OPERATION error is generated. if (renderbuffer != 0) { if (!context->getRenderbuffer(renderbuffer)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } return true; } static bool IsPartialBlit(gl::Context *context, gl::FramebufferAttachment *readBuffer, gl::FramebufferAttachment *writeBuffer, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1) { if (srcX0 != 0 || srcY0 != 0 || dstX0 != 0 || dstY0 != 0 || dstX1 != writeBuffer->getWidth() || dstY1 != writeBuffer->getHeight() || srcX1 != readBuffer->getWidth() || srcY1 != readBuffer->getHeight()) { return true; } else if (context->getState().isScissorTestEnabled()) { const Rectangle &scissor = context->getState().getScissor(); return scissor.x > 0 || scissor.y > 0 || scissor.width < writeBuffer->getWidth() || scissor.height < writeBuffer->getHeight(); } else { return false; } } bool ValidateBlitFramebufferParameters(gl::Context *context, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter, bool fromAngleExtension) { switch (filter) { case GL_NEAREST: break; case GL_LINEAR: if (fromAngleExtension) { context->recordError(Error(GL_INVALID_ENUM)); return false; } break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } if ((mask & ~(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) != 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (mask == 0) { // ES3.0 spec, section 4.3.2 specifies that a mask of zero is valid and no // buffers are copied. return false; } if (fromAngleExtension && (srcX1 - srcX0 != dstX1 - dstX0 || srcY1 - srcY0 != dstY1 - dstY0)) { ERR("Scaling and flipping in BlitFramebufferANGLE not supported by this implementation."); context->recordError(Error(GL_INVALID_OPERATION)); return false; } // ES3.0 spec, section 4.3.2 states that linear filtering is only available for the // color buffer, leaving only nearest being unfiltered from above if ((mask & ~GL_COLOR_BUFFER_BIT) != 0 && filter != GL_NEAREST) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (context->getState().getReadFramebuffer()->id() == context->getState().getDrawFramebuffer()->id()) { if (fromAngleExtension) { ERR("Blits with the same source and destination framebuffer are not supported by this " "implementation."); } context->recordError(Error(GL_INVALID_OPERATION)); return false; } gl::Framebuffer *readFramebuffer = context->getState().getReadFramebuffer(); gl::Framebuffer *drawFramebuffer = context->getState().getDrawFramebuffer(); if (!readFramebuffer || !drawFramebuffer) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (!readFramebuffer->completeness(context->getData())) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (!drawFramebuffer->completeness(context->getData())) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (drawFramebuffer->getSamples(context->getData()) != 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } bool sameBounds = srcX0 == dstX0 && srcY0 == dstY0 && srcX1 == dstX1 && srcY1 == dstY1; if (mask & GL_COLOR_BUFFER_BIT) { gl::FramebufferAttachment *readColorBuffer = readFramebuffer->getReadColorbuffer(); gl::FramebufferAttachment *drawColorBuffer = drawFramebuffer->getFirstColorbuffer(); if (readColorBuffer && drawColorBuffer) { GLenum readInternalFormat = readColorBuffer->getActualFormat(); const InternalFormat &readFormatInfo = GetInternalFormatInfo(readInternalFormat); for (unsigned int i = 0; i < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; i++) { if (drawFramebuffer->isEnabledColorAttachment(i)) { GLenum drawInternalFormat = drawFramebuffer->getColorbuffer(i)->getActualFormat(); const InternalFormat &drawFormatInfo = GetInternalFormatInfo(drawInternalFormat); // The GL ES 3.0.2 spec (pg 193) states that: // 1) If the read buffer is fixed point format, the draw buffer must be as well // 2) If the read buffer is an unsigned integer format, the draw buffer must be as well // 3) If the read buffer is a signed integer format, the draw buffer must be as well if ( (readFormatInfo.componentType == GL_UNSIGNED_NORMALIZED || readFormatInfo.componentType == GL_SIGNED_NORMALIZED) && !