/* * Copyright © 2015 Google, Inc. * Copyright © 2019 Adobe Inc. * Copyright © 2019 Ebrahim Byagowi * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Behdad Esfahbod, Garret Rieger, Roderick Sheeter * Adobe Author(s): Michiharu Ariza */ #ifndef HB_OT_GLYF_TABLE_HH #define HB_OT_GLYF_TABLE_HH #include "hb-open-type.hh" #include "hb-ot-head-table.hh" #include "hb-ot-hmtx-table.hh" #include "hb-ot-var-gvar-table.hh" #include namespace OT { /* * loca -- Index to Location * https://docs.microsoft.com/en-us/typography/opentype/spec/loca */ #define HB_OT_TAG_loca HB_TAG('l','o','c','a') struct loca { friend struct glyf; static constexpr hb_tag_t tableTag = HB_OT_TAG_loca; bool sanitize (hb_sanitize_context_t *c HB_UNUSED) const { TRACE_SANITIZE (this); return_trace (true); } protected: UnsizedArrayOf dataZ; /* Location data. */ public: DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always * check the size externally, allow Null() object of it by * defining it _MIN instead. */ }; /* * glyf -- TrueType Glyph Data * https://docs.microsoft.com/en-us/typography/opentype/spec/glyf */ #define HB_OT_TAG_glyf HB_TAG('g','l','y','f') struct glyf { static constexpr hb_tag_t tableTag = HB_OT_TAG_glyf; bool sanitize (hb_sanitize_context_t *c HB_UNUSED) const { TRACE_SANITIZE (this); /* Runtime checks as eager sanitizing each glyph is costy */ return_trace (true); } template static bool _add_loca_and_head (hb_subset_plan_t * plan, Iterator padded_offsets) { unsigned max_offset = + padded_offsets | hb_reduce(hb_add, 0); unsigned num_offsets = padded_offsets.len () + 1; bool use_short_loca = max_offset < 0x1FFFF; unsigned entry_size = use_short_loca ? 2 : 4; char *loca_prime_data = (char *) calloc (entry_size, num_offsets); if (unlikely (!loca_prime_data)) return false; DEBUG_MSG (SUBSET, nullptr, "loca entry_size %d num_offsets %d " "max_offset %d size %d", entry_size, num_offsets, max_offset, entry_size * num_offsets); if (use_short_loca) _write_loca (padded_offsets, 1, hb_array ((HBUINT16*) loca_prime_data, num_offsets)); else _write_loca (padded_offsets, 0, hb_array ((HBUINT32*) loca_prime_data, num_offsets)); hb_blob_t * loca_blob = hb_blob_create (loca_prime_data, entry_size * num_offsets, HB_MEMORY_MODE_WRITABLE, loca_prime_data, free); bool result = plan->add_table (HB_OT_TAG_loca, loca_blob) && _add_head_and_set_loca_version (plan, use_short_loca); hb_blob_destroy (loca_blob); return result; } template static void _write_loca (IteratorIn it, unsigned right_shift, IteratorOut dest) { unsigned int offset = 0; dest << 0; + it | hb_map ([=, &offset] (unsigned int padded_size) { offset += padded_size; DEBUG_MSG (SUBSET, nullptr, "loca entry offset %d", offset); return offset >> right_shift; }) | hb_sink (dest) ; } /* requires source of SubsetGlyph complains the identifier isn't declared */ template bool serialize (hb_serialize_context_t *c, Iterator it, const hb_subset_plan_t *plan) { TRACE_SERIALIZE (this); for (const auto &_ : it) _.serialize (c, plan); return_trace (true); } /* Byte region(s) per glyph to output unpadded, hints removed if so requested If we fail to process a glyph we produce an empty (0-length) glyph */ bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); glyf *glyf_prime = c->serializer->start_embed (); if (unlikely (!c->serializer->check_success (glyf_prime))) return_trace (false); hb_vector_t glyphs; _populate_subset_glyphs (c->plan, &glyphs); glyf_prime->serialize (c->serializer, hb_iter (glyphs), c->plan); auto padded_offsets = + hb_iter (glyphs) | hb_map (&SubsetGlyph::padded_size) ; if (c->serializer->in_error ()) return_trace (false); return_trace (c->serializer->check_success (_add_loca_and_head (c->plan, padded_offsets))); } template void _populate_subset_glyphs (const hb_subset_plan_t *plan, hb_vector_t *glyphs /* OUT */) const { OT::glyf::accelerator_t glyf; glyf.init (plan->source); + hb_range (plan->num_output_glyphs ()) | hb_map ([&] (hb_codepoint_t new_gid) { SubsetGlyph subset_glyph = {0}; subset_glyph.new_gid = new_gid; /* should never fail: all old gids should be mapped */ if (!plan->old_gid_for_new_gid (new_gid, &subset_glyph.old_gid)) return subset_glyph; subset_glyph.source_glyph = glyf.glyph_for_gid (subset_glyph.old_gid, true); if (plan->drop_hints) subset_glyph.drop_hints_bytes (); else subset_glyph.dest_start = subset_glyph.source_glyph.get_bytes (); return subset_glyph; }) | hb_sink (glyphs) ; glyf.fini (); } static bool _add_head_and_set_loca_version (hb_subset_plan_t *plan, bool use_short_loca) { hb_blob_t *head_blob = hb_sanitize_context_t ().reference_table (plan->source); hb_blob_t *head_prime_blob = hb_blob_copy_writable_or_fail (head_blob); hb_blob_destroy (head_blob); if (unlikely (!head_prime_blob)) return false; head *head_prime = (head *) hb_blob_get_data_writable (head_prime_blob, nullptr); head_prime->indexToLocFormat = use_short_loca ? 0 : 1; bool success = plan->add_table (HB_OT_TAG_head, head_prime_blob); hb_blob_destroy (head_prime_blob); return success; } struct CompositeGlyphChain { enum composite_glyph_flag_t { ARG_1_AND_2_ARE_WORDS = 0x0001, ARGS_ARE_XY_VALUES = 0x0002, ROUND_XY_TO_GRID = 0x0004, WE_HAVE_A_SCALE = 0x0008, MORE_COMPONENTS = 0x0020, WE_HAVE_AN_X_AND_Y_SCALE = 0x0040, WE_HAVE_A_TWO_BY_TWO = 0x0080, WE_HAVE_INSTRUCTIONS = 0x0100, USE_MY_METRICS = 0x0200, OVERLAP_COMPOUND = 0x0400, SCALED_COMPONENT_OFFSET = 0x0800, UNSCALED_COMPONENT_OFFSET = 0x1000 }; unsigned int get_size () const { unsigned int size = min_size; /* arg1 and 2 are int16 */ if (flags & ARG_1_AND_2_ARE_WORDS) size += 4; /* arg1 and 2 are int8 */ else size += 2; /* One x 16 bit (scale) */ if (flags & WE_HAVE_A_SCALE) size += 2; /* Two x 16 bit (xscale, yscale) */ else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4; /* Four x 16 bit (xscale, scale01, scale10, yscale) */ else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8; return size; } bool is_use_my_metrics () const { return flags & USE_MY_METRICS; } bool is_anchored () const { return !(flags & ARGS_ARE_XY_VALUES); } void get_anchor_points (unsigned int &point1, unsigned int &point2) const { const HBUINT8 *p = &StructAfter (glyphIndex); if (flags & ARG_1_AND_2_ARE_WORDS) { point1 = ((const HBUINT16 *) p)[0]; point2 = ((const HBUINT16 *) p)[1]; } else { point1 = p[0]; point2 = p[1]; } } void transform_points (contour_point_vector_t &points) const { float matrix[4]; contour_point_t trans; if (get_transformation (matrix, trans)) { if (scaled_offsets ()) { points.translate (trans); points.transform (matrix); } else { points.transform (matrix); points.translate (trans); } } } protected: bool scaled_offsets () const { return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; } bool get_transformation (float (&matrix)[4], contour_point_t &trans) const { matrix[0] = matrix[3] = 1.f; matrix[1] = matrix[2] = 0.f; int tx, ty; const HBINT8 *p = &StructAfter (glyphIndex); if (flags & ARG_1_AND_2_ARE_WORDS) { tx = *(const HBINT16 *) p; p += HBINT16::static_size; ty = *(const HBINT16 *) p; p += HBINT16::static_size; } else { tx = *p++; ty = *p++; } if (is_anchored ()) tx = ty = 0; trans.init ((float) tx, (float) ty); { const F2DOT14 *points = (const F2DOT14 *) p; if (flags & WE_HAVE_A_SCALE) { matrix[0] = matrix[3] = points[0].to_float (); return true; } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) { matrix[0] = points[0].to_float (); matrix[3] = points[1].to_float (); return true; } else if (flags & WE_HAVE_A_TWO_BY_TWO) { matrix[0] = points[0].to_float (); matrix[1] = points[1].to_float (); matrix[2] = points[2].to_float (); matrix[3] = points[3].to_float (); return true; } } return tx || ty; } public: HBUINT16 flags; HBGlyphID glyphIndex; public: DEFINE_SIZE_MIN (4); }; struct composite_iter_t : hb_iter_with_fallback_t { typedef const CompositeGlyphChain *__item_t__; composite_iter_t (hb_bytes_t glyph_, __item_t__ current_) : glyph (glyph_), current (current_) { if (!in_range (current)) current = nullptr; } composite_iter_t () : glyph (hb_bytes_t ()), current (nullptr) {} const CompositeGlyphChain &__item__ () const { return *current; } bool __more__ () const { return current; } void __next__ () { if (!(current->flags & CompositeGlyphChain::MORE_COMPONENTS)) { current = nullptr; return; } const CompositeGlyphChain *possible = &StructAfter (*current); if (!in_range (possible)) { current = nullptr; return; } current = possible; } bool operator != (const composite_iter_t& o) const { return glyph != o.glyph || current != o.current; } bool in_range (const CompositeGlyphChain *composite) const { return glyph.in_range (composite, CompositeGlyphChain::min_size) && glyph.in_range (composite, composite->get_size ()); } private: hb_bytes_t glyph; __item_t__ current; }; struct Glyph { private: struct GlyphHeader { bool has_data () const { return numberOfContours; } bool get_extents (hb_font_t *font, hb_codepoint_t gid, hb_glyph_extents_t *extents) const { /* Undocumented rasterizer behavior: shift glyph to the left by (lsb - xMin), i.e., xMin = lsb */ /* extents->x_bearing = hb_min (glyph_header.xMin, glyph_header.xMax); */ extents->x_bearing = font->em_scale_x (font->face->table.hmtx->get_side_bearing (gid)); extents->y_bearing = font->em_scale_y (hb_max (yMin, yMax)); extents->width = font->em_scale_x (hb_max (xMin, xMax) - hb_min (xMin, xMax)); extents->height = font->em_scale_y (hb_min (yMin, yMax) - hb_max (yMin, yMax)); return true; } HBINT16 numberOfContours; /* If the number of contours is * greater than or equal to zero, * this is a simple glyph; if negative, * this is a composite glyph. */ FWORD xMin; /* Minimum x for coordinate data. */ FWORD yMin; /* Minimum y for coordinate data. */ FWORD xMax; /* Maximum x for coordinate data. */ FWORD yMax; /* Maximum y for coordinate data. */ public: DEFINE_SIZE_STATIC (10); }; struct SimpleGlyph { const GlyphHeader &header; hb_bytes_t bytes; SimpleGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) : header (header_), bytes (bytes_) {} unsigned int instruction_len_offset () const { return GlyphHeader::static_size + 2 * header.numberOfContours; } unsigned int length (unsigned int instruction_len) const { return instruction_len_offset () + 2 + instruction_len; } unsigned int instructions_length () const { unsigned int instruction_length_offset = instruction_len_offset (); if (unlikely (instruction_length_offset + 2 > bytes.length)) return 0; const HBUINT16 &instructionLength = StructAtOffset (&bytes, instruction_length_offset); /* Out of bounds of the current glyph */ if (unlikely (length (instructionLength) > bytes.length)) return 0; return instructionLength; } enum simple_glyph_flag_t { FLAG_ON_CURVE = 0x01, FLAG_X_SHORT = 0x02, FLAG_Y_SHORT = 0x04, FLAG_REPEAT = 0x08, FLAG_X_SAME = 0x10, FLAG_Y_SAME = 0x20, FLAG_RESERVED1 = 0x40, FLAG_RESERVED2 = 0x80 }; const Glyph trim_padding () const { /* based on FontTools _g_l_y_f.py::trim */ const char *glyph = bytes.arrayZ; const char *glyph_end = glyph + bytes.length; /* simple glyph w/contours, possibly trimmable */ glyph += instruction_len_offset (); if (unlikely (glyph + 2 >= glyph_end)) return Glyph (); unsigned int num_coordinates = StructAtOffset (glyph - 2, 0) + 1; unsigned int num_instructions = StructAtOffset (glyph, 0); glyph += 2 + num_instructions; if (unlikely (glyph + 2 >= glyph_end)) return Glyph (); unsigned int coord_bytes = 0; unsigned int coords_with_flags = 0; while (glyph < glyph_end) { uint8_t flag = *glyph; glyph++; unsigned int repeat = 1; if (flag & FLAG_REPEAT) { if (unlikely (glyph >= glyph_end)) return Glyph (); repeat = *glyph + 1; glyph++; } unsigned int xBytes, yBytes; xBytes = yBytes = 0; if (flag & FLAG_X_SHORT) xBytes = 1; else if ((flag & FLAG_X_SAME) == 0) xBytes = 2; if (flag & FLAG_Y_SHORT) yBytes = 1; else if ((flag & FLAG_Y_SAME) == 0) yBytes = 2; coord_bytes += (xBytes + yBytes) * repeat; coords_with_flags += repeat; if (coords_with_flags >= num_coordinates) break; } if (unlikely (coords_with_flags != num_coordinates)) return Glyph (); return Glyph (bytes.sub_array (0, bytes.length + coord_bytes - (glyph_end - glyph))); } /* zero instruction length */ void drop_hints () { GlyphHeader &glyph_header = const_cast (header); (HBUINT16 &) StructAtOffset (&glyph_header, instruction_len_offset ()) = 0; } void drop_hints_bytes (hb_bytes_t &dest_start, hb_bytes_t &dest_end) const { unsigned int instructions_len = instructions_length (); unsigned int glyph_length = length (instructions_len); dest_start = bytes.sub_array (0, glyph_length - instructions_len); dest_end = bytes.sub_array (glyph_length, bytes.length - glyph_length); } struct x_setter_t { void set (contour_point_t &point, float v) const { point.x = v; } bool is_short (uint8_t flag) const { return flag & FLAG_X_SHORT; } bool is_same (uint8_t flag) const { return flag & FLAG_X_SAME; } }; struct y_setter_t { void set (contour_point_t &point, float v) const { point.y = v; } bool is_short (uint8_t flag) const { return flag & FLAG_Y_SHORT; } bool is_same (uint8_t flag) const { return flag & FLAG_Y_SAME; } }; template static bool read_points (const HBUINT8 *&p /* IN/OUT */, contour_point_vector_t &points_ /* IN/OUT */, const hb_bytes_t &bytes) { T coord_setter; float v = 0; for (unsigned int i = 0; i < points_.length - PHANTOM_COUNT; i++) { uint8_t flag = points_[i].flag; if (coord_setter.is_short (flag)) { if (unlikely (!bytes.in_range (p))) return false; if (coord_setter.is_same (flag)) v += *p++; else v -= *p++; } else { if (!coord_setter.is_same (flag)) { if (unlikely (!bytes.in_range ((const HBUINT16 *) p))) return false; v += *(const HBINT16 *) p; p += HBINT16::static_size; } } coord_setter.set (points_[i], v); } return true; } bool get_contour_points (contour_point_vector_t &points_ /* OUT */, hb_vector_t &end_points_ /* OUT */, const bool phantom_only=false) const { const HBUINT16 *endPtsOfContours = &StructAfter (header); int num_contours = header.numberOfContours; if (unlikely (!bytes.in_range (&endPtsOfContours[num_contours + 1]))) return false; unsigned int num_points = endPtsOfContours[num_contours - 1] + 1; points_.resize (num_points + PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); if (phantom_only) return true; /* Read simple glyph points if !phantom_only */ end_points_.resize (num_contours); for (int i = 0; i < num_contours; i++) end_points_[i] = endPtsOfContours[i]; /* Skip instructions */ const HBUINT8 *p = &StructAtOffset (&endPtsOfContours[num_contours + 1], endPtsOfContours[num_contours]); /* Read flags */ for (unsigned int i = 0; i < num_points; i++) { if (unlikely (!bytes.in_range (p))) return