/* * Copyright © 2019 Adobe Inc. * Copyright © 2019 Ebrahim Byagowi * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Adobe Author(s): Michiharu Ariza */ #ifndef HB_OT_VAR_GVAR_TABLE_HH #define HB_OT_VAR_GVAR_TABLE_HH #include "hb-open-type.hh" #include "hb-ot-var-common.hh" /* * gvar -- Glyph Variation Table * https://docs.microsoft.com/en-us/typography/opentype/spec/gvar */ #define HB_OT_TAG_gvar HB_TAG('g','v','a','r') namespace OT { struct GlyphVariationData : TupleVariationData {}; struct glyph_variations_t { using tuple_variations_t = TupleVariationData::tuple_variations_t; hb_vector_t glyph_variations; hb_vector_t compiled_shared_tuples; private: unsigned shared_tuples_count = 0; /* shared coords-> index map after instantiation */ hb_hashmap_t*, unsigned> shared_tuples_idx_map; public: unsigned compiled_shared_tuples_count () const { return shared_tuples_count; } unsigned compiled_byte_size () const { unsigned byte_size = 0; for (const auto& _ : glyph_variations) byte_size += _.get_compiled_byte_size (); return byte_size; } bool create_from_glyphs_var_data (unsigned axis_count, const hb_array_t shared_tuples, const hb_subset_plan_t *plan, const hb_hashmap_t& new_gid_var_data_map) { if (unlikely (!glyph_variations.alloc (plan->new_to_old_gid_list.length, true))) return false; auto it = hb_iter (plan->new_to_old_gid_list); for (auto &_ : it) { hb_codepoint_t new_gid = _.first; contour_point_vector_t *all_contour_points; if (!new_gid_var_data_map.has (new_gid) || !plan->new_gid_contour_points_map.has (new_gid, &all_contour_points)) return false; hb_bytes_t var_data = new_gid_var_data_map.get (new_gid); const GlyphVariationData* p = reinterpret_cast (var_data.arrayZ); hb_vector_t shared_indices; GlyphVariationData::tuple_iterator_t iterator; tuple_variations_t tuple_vars; /* in case variation data is empty, push an empty struct into the vector, * keep the vector in sync with the new_to_old_gid_list */ if (!var_data || ! p->has_data () || !all_contour_points->length || !GlyphVariationData::get_tuple_iterator (var_data, axis_count, var_data.arrayZ, shared_indices, &iterator)) { glyph_variations.push (std::move (tuple_vars)); continue; } bool is_composite_glyph = false; #ifdef HB_EXPERIMENTAL_API is_composite_glyph = plan->composite_new_gids.has (new_gid); #endif if (!p->decompile_tuple_variations (all_contour_points->length, true /* is_gvar */, iterator, &(plan->axes_old_index_tag_map), shared_indices, shared_tuples, tuple_vars, /* OUT */ is_composite_glyph)) return false; glyph_variations.push (std::move (tuple_vars)); } return !glyph_variations.in_error () && glyph_variations.length == plan->new_to_old_gid_list.length; } bool instantiate (const hb_subset_plan_t *plan) { unsigned count = plan->new_to_old_gid_list.length; bool iup_optimize = false; #ifdef HB_EXPERIMENTAL_API iup_optimize = plan->flags & HB_SUBSET_FLAGS_OPTIMIZE_IUP_DELTAS; #endif for (unsigned i = 0; i < count; i++) { hb_codepoint_t new_gid = plan->new_to_old_gid_list[i].first; contour_point_vector_t *all_points; if (!plan->new_gid_contour_points_map.has (new_gid, &all_points)) return false; if (!glyph_variations[i].instantiate (plan->axes_location, plan->axes_triple_distances, all_points, iup_optimize)) return false; } return true; } bool compile_bytes (const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map) { if (!compile_shared_tuples (axes_index_map, axes_old_index_tag_map)) return false; for (tuple_variations_t& vars: glyph_variations) if (!vars.compile_bytes (axes_index_map, axes_old_index_tag_map, true, /* use shared points*/ &shared_tuples_idx_map)) return false; return true; } bool compile_shared_tuples (const hb_map_t& axes_index_map, const hb_map_t& axes_old_index_tag_map) { /* key is pointer to compiled_peak_coords inside each tuple, hashing * function will always deref pointers first */ hb_hashmap_t*, unsigned> coords_count_map; /* count the num of shared coords */ for (tuple_variations_t& vars: glyph_variations) { for (tuple_delta_t& var : vars.tuple_vars) { if (!var.compile_peak_coords (axes_index_map, axes_old_index_tag_map)) return false; unsigned* count; if (coords_count_map.has (&(var.compiled_peak_coords), &count)) coords_count_map.set (&(var.compiled_peak_coords), *count + 1); else coords_count_map.set (&(var.compiled_peak_coords), 1); } } if (!coords_count_map || coords_count_map.in_error ()) return false; /* add only those coords that are used more than once into the vector and sort */ hb_vector_t*> shared_coords; if (unlikely (!shared_coords.alloc (coords_count_map.get_population ()))) return false; for (const auto _ : coords_count_map.iter ()) { if (_.second == 1) continue; shared_coords.push (_.first); } /* no shared tuples: no coords are used more than once */ if (!shared_coords) return true; /* sorting based on the coords frequency first (high to low), then compare * the coords bytes */ hb_qsort (shared_coords.arrayZ, shared_coords.length, sizeof (hb_vector_t*), _cmp_coords, (void *) (&coords_count_map)); /* build shared_coords->idx map and shared tuples byte array */ shared_tuples_count = hb_min (0xFFFu + 1, shared_coords.length); unsigned len = shared_tuples_count * (shared_coords[0]->length); if (unlikely (!compiled_shared_tuples.alloc (len))) return false; for (unsigned i = 0; i < shared_tuples_count; i++) { shared_tuples_idx_map.set (shared_coords[i], i); /* add a concat() in hb_vector_t? */ for (char c : shared_coords[i]->iter ()) compiled_shared_tuples.push (c); } return true; } static int _cmp_coords (const void *pa, const void *pb, void *arg) { const hb_hashmap_t*, unsigned>* coords_count_map = reinterpret_cast*, unsigned>*> (arg); /* shared_coords is hb_vector_t*> so casting pa/pb * to be a pointer to a pointer */ const hb_vector_t** a = reinterpret_cast**> (const_cast(pa)); const hb_vector_t** b = reinterpret_cast**> (const_cast(pb)); bool has_a = coords_count_map->has (*a); bool has_b = coords_count_map->has (*b); if (has_a && has_b) { unsigned a_num = coords_count_map->get (*a); unsigned b_num = coords_count_map->get (*b); if (a_num != b_num) return b_num - a_num; return (*b)->as_array().cmp ((*a)->as_array ()); } else if (has_a) return -1; else if (has_b) return 1; else return 0; } template bool serialize_glyph_var_data (hb_serialize_context_t *c, Iterator it, bool long_offset, unsigned num_glyphs, char* glyph_var_data_offsets /* OUT: glyph var data offsets array */) const { TRACE_SERIALIZE (this); if (long_offset) { ((HBUINT32 *) glyph_var_data_offsets)[0] = 0; glyph_var_data_offsets += 4; } else { ((HBUINT16 *) glyph_var_data_offsets)[0] = 0; glyph_var_data_offsets += 2; } unsigned glyph_offset = 0; hb_codepoint_t last_gid = 0; unsigned idx = 0; TupleVariationData* cur_glyph = c->start_embed (); if (!cur_glyph) return_trace (false); for (auto &_ : it) { hb_codepoint_t gid = _.first; if (long_offset) for (; last_gid < gid; last_gid++) ((HBUINT32 *) glyph_var_data_offsets)[last_gid] = glyph_offset; else for (; last_gid < gid; last_gid++) ((HBUINT16 *) glyph_var_data_offsets)[last_gid] = glyph_offset / 2; if (idx >= glyph_variations.length) return_trace (false); if (!cur_glyph->serialize (c, true, glyph_variations[idx])) return_trace (false); TupleVariationData* next_glyph = c->start_embed (); glyph_offset += (char *) next_glyph - (char *) cur_glyph; if (long_offset) ((HBUINT32 *) glyph_var_data_offsets)[gid] = glyph_offset; else ((HBUINT16 *) glyph_var_data_offsets)[gid] = glyph_offset / 2; last_gid++; idx++; cur_glyph = next_glyph; } if (long_offset) for (; last_gid < num_glyphs; last_gid++) ((HBUINT32 *) glyph_var_data_offsets)[last_gid] = glyph_offset; else for (; last_gid < num_glyphs; last_gid++) ((HBUINT16 *) glyph_var_data_offsets)[last_gid] = glyph_offset / 2; return_trace (true); } }; struct gvar { static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar; bool sanitize_shallow (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && hb_barrier () && (version.major == 1) && sharedTuples.sanitize (c, this, axisCount * sharedTupleCount) && (is_long_offset () ? c->check_array (get_long_offset_array (), c->get_num_glyphs () + 1) : c->check_array (get_short_offset_array (), c->get_num_glyphs () + 1))); } /* GlyphVariationData not sanitized here; must be checked while accessing each glyph variation data */ bool sanitize (hb_sanitize_context_t *c) const { return sanitize_shallow (c); } bool decompile_glyph_variations (hb_subset_context_t *c, glyph_variations_t& glyph_vars /* OUT */) const { hb_hashmap_t new_gid_var_data_map; auto it = hb_iter (c->plan->new_to_old_gid_list); if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE)) { new_gid_var_data_map.set (0, hb_bytes_t ()); it++; } for (auto &_ : it) { hb_codepoint_t new_gid = _.first; hb_codepoint_t old_gid = _.second; hb_bytes_t var_data_bytes = get_glyph_var_data_bytes (c->source_blob, glyphCountX, old_gid); new_gid_var_data_map.set (new_gid, var_data_bytes); } if (new_gid_var_data_map.in_error ()) return false; hb_array_t shared_tuples = (this+sharedTuples).as_array ((unsigned) sharedTupleCount * (unsigned) axisCount); return glyph_vars.create_from_glyphs_var_data (axisCount, shared_tuples, c->plan, new_gid_var_data_map); } template bool serialize (hb_serialize_context_t *c, const glyph_variations_t& glyph_vars, Iterator it, unsigned axis_count, unsigned num_glyphs, bool force_long_offsets) const { TRACE_SERIALIZE (this); gvar *out = c->allocate_min (); if (unlikely (!out)) return_trace (false); out->version.major = 1; out->version.minor = 0; out->axisCount = axis_count; out->glyphCountX = hb_min (0xFFFFu, num_glyphs); unsigned glyph_var_data_size = glyph_vars.compiled_byte_size (); bool long_offset = glyph_var_data_size & ~0xFFFFu || force_long_offsets; out->flags = long_offset ? 1 : 0; HBUINT8 *glyph_var_data_offsets = c->allocate_size ((long_offset ? 4 : 2) * (num_glyphs + 1), false); if (!glyph_var_data_offsets) return_trace (false); /* shared tuples */ unsigned shared_tuple_count = glyph_vars.compiled_shared_tuples_count (); out->sharedTupleCount = shared_tuple_count; if (!shared_tuple_count) out->sharedTuples = 0; else { hb_array_t shared_tuples = glyph_vars.compiled_shared_tuples.as_array ().copy (c); if (!shared_tuples.arrayZ) return_trace (false); out->sharedTuples = shared_tuples.arrayZ - (char *) out; } char *glyph_var_data = c->start_embed (); if (!glyph_var_data) return_trace (false); out->dataZ = glyph_var_data - (char *) out; return_trace (glyph_vars.serialize_glyph_var_data (c, it, long_offset, num_glyphs, (char *) glyph_var_data_offsets)); } bool instantiate (hb_subset_context_t *c) const { TRACE_SUBSET (this); glyph_variations_t glyph_vars; if (!decompile_glyph_variations (c, glyph_vars)) return_trace (false); if (!glyph_vars.instantiate (c->plan)) return_trace (false); if (!glyph_vars.compile_bytes (c->plan->axes_index_map, c->plan->axes_old_index_tag_map)) return_trace (false); unsigned axis_count = c->plan->axes_index_map.get_population (); unsigned num_glyphs = c->plan->num_output_glyphs (); auto it = hb_iter (c->plan->new_to_old_gid_list); bool force_long_offsets = false; #ifdef HB_EXPERIMENTAL_API force_long_offsets = c->plan->flags & HB_SUBSET_FLAGS_IFTB_REQUIREMENTS; #endif return_trace (serialize (c->serializer, glyph_vars, it, axis_count, num_glyphs, force_long_offsets)); } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); if (c->plan->all_axes_pinned) return_trace (false); if (c->plan->normalized_coords) return_trace (instantiate (c)); unsigned glyph_count = version.to_int () ? c->plan->source->get_num_glyphs () : 0; gvar *out = c->serializer->allocate_min (); if (unlikely (!out)) return_trace (false); out->version.major = 1; out->version.minor = 0; out->axisCount = axisCount; out->sharedTupleCount = sharedTupleCount; unsigned int num_glyphs = c->plan->num_output_glyphs (); out->glyphCountX = hb_min (0xFFFFu, num_glyphs); auto it = hb_iter (c->plan->new_to_old_gid_list); if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE)) it++; unsigned int subset_data_size = 0; for (auto &_ : it) { hb_codepoint_t old_gid = _.second; subset_data_size += get_glyph_var_data_bytes (c->source_blob, glyph_count, old_gid).length; } bool long_offset = (subset_data_size & ~0xFFFFu); #ifdef HB_EXPERIMENTAL_API long_offset = long_offset || (c->plan->flags & HB_SUBSET_FLAGS_IFTB_REQUIREMENTS); #endif out->flags = long_offset ? 