(drawFormatInfo.componentType == GL_UNSIGNED_NORMALIZED || drawFormatInfo.componentType == GL_SIGNED_NORMALIZED)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (readFormatInfo.componentType == GL_UNSIGNED_INT && drawFormatInfo.componentType != GL_UNSIGNED_INT) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (readFormatInfo.componentType == GL_INT && drawFormatInfo.componentType != GL_INT) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (readColorBuffer->getSamples() > 0 && (readInternalFormat != drawInternalFormat || !sameBounds)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } } if ((readFormatInfo.componentType == GL_INT || readFormatInfo.componentType == GL_UNSIGNED_INT) && filter == GL_LINEAR) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (fromAngleExtension) { const GLenum readColorbufferType = readFramebuffer->getReadColorbufferType(); if (readColorbufferType != GL_TEXTURE_2D && readColorbufferType != GL_RENDERBUFFER) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } for (unsigned int colorAttachment = 0; colorAttachment < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; colorAttachment++) { if (drawFramebuffer->isEnabledColorAttachment(colorAttachment)) { FramebufferAttachment *attachment = drawFramebuffer->getColorbuffer(colorAttachment); ASSERT(attachment); if (attachment->type() != GL_TEXTURE_2D && attachment->type() != GL_RENDERBUFFER) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } // Return an error if the destination formats do not match if (attachment->getInternalFormat() != readColorBuffer->getInternalFormat()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } } int readSamples = readFramebuffer->getSamples(context->getData()); if (readSamples != 0 && IsPartialBlit(context, readColorBuffer, drawColorBuffer, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } } } if (mask & GL_DEPTH_BUFFER_BIT) { gl::FramebufferAttachment *readDepthBuffer = readFramebuffer->getDepthbuffer(); gl::FramebufferAttachment *drawDepthBuffer = drawFramebuffer->getDepthbuffer(); if (readDepthBuffer && drawDepthBuffer) { if (readDepthBuffer->getActualFormat() != drawDepthBuffer->getActualFormat()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (readDepthBuffer->getSamples() > 0 && !sameBounds) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (fromAngleExtension) { if (IsPartialBlit(context, readDepthBuffer, drawDepthBuffer, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1)) { ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); context->recordError(Error(GL_INVALID_OPERATION)); // only whole-buffer copies are permitted return false; } if (readDepthBuffer->getSamples() != 0 || drawDepthBuffer->getSamples() != 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } } } if (mask & GL_STENCIL_BUFFER_BIT) { gl::FramebufferAttachment *readStencilBuffer = readFramebuffer->getStencilbuffer(); gl::FramebufferAttachment *drawStencilBuffer = drawFramebuffer->getStencilbuffer(); if (readStencilBuffer && drawStencilBuffer) { if (readStencilBuffer->getActualFormat() != drawStencilBuffer->getActualFormat()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (readStencilBuffer->getSamples() > 0 && !sameBounds) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (fromAngleExtension) { if (IsPartialBlit(context, readStencilBuffer, drawStencilBuffer, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1)) { ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); context->recordError(Error(GL_INVALID_OPERATION)); // only whole-buffer copies are permitted return false; } if (readStencilBuffer->getSamples() != 0 || drawStencilBuffer->getSamples() != 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } } } return true; } bool ValidateGetVertexAttribParameters(Context *context, GLenum pname) { switch (pname) { case GL_VERTEX_ATTRIB_ARRAY_ENABLED: case GL_VERTEX_ATTRIB_ARRAY_SIZE: case GL_VERTEX_ATTRIB_ARRAY_STRIDE: case GL_VERTEX_ATTRIB_ARRAY_TYPE: case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED: case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING: case GL_CURRENT_VERTEX_ATTRIB: return true; case GL_VERTEX_ATTRIB_ARRAY_DIVISOR: // Don't verify ES3 context because GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ANGLE uses // the same constant. META_ASSERT(GL_VERTEX_ATTRIB_ARRAY_DIVISOR == GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ANGLE); return true; case GL_VERTEX_ATTRIB_ARRAY_INTEGER: if (context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_ENUM)); return false; } return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } } bool ValidateTexParamParameters(gl::Context *context, GLenum pname, GLint param) { switch (pname) { case GL_TEXTURE_WRAP_R: case GL_TEXTURE_SWIZZLE_R: case GL_TEXTURE_SWIZZLE_G: case GL_TEXTURE_SWIZZLE_B: case GL_TEXTURE_SWIZZLE_A: case GL_TEXTURE_BASE_LEVEL: case GL_TEXTURE_MAX_LEVEL: case GL_TEXTURE_COMPARE_MODE: case GL_TEXTURE_COMPARE_FUNC: case GL_TEXTURE_MIN_LOD: case GL_TEXTURE_MAX_LOD: if (context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_ENUM)); return false; } break; default: break; } switch (pname) { case GL_TEXTURE_WRAP_S: case GL_TEXTURE_WRAP_T: case GL_TEXTURE_WRAP_R: switch (param) { case GL_REPEAT: case GL_CLAMP_TO_EDGE: case GL_MIRRORED_REPEAT: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } case GL_TEXTURE_MIN_FILTER: switch (param) { case GL_NEAREST: case GL_LINEAR: case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_MAG_FILTER: switch (param) { case GL_NEAREST: case GL_LINEAR: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_USAGE_ANGLE: switch (param) { case GL_NONE: case GL_FRAMEBUFFER_ATTACHMENT_ANGLE: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_MAX_ANISOTROPY_EXT: if (!context->getExtensions().textureFilterAnisotropic) { context->recordError(Error(GL_INVALID_ENUM)); return false; } // we assume the parameter passed to this validation method is truncated, not rounded if (param < 1) { context->recordError(Error(GL_INVALID_VALUE)); return false; } return true; case GL_TEXTURE_MIN_LOD: case GL_TEXTURE_MAX_LOD: // any value is permissible return true; case GL_TEXTURE_COMPARE_MODE: // Acceptable mode parameters from GLES 3.0.2 spec, table 3.17 switch (param) { case GL_NONE: case GL_COMPARE_REF_TO_TEXTURE: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_COMPARE_FUNC: // Acceptable function parameters from GLES 3.0.2 spec, table 3.17 switch (param) { case GL_LEQUAL: case GL_GEQUAL: case GL_LESS: case GL_GREATER: case GL_EQUAL: case GL_NOTEQUAL: case GL_ALWAYS: case GL_NEVER: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_SWIZZLE_R: case GL_TEXTURE_SWIZZLE_G: case GL_TEXTURE_SWIZZLE_B: case GL_TEXTURE_SWIZZLE_A: switch (param) { case GL_RED: case GL_GREEN: case GL_BLUE: case GL_ALPHA: case GL_ZERO: case GL_ONE: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } break; case GL_TEXTURE_BASE_LEVEL: case GL_TEXTURE_MAX_LEVEL: if (param < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } } bool ValidateSamplerObjectParameter(gl::Context *context, GLenum pname) { switch (pname) { case GL_TEXTURE_MIN_FILTER: case GL_TEXTURE_MAG_FILTER: case GL_TEXTURE_WRAP_S: case GL_TEXTURE_WRAP_T: case GL_TEXTURE_WRAP_R: case GL_TEXTURE_MIN_LOD: case GL_TEXTURE_MAX_LOD: case GL_TEXTURE_COMPARE_MODE: case GL_TEXTURE_COMPARE_FUNC: return true; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } } bool ValidateReadPixelsParameters(gl::Context *context, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, GLvoid *pixels) { gl::Framebuffer *framebuffer = context->getState().getReadFramebuffer(); ASSERT(framebuffer); if (framebuffer->completeness(context->getData()) != GL_FRAMEBUFFER_COMPLETE) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (context->getState().getReadFramebuffer()->id() != 0 && framebuffer->getSamples(context->getData()) != 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (!framebuffer->getReadColorbuffer()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } GLenum currentInternalFormat, currentFormat, currentType; GLuint clientVersion = context->getClientVersion(); context->getCurrentReadFormatType(¤tInternalFormat, ¤tFormat, ¤tType); bool validReadFormat = (clientVersion < 3) ? ValidES2ReadFormatType(context, format, type) : ValidES3ReadFormatType(context, currentInternalFormat, format, type); if (!(currentFormat == format && currentType == type) && !validReadFormat) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } GLenum sizedInternalFormat = GetSizedInternalFormat(format, type); const InternalFormat &sizedFormatInfo = GetInternalFormatInfo(sizedInternalFormat); GLsizei outputPitch = sizedFormatInfo.computeRowPitch(type, width, context->getState().getPackAlignment()); // sized query sanity check if (bufSize) { int requiredSize = outputPitch * height; if (requiredSize > *bufSize) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } return true; } bool ValidateBeginQuery(gl::Context *context, GLenum target, GLuint id) { if (!ValidQueryType(context, target)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } if (id == 