false; uint8_t flag = *p++; points_[i].flag = flag; if (flag & FLAG_REPEAT) { if (unlikely (!bytes.in_range (p))) return false; unsigned int repeat_count = *p++; while ((repeat_count-- > 0) && (++i < num_points)) points_[i].flag = flag; } } /* Read x & y coordinates */ return (read_points (p, points_, bytes) && read_points (p, points_, bytes)); } }; struct CompositeGlyph { const GlyphHeader &header; hb_bytes_t bytes; CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) : header (header_), bytes (bytes_) {} composite_iter_t get_iterator () const { return composite_iter_t (bytes, &StructAfter (header)); } unsigned int instructions_length (hb_bytes_t bytes) const { unsigned int start = bytes.length; unsigned int end = bytes.length; const CompositeGlyphChain *last = nullptr; for (auto &item : get_iterator ()) last = &item; if (unlikely (!last)) return 0; if ((uint16_t) last->flags & CompositeGlyphChain::WE_HAVE_INSTRUCTIONS) start = (char *) last - &bytes + last->get_size (); if (unlikely (start > end)) return 0; return end - start; } /* Trimming for composites not implemented. * If removing hints it falls out of that. */ const Glyph trim_padding () const { return Glyph (bytes); } /* remove WE_HAVE_INSTRUCTIONS flag from composite glyph */ void drop_hints () { for (const auto &_ : get_iterator ()) *const_cast (&_.flags) = (uint16_t) _.flags & ~OT::glyf::CompositeGlyphChain::WE_HAVE_INSTRUCTIONS; } /* Chop instructions off the end */ void drop_hints_bytes (hb_bytes_t &dest_start) const { dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); } bool get_contour_points (contour_point_vector_t &points_ /* OUT */, hb_vector_t &end_points_ /* OUT */, const bool phantom_only=false) const { /* add one pseudo point for each component in composite glyph */ unsigned int num_points = hb_len (get_iterator ()); points_.resize (num_points + PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); return true; } }; enum glyph_type_t { EMPTY, SIMPLE, COMPOSITE }; enum phantom_point_index_t { PHANTOM_LEFT = 0, PHANTOM_RIGHT = 1, PHANTOM_TOP = 2, PHANTOM_BOTTOM = 3, PHANTOM_COUNT = 4 }; public: composite_iter_t get_composite_iterator () const { if (type != COMPOSITE) return composite_iter_t (); return CompositeGlyph (*header, bytes).get_iterator (); } const Glyph trim_padding () const { switch (type) { case COMPOSITE: return CompositeGlyph (*header, bytes).trim_padding (); case SIMPLE: return SimpleGlyph (*header, bytes).trim_padding (); default: return bytes; } } void drop_hints () { switch (type) { case COMPOSITE: CompositeGlyph (*header, bytes).drop_hints (); return; case SIMPLE: SimpleGlyph (*header, bytes).drop_hints (); return; default: return; } } void drop_hints_bytes (hb_bytes_t &dest_start, hb_bytes_t &dest_end) const { switch (type) { case COMPOSITE: CompositeGlyph (*header, bytes).drop_hints_bytes (dest_start); return; case SIMPLE: SimpleGlyph (*header, bytes).drop_hints_bytes (dest_start, dest_end); return; default: return; } } /* for a simple glyph, return contour end points, flags, along with coordinate points * for a composite glyph, return pseudo component points * in both cases points trailed with four phantom points */ bool get_contour_points (contour_point_vector_t &points_ /* OUT */, hb_vector_t &end_points_ /* OUT */, const bool phantom_only=false) const { switch (type) { case COMPOSITE: return CompositeGlyph (*header, bytes).get_contour_points (points_, end_points_, phantom_only); case SIMPLE: return SimpleGlyph (*header, bytes).get_contour_points (points_, end_points_, phantom_only); default: /* empty glyph */ points_.resize (PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); return