1 : 0; HBUINT8 *subset_offsets = c->serializer->allocate_size ((long_offset ? 4 : 2) * (num_glyphs + 1), false); if (!subset_offsets) return_trace (false); /* shared tuples */ if (!sharedTupleCount || !sharedTuples) out->sharedTuples = 0; else { unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount; F2DOT14 *tuples = c->serializer->allocate_size (shared_tuple_size); if (!tuples) return_trace (false); out->sharedTuples = (char *) tuples - (char *) out; hb_memcpy (tuples, this+sharedTuples, shared_tuple_size); } /* This ordering relative to the shared tuples array, which puts the glyphVariationData last in the table, is required when HB_SUBSET_FLAGS_IFTB_REQUIREMENTS is set */ char *subset_data = c->serializer->allocate_size (subset_data_size, false); if (!subset_data) return_trace (false); out->dataZ = subset_data - (char *) out; if (long_offset) { ((HBUINT32 *) subset_offsets)[0] = 0; subset_offsets += 4; } else { ((HBUINT16 *) subset_offsets)[0] = 0; subset_offsets += 2; } unsigned int glyph_offset = 0; hb_codepoint_t last = 0; it = hb_iter (c->plan->new_to_old_gid_list); if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE)) it++; for (auto &_ : it) { hb_codepoint_t gid = _.first; hb_codepoint_t old_gid = _.second; if (long_offset) for (; last < gid; last++) ((HBUINT32 *) subset_offsets)[last] = glyph_offset; else for (; last < gid; last++) ((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2; hb_bytes_t var_data_bytes = get_glyph_var_data_bytes (c->source_blob, glyph_count, old_gid); hb_memcpy (subset_data, var_data_bytes.arrayZ, var_data_bytes.length); subset_data += var_data_bytes.length; glyph_offset += var_data_bytes.length; if (long_offset) ((HBUINT32 *) subset_offsets)[gid] = glyph_offset; else ((HBUINT16 *) subset_offsets)[gid] = glyph_offset / 2; last++; // Skip over gid } if (long_offset) for (; last < num_glyphs; last++) ((HBUINT32 *) subset_offsets)[last] = glyph_offset; else for (; last < num_glyphs; last++) ((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2; return_trace (true); } protected: const hb_bytes_t get_glyph_var_data_bytes (hb_blob_t *blob, unsigned glyph_count, hb_codepoint_t glyph) const { unsigned start_offset = get_offset (glyph_count, glyph); unsigned end_offset = get_offset (glyph_count, glyph+1); if (unlikely (end_offset < start_offset)) return hb_bytes_t (); unsigned length = end_offset - start_offset; hb_bytes_t var_data = blob->as_bytes ().sub_array (((unsigned) dataZ) + start_offset, length); return likely (var_data.length >= GlyphVariationData::min_size) ? var_data : hb_bytes_t (); } bool is_long_offset () const { return flags & 1; } unsigned get_offset (unsigned glyph_count, unsigned i) const { if (unlikely (i > glyph_count)) return 0; _hb_compiler_memory_r_barrier (); return is_long_offset () ? get_long_offset_array ()[i] : get_short_offset_array ()[i] * 2; } const HBUINT32 * get_long_offset_array () const { return (const HBUINT32 *) &offsetZ; } const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *) &offsetZ; } public: struct accelerator_t { accelerator_t (hb_face_t *face) { table = hb_sanitize_context_t ().reference_table (face); /* If sanitize failed, set glyphCount to 0. */ glyphCount = table->version.to_int () ? face->get_num_glyphs () : 0; /* For shared tuples that only have one axis active, shared the index of * that axis as a cache. This will speed up caclulate_scalar() a lot * for fonts with lots of axes and many "monovar" tuples. */ hb_array_t shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * table->axisCount); unsigned count = table->sharedTupleCount; if (unlikely (!shared_tuple_active_idx.resize (count, false))) return; unsigned axis_count = table->axisCount; for (unsigned i = 0; i < count; i++) { hb_array_t tuple = shared_tuples.sub_array (axis_count * i, axis_count); int idx1 = -1, idx2 = -1; for (unsigned j = 0; j < axis_count; j++) { const F2DOT14 &peak = tuple.arrayZ[j]; if (peak.to_int () != 0) { if (idx1 == -1) idx1 = j; else if (idx2 == -1) idx2 = j; else { idx1 = idx2 = -1; break; } } } shared_tuple_active_idx.arrayZ[i] = {idx1, idx2}; } } ~accelerator_t () { table.destroy (); } private: static float infer_delta (const hb_array_t points, const hb_array_t deltas, unsigned int target, unsigned int prev, unsigned int next, float contour_point_t::*m) { float target_val = points.arrayZ[target].