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an // of zero, if the active query object name for is non-zero (for the // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if // the active query for either target is non-zero), if is the name of an // existing query object whose type does not match , or if is the // active query object name for any query type, the error INVALID_OPERATION is // generated. // Ensure no other queries are active // NOTE: If other queries than occlusion are supported, we will need to check // separately that: // a) The query ID passed is not the current active query for any target/type // b) There are no active queries for the requested target (and in the case // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, // no query may be active for either if glBeginQuery targets either. if (context->getState().isQueryActive()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } Query *queryObject = context->getQuery(id, true, target); // check that name was obtained with glGenQueries if (!queryObject) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } // check for type mismatch if (queryObject->getType() != target) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateEndQuery(gl::Context *context, GLenum target) { if (!ValidQueryType(context, target)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } const Query *queryObject = context->getState().getActiveQuery(target); if (queryObject == NULL) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } static bool ValidateUniformCommonBase(gl::Context *context, GLenum targetUniformType, GLint location, GLsizei count, LinkedUniform **uniformOut) { if (count < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } gl::ProgramBinary *programBinary = context->getState().getCurrentProgramBinary(); if (!programBinary) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (location == -1) { // Silently ignore the uniform command return false; } if (!programBinary->isValidUniformLocation(location)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } LinkedUniform *uniform = programBinary->getUniformByLocation(location); // attempting to write an array to a non-array uniform is an INVALID_OPERATION if (uniform->elementCount() == 1 && count > 1) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } *uniformOut = uniform; return true; } bool ValidateUniform(gl::Context *context, GLenum uniformType, GLint location, GLsizei count) { // Check for ES3 uniform entry points if (VariableComponentType(uniformType) == GL_UNSIGNED_INT && context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } LinkedUniform *uniform = NULL; if (!ValidateUniformCommonBase(context, uniformType, location, count, &uniform)) { return false; } GLenum targetBoolType = VariableBoolVectorType(uniformType); bool samplerUniformCheck = (IsSampler(uniform->type) && uniformType == GL_INT); if (!samplerUniformCheck && uniformType != uniform->type && targetBoolType != uniform->type) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateUniformMatrix(gl::Context *context, GLenum matrixType, GLint location, GLsizei count, GLboolean transpose) { // Check for ES3 uniform entry points int rows = VariableRowCount(matrixType); int cols = VariableColumnCount(matrixType); if (rows != cols && context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (transpose != GL_FALSE && context->getClientVersion() < 3) { context->recordError(Error(GL_INVALID_VALUE)); return false; } LinkedUniform *uniform = NULL; if (!ValidateUniformCommonBase(context, matrixType, location, count, &uniform)) { return false; } if (uniform->type != matrixType) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateStateQuery(gl::Context *context, GLenum pname, GLenum *nativeType, unsigned int *numParams) { if (!context->getQueryParameterInfo(pname, nativeType, numParams)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } if (pname >= GL_DRAW_BUFFER0 && pname <= GL_DRAW_BUFFER15) { unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0); if (colorAttachment >= context->getCaps().maxDrawBuffers) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } switch (pname) { case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_TEXTURE_BINDING_3D: case GL_TEXTURE_BINDING_2D_ARRAY: if (context->getState().getActiveSampler() >= context->getCaps().maxCombinedTextureImageUnits) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } break; case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: { Framebuffer *framebuffer = context->getState().getReadFramebuffer(); ASSERT(framebuffer); if (framebuffer->completeness(context->getData()) != GL_FRAMEBUFFER_COMPLETE) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } FramebufferAttachment *attachment = framebuffer->getReadColorbuffer(); if (!attachment) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } break; default: break; } // pname is valid, but there are no parameters to return if (numParams == 0) { return false; } return true; } bool ValidateCopyTexImageParametersBase(gl::Context* context, GLenum target, GLint level, GLenum internalformat, bool isSubImage, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, GLint border, GLenum *textureFormatOut) { if (!ValidTexture2DDestinationTarget(context, target)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } if (level < 0 || xoffset < 0 || yoffset < 0 || zoffset < 0 || width < 0 || height < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (std::numeric_limits::max() - xoffset < width || std::numeric_limits::max() - yoffset < height) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (border != 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!ValidMipLevel(context, target, level)) { context->recordError(Error(GL_INVALID_VALUE)); return false; } gl::Framebuffer *framebuffer = context->getState().getReadFramebuffer(); if (framebuffer->completeness(context->getData()) != GL_FRAMEBUFFER_COMPLETE) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (context->getState().getReadFramebuffer()->id() != 0 && framebuffer->getSamples(context->getData()) != 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } const gl::Caps &caps = context->getCaps(); gl::Texture *texture = NULL; GLenum textureInternalFormat = GL_NONE; GLint textureLevelWidth = 0; GLint textureLevelHeight = 0; GLint textureLevelDepth = 0; GLuint maxDimension = 0; switch (target) { case GL_TEXTURE_2D: { gl::Texture2D *texture2d = context->getTexture2D(); if (texture2d) { textureInternalFormat = texture2d->getInternalFormat(level); textureLevelWidth = texture2d->getWidth(level); textureLevelHeight = texture2d->getHeight(level); textureLevelDepth = 1; texture = texture2d; maxDimension = caps.max2DTextureSize; } } break; case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: { gl::TextureCubeMap *textureCube = context->getTextureCubeMap(); if (textureCube) { textureInternalFormat = textureCube->getInternalFormat(target, level); textureLevelWidth = textureCube->getWidth(target, level); textureLevelHeight = textureCube->getHeight(target, level); textureLevelDepth = 1; texture = textureCube; maxDimension = caps.maxCubeMapTextureSize; } } break; case GL_TEXTURE_2D_ARRAY: { gl::Texture2DArray *texture2dArray = context->getTexture2DArray(); if (texture2dArray) { textureInternalFormat = texture2dArray->getInternalFormat(level); textureLevelWidth = texture2dArray->getWidth(level); textureLevelHeight = texture2dArray->getHeight(level); textureLevelDepth = texture2dArray->getLayers(level); texture = texture2dArray; maxDimension = caps.max2DTextureSize; } } break; case GL_TEXTURE_3D: { gl::Texture3D *texture3d = context->getTexture3D(); if (texture3d) { textureInternalFormat = texture3d->getInternalFormat(level); textureLevelWidth = texture3d->getWidth(level); textureLevelHeight = texture3d->getHeight(level); textureLevelDepth = texture3d->getDepth(level); texture = texture3d; maxDimension = caps.max3DTextureSize; } } break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } if (!texture) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (texture->isImmutable() && !isSubImage) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(internalformat); if (formatInfo.depthBits > 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (formatInfo.compressed) { if (((width % formatInfo.compressedBlockWidth) != 0 && width != textureLevelWidth) || ((height % formatInfo.compressedBlockHeight) != 0 && height != textureLevelHeight)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } if (isSubImage) { if (xoffset + width > textureLevelWidth || yoffset + height > textureLevelHeight || zoffset >= textureLevelDepth) { context->recordError(Error(GL_INVALID_VALUE)); return false; } } else { if (IsCubemapTextureTarget(target) && width != height) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!formatInfo.textureSupport(context->getClientVersion(), context->getExtensions())) { context->recordError(Error(GL_INVALID_ENUM)); return false; } int maxLevelDimension = (maxDimension >> level); if (static_cast(width) > maxLevelDimension || static_cast(height) > maxLevelDimension) { context->recordError(Error(GL_INVALID_VALUE)); return false; } } *textureFormatOut = textureInternalFormat; return true; } static bool ValidateDrawBase(Context *context, GLenum mode, GLsizei count, GLsizei maxVertex, GLsizei primcount) { switch (mode) { case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: case GL_TRIANGLES: case GL_TRIANGLE_STRIP: case GL_TRIANGLE_FAN: break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } if (count < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } const State &state = context->getState(); // Check for mapped buffers if (state.hasMappedBuffer(GL_ARRAY_BUFFER)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } const gl::DepthStencilState &depthStencilState = state.getDepthStencilState(); if (depthStencilState.stencilWritemask != depthStencilState.stencilBackWritemask || state.getStencilRef() != state.getStencilBackRef() || depthStencilState.stencilMask != depthStencilState.stencilBackMask) { // Note: these separate values are not supported in WebGL, due to D3D's limitations. // See Section 6.10 of the WebGL 1.0 spec ERR("This ANGLE implementation does not support separate front/back stencil " "writemasks, reference values, or stencil mask values."); context->recordError(Error(GL_INVALID_OPERATION)); return false; } const gl::Framebuffer *fbo = state.getDrawFramebuffer(); if (!fbo || fbo->completeness(context->getData()) != GL_FRAMEBUFFER_COMPLETE) { context->recordError(Error(GL_INVALID_FRAMEBUFFER_OPERATION)); return false; } if (state.getCurrentProgramId() == 0) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } gl::ProgramBinary *programBinary = state.getCurrentProgramBinary(); if (!programBinary->validateSamplers(NULL, context->getCaps())) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } // Buffer validations const VertexArray *vao = state.getVertexArray(); for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { const VertexAttribute &attrib = vao->getVertexAttribute(attributeIndex); bool attribActive = (programBinary->getSemanticIndex(attributeIndex) != -1); if (attribActive && attrib.enabled) { gl::Buffer *buffer = attrib.buffer.get(); if (buffer) { GLint64 attribStride = static_cast(ComputeVertexAttributeStride(attrib)); GLint64 maxVertexElement = 0; if (attrib.divisor > 0) { maxVertexElement = static_cast(primcount) / static_cast(attrib.divisor); } else { maxVertexElement = static_cast(maxVertex); } GLint64 attribDataSize = maxVertexElement * attribStride; // [OpenGL ES 3.0.2] section 2.9.4 page 40: // We can return INVALID_OPERATION if our vertex attribute does not have // enough backing data. if (attribDataSize > buffer->getSize()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } else if (attrib.pointer == NULL) { // This is an application error that would normally result in a crash, // but we catch it and return an error context->recordError(Error(GL_INVALID_OPERATION, "An enabled vertex array has no buffer and no pointer.")); return false; } } } // No-op if zero count return (count > 0); } bool ValidateDrawArrays(Context *context, GLenum mode, GLint first, GLsizei count, GLsizei primcount) { if (first < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } const State &state = context->getState(); gl::TransformFeedback *curTransformFeedback = state.getCurrentTransformFeedback(); if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused() && curTransformFeedback->getDrawMode() != mode) { // It is an invalid operation to call DrawArrays or DrawArraysInstanced with a draw mode // that does not match the current transform feedback object's draw mode (if transform feedback // is active), (3.0.2, section 2.14, pg 86) context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (!ValidateDrawBase(context, mode, count, count, primcount)) { return false; } return true; } bool ValidateDrawArraysInstanced(Context *context, GLenum mode, GLint first, GLsizei count, GLsizei primcount) { if (primcount < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!ValidateDrawArrays(context, mode, first, count, primcount)) { return