true; } } bool is_simple_glyph () const { return type == SIMPLE; } bool is_composite_glyph () const { return type == COMPOSITE; } bool get_extents (hb_font_t *font, hb_codepoint_t gid, hb_glyph_extents_t *extents) const { if (type == EMPTY) return true; /* Empty glyph; zero extents. */ return header->get_extents (font, gid, extents); } hb_bytes_t get_bytes () const { return bytes; } const GlyphHeader &get_header () const { return *header; } Glyph (hb_bytes_t bytes_ = hb_bytes_t ()) : bytes (bytes_), header (bytes.as ()) { int num_contours = header->numberOfContours; if (unlikely (num_contours == 0)) type = EMPTY; else if (num_contours > 0) type = SIMPLE; else type = COMPOSITE; /* negative numbers */ } protected: hb_bytes_t bytes; const GlyphHeader *header; unsigned type; }; struct accelerator_t { void init (hb_face_t *face_) { short_offset = false; num_glyphs = 0; loca_table = nullptr; glyf_table = nullptr; face = face_; const OT::head &head = *face->table.head; if (head.indexToLocFormat > 1 || head.glyphDataFormat > 0) /* Unknown format. Leave num_glyphs=0, that takes care of disabling us. */ return; short_offset = 0 == head.indexToLocFormat; loca_table = hb_sanitize_context_t ().reference_table (face); glyf_table = hb_sanitize_context_t ().reference_table (face); num_glyphs = hb_max (1u, loca_table.get_length () / (short_offset ? 2 : 4)) - 1; } void fini () { loca_table.destroy (); glyf_table.destroy (); } enum phantom_point_index_t { PHANTOM_LEFT = 0, PHANTOM_RIGHT = 1, PHANTOM_TOP = 2, PHANTOM_BOTTOM = 3, PHANTOM_COUNT = 4 }; protected: void init_phantom_points (hb_codepoint_t gid, hb_array_t &phantoms /* IN/OUT */) const { const Glyph &glyph = glyph_for_gid (gid); int h_delta = (int) glyph.get_header ().xMin - face->table.hmtx->get_side_bearing (gid); int v_orig = (int) glyph.get_header ().yMax + face->table.vmtx->get_side_bearing (gid); unsigned int h_adv = face->table.hmtx->get_advance (gid); unsigned int v_adv = face->table.vmtx->get_advance (gid); phantoms[PHANTOM_LEFT].x = h_delta; phantoms[PHANTOM_RIGHT].x = h_adv + h_delta; phantoms[PHANTOM_TOP].y = v_orig; phantoms[PHANTOM_BOTTOM].y = v_orig - (int) v_adv; } struct contour_bounds_t { contour_bounds_t () { min_x = min_y = FLT_MAX; max_x = max_y = -FLT_MAX; } void add (const contour_point_t &p) { min_x = hb_min (min_x, p.x); min_y = hb_min (min_y, p.y); max_x = hb_max (max_x, p.x); max_y = hb_max (max_y, p.y); } bool empty () const { return (min_x >= max_x) || (min_y >= max_y); } void get_extents (hb_font_t *font, hb_glyph_extents_t *extents) { if (unlikely (empty ())) { extents->width = 0; extents->x_bearing = 0; extents->height = 0; extents->y_bearing = 0; return; } extents->x_bearing = font->em_scalef_x (min_x); extents->width = font->em_scalef_x (max_x - min_x); extents->y_bearing = font->em_scalef_y (max_y); extents->height = font->em_scalef_y (min_y - max_y); } protected: float min_x, min_y, max_x, max_y; }; #ifndef HB_NO_VAR /* Note: Recursively calls itself. * all_points includes phantom points */ bool get_points_var (hb_codepoint_t gid, const int *coords, unsigned int coord_count, contour_point_vector_t &all_points /* OUT */, unsigned int depth = 0) const { if (unlikely (depth++ > HB_MAX_NESTING_LEVEL)) return false; contour_point_vector_t points; hb_vector_t end_points; const Glyph &glyph = glyph_for_gid (gid); if (unlikely (!glyph.get_contour_points (points, end_points))) return false; hb_array_t phantoms = points.sub_array (points.length - PHANTOM_COUNT, PHANTOM_COUNT); init_phantom_points (gid, phantoms); if (unlikely (!face->table.gvar->apply_deltas_to_points (gid, coords, coord_count, points.as_array (), end_points.as_array ()))) return false; unsigned int comp_index = 0; if (glyph.is_simple_glyph ()) all_points.extend (points.as_array ()); else if (glyph.is_composite_glyph ()) { for (auto &item : glyph.get_composite_iterator ()) { contour_point_vector_t comp_points; if (unlikely (!get_points_var (item.glyphIndex, coords, coord_count, comp_points, depth)) || comp_points.length < PHANTOM_COUNT) return false; /* Copy phantom points from component if USE_MY_METRICS flag set */ if (item.is_use_my_metrics ()) for (unsigned int i = 0; i < PHANTOM_COUNT; i++) phantoms[i] = comp_points[comp_points.length - PHANTOM_COUNT + i]; /* Apply component transformation & translation */ item.transform_points (comp_points); /* Apply translatation from gvar */ comp_points.translate (points[comp_index]); if (item.is_anchored ()) { unsigned int p1, p2; item.get_anchor_points (p1, p2); if (likely (p1 < all_points.length && p2 < comp_points.length)) { contour_point_t delta; delta.init (all_points[p1].x - comp_points[p2].x, all_points[p1].y - comp_points[p2].y); comp_points.translate (delta); } } all_points.extend (comp_points.sub_array (0, comp_points.length - PHANTOM_COUNT)); comp_index++; } all_points.extend (phantoms); } else return false; return true; } bool get_points_bearing_applied (hb_font_t *font, hb_codepoint_t gid, contour_point_vector_t &all_points) const { if (unlikely (!get_points_var (gid, font->coords, font->num_coords, all_points) || all_points.length < PHANTOM_COUNT)) return false; /* Undocumented rasterizer behavior: * Shift points horizontally by the updated left side bearing */ contour_point_t delta; delta.init (-all_points[all_points.length - PHANTOM_COUNT + PHANTOM_LEFT].x, 0.f); if (delta.x) all_points.translate (delta); return true; } protected: bool get_var_extents_and_phantoms (hb_font_t *font, hb_codepoint_t gid, hb_glyph_extents_t *extents=nullptr /* OUT */, contour_point_vector_t *phantoms=nullptr /* OUT */) const { contour_point_vector_t all_points; if (!unlikely (get_points_bearing_applied (font, gid, all_points))) return false; if (extents) { contour_bounds_t bounds; for (unsigned int i = 0; i + PHANTOM_COUNT < all_points.length; i++) bounds.add (all_points[i]); bounds.get_extents (font, extents); } if (phantoms) for (unsigned int i = 0; i < PHANTOM_COUNT; i++) (*phantoms)[i] = all_points[all_points.length - PHANTOM_COUNT + i]; return true; } bool get_var_metrics (hb_font_t *font, hb_codepoint_t gid, contour_point_vector_t &phantoms) const { return get_var_extents_and_phantoms (font, gid, nullptr, &phantoms); } bool get_extents_var (hb_font_t *font, hb_codepoint_t gid, hb_glyph_extents_t *extents) const { return get_var_extents_and_phantoms (font, gid, extents); } #endif public: #ifndef HB_NO_VAR unsigned int get_advance_var (hb_font_t *font, hb_codepoint_t gid, bool is_vertical) const { bool success = false; contour_point_vector_t phantoms; phantoms.resize (PHANTOM_COUNT); if (likely (font->num_coords == face->table.gvar->get_axis_count ())) success = get_var_metrics (font, gid, phantoms); if (unlikely (!success)) return is_vertical ? face->table.vmtx->get_advance (gid) : face->table.hmtx->get_advance (gid); if (is_vertical) return roundf (phantoms[PHANTOM_TOP].y - phantoms[PHANTOM_BOTTOM].y); else return roundf (phantoms[PHANTOM_RIGHT].x - phantoms[PHANTOM_LEFT].x); } int get_side_bearing_var (hb_font_t *font, hb_codepoint_t gid, bool is_vertical) const { hb_glyph_extents_t extents; contour_point_vector_t phantoms; phantoms.resize (PHANTOM_COUNT); if (unlikely (!get_var_extents_and_phantoms (font, gid, &extents, &phantoms))) return is_vertical ? face->table.vmtx->get_side_bearing (gid) : face->table.hmtx->get_side_bearing (gid); return is_vertical ? ceil (phantoms[PHANTOM_TOP].y) - extents.y_bearing : floor (phantoms[PHANTOM_LEFT].x); } #endif bool get_extents (hb_font_t *font, hb_codepoint_t gid, hb_glyph_extents_t *extents) const { #ifndef HB_NO_VAR unsigned int coord_count; const int *coords = hb_font_get_var_coords_normalized (font, &coord_count); if (coords && coord_count > 0 && coord_count == face->table.gvar->get_axis_count ()) return get_extents_var (font, gid, extents); #endif if (unlikely (gid >= num_glyphs)) return false; return glyph_for_gid (gid).get_extents (font, gid, extents); } const Glyph glyph_for_gid (hb_codepoint_t gid, bool needs_padding_removal = false) const { unsigned int start_offset, end_offset; if (unlikely (gid >= num_glyphs)) return Glyph (); if (short_offset) { const HBUINT16 *offsets = (const HBUINT16 *) loca_table->dataZ.arrayZ; start_offset = 2 * offsets[gid]; end_offset = 2 * offsets[gid + 1]; } else { const HBUINT32 *offsets = (const HBUINT32 *) loca_table->dataZ.arrayZ; start_offset = offsets[gid]; end_offset = offsets[gid + 1]; } if (unlikely (start_offset > end_offset || end_offset > glyf_table.get_length ())) return Glyph (); Glyph glyph (hb_bytes_t ((const char *) this->glyf_table + start_offset, end_offset - start_offset)); return needs_padding_removal ? glyph.trim_padding () : glyph; } void add_gid_and_children (hb_codepoint_t gid, hb_set_t *gids_to_retain, unsigned int depth = 0) const { if (unlikely (depth++ > HB_MAX_NESTING_LEVEL)) return; /* Check if is already visited */ if (gids_to_retain->has (gid)) return; gids_to_retain->add (gid); for (auto &item : glyph_for_gid (gid).get_composite_iterator ()) add_gid_and_children (item.glyphIndex, gids_to_retain, depth); } private: bool short_offset; unsigned int num_glyphs; hb_blob_ptr_t loca_table; hb_blob_ptr_t glyf_table; hb_face_t *face; }; struct SubsetGlyph { hb_codepoint_t new_gid; hb_codepoint_t old_gid; Glyph source_glyph; hb_bytes_t dest_start; /* region of source_glyph to copy first */ hb_bytes_t dest_end; /* region of source_glyph to copy second */ bool serialize (hb_serialize_context_t *c, const hb_subset_plan_t *plan) const { TRACE_SERIALIZE (this); hb_bytes_t dest_glyph = dest_start.copy (c); dest_glyph = hb_bytes_t (&dest_glyph, dest_glyph.length + dest_end.copy (c).length); unsigned int pad_length = padding (); DEBUG_MSG (SUBSET, nullptr, "serialize %d byte glyph, width %d pad %d", dest_glyph.length, dest_glyph.length + pad_length, pad_length); HBUINT8 pad; pad = 0; while (pad_length > 0) { c->embed (pad); pad_length--; } if (!unlikely (dest_glyph.length)) return_trace (true); /* update components gids */ for (auto &_ : Glyph (dest_glyph).get_composite_iterator ()) { hb_codepoint_t new_gid; if (plan->new_gid_for_old_gid (_.glyphIndex, &new_gid)) ((OT::glyf::CompositeGlyphChain *) &_)->glyphIndex = new_gid; } if (plan->drop_hints) Glyph (dest_glyph).drop_hints (); return_trace (true); } void drop_hints_bytes () { source_glyph.drop_hints_bytes (dest_start, dest_end); } unsigned int length () const { return dest_start.length + dest_end.length; } /* pad to 2 to ensure 2-byte loca will be ok */ unsigned int padding () const { return length () % 2; } unsigned int padded_size () const { return length () + padding (); } }; protected: UnsizedArrayOf dataZ; /* Glyphs data. */ public: DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always * check the size externally, allow Null() object of it by * defining it _MIN instead. */ }; struct glyf_accelerator_t : glyf::accelerator_t {}; } /* namespace OT */ #endif /* HB_OT_GLYF_TABLE_HH */