false; } // No-op if zero primitive count return (primcount > 0); } static bool ValidateDrawInstancedANGLE(Context *context) { // Verify there is at least one active attribute with a divisor of zero const gl::State& state = context->getState(); gl::ProgramBinary *programBinary = state.getCurrentProgramBinary(); const VertexArray *vao = state.getVertexArray(); for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { const VertexAttribute &attrib = vao->getVertexAttribute(attributeIndex); bool active = (programBinary->getSemanticIndex(attributeIndex) != -1); if (active && attrib.divisor == 0) { return true; } } context->recordError(Error(GL_INVALID_OPERATION, "ANGLE_instanced_arrays requires that at least one active attribute" "has a divisor of zero.")); return false; } bool ValidateDrawArraysInstancedANGLE(Context *context, GLenum mode, GLint first, GLsizei count, GLsizei primcount) { if (!ValidateDrawInstancedANGLE(context)) { return false; } return ValidateDrawArraysInstanced(context, mode, first, count, primcount); } bool ValidateDrawElements(Context *context, GLenum mode, GLsizei count, GLenum type, const GLvoid* indices, GLsizei primcount, rx::RangeUI *indexRangeOut) { switch (type) { case GL_UNSIGNED_BYTE: case GL_UNSIGNED_SHORT: break; case GL_UNSIGNED_INT: if (!context->getExtensions().elementIndexUint) { context->recordError(Error(GL_INVALID_ENUM)); return false; } break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } const State &state = context->getState(); gl::TransformFeedback *curTransformFeedback = state.getCurrentTransformFeedback(); if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused()) { // It is an invalid operation to call DrawElements, DrawRangeElements or DrawElementsInstanced // while transform feedback is active, (3.0.2, section 2.14, pg 86) context->recordError(Error(GL_INVALID_OPERATION)); return false; } // Check for mapped buffers if (state.hasMappedBuffer(GL_ELEMENT_ARRAY_BUFFER)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } const gl::VertexArray *vao = state.getVertexArray(); const gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer(); if (!indices && !elementArrayBuffer) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (elementArrayBuffer) { const gl::Type &typeInfo = gl::GetTypeInfo(type); GLint64 offset = reinterpret_cast(indices); GLint64 byteCount = static_cast(typeInfo.bytes) * static_cast(count)+offset; // check for integer overflows if (static_cast(count) > (std::numeric_limits::max() / typeInfo.bytes) || byteCount > static_cast(std::numeric_limits::max())) { context->recordError(Error(GL_OUT_OF_MEMORY)); return false; } // Check for reading past the end of the bound buffer object if (byteCount > elementArrayBuffer->getSize()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } else if (!indices) { // Catch this programming error here context->recordError(Error(GL_INVALID_OPERATION)); return false; } // Use max index to validate if our vertex buffers are large enough for the pull. // TODO: offer fast path, with disabled index validation. // TODO: also disable index checking on back-ends that are robust to out-of-range accesses. if (elementArrayBuffer) { uintptr_t offset = reinterpret_cast(indices); if (!elementArrayBuffer->getIndexRangeCache()->findRange(type, offset, count, indexRangeOut, NULL)) { // FIXME(jmadill): Use buffer data caching instead of the D3D back-end rx::BufferD3D *bufferD3D = rx::BufferD3D::makeBufferD3D(elementArrayBuffer->getImplementation()); const uint8_t *dataPointer = NULL; Error error = bufferD3D->getData(&dataPointer); if (error.isError()) { context->recordError(error); return false; } const uint8_t *offsetPointer = dataPointer + offset; *indexRangeOut = rx::IndexRangeCache::ComputeRange(type, offsetPointer, count); } } else { *indexRangeOut = rx::IndexRangeCache::ComputeRange(type, indices, count); } if (!ValidateDrawBase(context, mode, count, static_cast(indexRangeOut->end), primcount)) { return false; } return true; } bool ValidateDrawElementsInstanced(Context *context, GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount, rx::RangeUI *indexRangeOut) { if (primcount < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!ValidateDrawElements(context, mode, count, type, indices, primcount, indexRangeOut)) { return false; } // No-op zero primitive count return (primcount > 0); } bool ValidateDrawElementsInstancedANGLE(Context *context, GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount, rx::RangeUI *indexRangeOut) { if (!ValidateDrawInstancedANGLE(context)) { return false; } return ValidateDrawElementsInstanced(context, mode, count, type, indices, primcount, indexRangeOut); } bool ValidateFramebufferTextureBase(Context *context, GLenum target, GLenum attachment, GLuint texture, GLint level) { if (!ValidFramebufferTarget(target)) { context->recordError(Error(GL_INVALID_ENUM)); return false; } if (!ValidateAttachmentTarget(context, attachment)) { return false; } if (texture != 0) { gl::Texture *tex = context->getTexture(texture); if (tex == NULL) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (level < 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } } const gl::Framebuffer *framebuffer = context->getState().getTargetFramebuffer(target); GLuint framebufferHandle = context->getState().getTargetFramebuffer(target)->id(); if (framebufferHandle == 0 || !framebuffer) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateFramebufferTexture2D(Context *context, GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level) { // Attachments are required to be bound to level 0 in ES2 if (context->getClientVersion() < 3 && level != 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!ValidateFramebufferTextureBase(context, target, attachment, texture, level)) { return false; } if (texture != 0) { gl::Texture *tex = context->getTexture(texture); ASSERT(tex); const gl::Caps &caps = context->getCaps(); switch (textarget) { case GL_TEXTURE_2D: { if (level > gl::log2(caps.max2DTextureSize)) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (tex->getTarget() != GL_TEXTURE_2D) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } gl::Texture2D *tex2d = static_cast(tex); if (tex2d->isCompressed(level)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } break; case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: { if (level > gl::log2(caps.maxCubeMapTextureSize)) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (tex->getTarget() != GL_TEXTURE_CUBE_MAP) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } gl::TextureCubeMap *texcube = static_cast(tex); if (texcube->isCompressed(textarget, level)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } } break; default: context->recordError(Error(GL_INVALID_ENUM)); return false; } } return true; } bool ValidateGetUniformBase(Context *context, GLuint program, GLint location) { if (program == 0) { context->recordError(Error(GL_INVALID_VALUE)); return false; } if (!ValidProgram(context, program)) { return false; } gl::Program *programObject = context->getProgram(program); if (!programObject || !programObject->isLinked()) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } gl::ProgramBinary *programBinary = programObject->getProgramBinary(); if (!programBinary) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } if (!programBinary->isValidUniformLocation(location)) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateGetUniformfv(Context *context, GLuint program, GLint location, GLfloat* params) { return ValidateGetUniformBase(context, program, location); } bool ValidateGetUniformiv(Context *context, GLuint program, GLint location, GLint* params) { return ValidateGetUniformBase(context, program, location); } static bool ValidateSizedGetUniform(Context *context, GLuint program, GLint location, GLsizei bufSize) { if (!ValidateGetUniformBase(context, program, location)) { return false; } gl::Program *programObject = context->getProgram(program); ASSERT(programObject); gl::ProgramBinary *programBinary = programObject->getProgramBinary(); // sized queries -- ensure the provided buffer is large enough LinkedUniform *uniform = programBinary->getUniformByLocation(location); size_t requiredBytes = VariableExternalSize(uniform->type); if (static_cast(bufSize) < requiredBytes) { context->recordError(Error(GL_INVALID_OPERATION)); return false; } return true; } bool ValidateGetnUniformfvEXT(Context *context, GLuint program, GLint location, GLsizei bufSize, GLfloat* params) { return ValidateSizedGetUniform(context, program, location, bufSize); } bool ValidateGetnUniformivEXT(Context *context, GLuint program, GLint location, GLsizei bufSize, GLint* params) { return ValidateSizedGetUniform(context, program, location, bufSize); } }