*m; float prev_val = points.arrayZ[prev].*m; float next_val = points.arrayZ[next].*m; float prev_delta = deltas.arrayZ[prev].*m; float next_delta = deltas.arrayZ[next].*m; if (prev_val == next_val) return (prev_delta == next_delta) ? prev_delta : 0.f; else if (target_val <= hb_min (prev_val, next_val)) return (prev_val < next_val) ? prev_delta : next_delta; else if (target_val >= hb_max (prev_val, next_val)) return (prev_val > next_val) ? prev_delta : next_delta; /* linear interpolation */ float r = (target_val - prev_val) / (next_val - prev_val); return prev_delta + r * (next_delta - prev_delta); } static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) { return (i >= end) ? start : (i + 1); } public: bool apply_deltas_to_points (hb_codepoint_t glyph, hb_array_t coords, const hb_array_t points, bool phantom_only = false) const { if (unlikely (glyph >= glyphCount)) return true; hb_bytes_t var_data_bytes = table->get_glyph_var_data_bytes (table.get_blob (), glyphCount, glyph); if (!var_data_bytes.as ()->has_data ()) return true; hb_vector_t shared_indices; GlyphVariationData::tuple_iterator_t iterator; if (!GlyphVariationData::get_tuple_iterator (var_data_bytes, table->axisCount, var_data_bytes.arrayZ, shared_indices, &iterator)) return true; /* so isn't applied at all */ /* Save original points for inferred delta calculation */ contour_point_vector_t orig_points_vec; // Populated lazily auto orig_points = orig_points_vec.as_array (); /* flag is used to indicate referenced point */ contour_point_vector_t deltas_vec; // Populated lazily auto deltas = deltas_vec.as_array (); hb_vector_t end_points; // Populated lazily unsigned num_coords = table->axisCount; hb_array_t shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * num_coords); hb_vector_t private_indices; hb_vector_t x_deltas; hb_vector_t y_deltas; unsigned count = points.length; bool flush = false; do { float scalar = iterator.current_tuple->calculate_scalar (coords, num_coords, shared_tuples, &shared_tuple_active_idx); if (scalar == 0.f) continue; const HBUINT8 *p = iterator.get_serialized_data (); unsigned int length = iterator.current_tuple->get_data_size (); if (unlikely (!iterator.var_data_bytes.check_range (p, length))) return false; if (!deltas) { if (unlikely (!deltas_vec.resize (count, false))) return false; deltas = deltas_vec.as_array (); hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0, (phantom_only ? 4 : count) * sizeof (deltas[0])); } const HBUINT8 *end = p + length; bool has_private_points = iterator.current_tuple->has_private_points (); if (has_private_points && !GlyphVariationData::unpack_points (p, private_indices, end)) return false; const hb_array_t &indices = has_private_points ? private_indices : shared_indices; bool apply_to_all = (indices.length == 0); unsigned int num_deltas = apply_to_all ? points.length : indices.length; if (unlikely (!x_deltas.resize (num_deltas, false))) return false; if (unlikely (!GlyphVariationData::unpack_deltas (p, x_deltas, end))) return false; if (unlikely (!y_deltas.resize (num_deltas, false))) return false; if (unlikely (!GlyphVariationData::unpack_deltas (p, y_deltas, end))) return false; if (!apply_to_all) { if (!orig_points && !phantom_only) { orig_points_vec.extend (points); if (unlikely (orig_points_vec.in_error ())) return false; orig_points = orig_points_vec.as_array (); } if (flush) { for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) points.arrayZ[i].translate (deltas.arrayZ[i]); flush = false; } hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0, (phantom_only ? 4 : count) * sizeof (deltas[0])); } if (HB_OPTIMIZE_SIZE_VAL) { for (unsigned int i = 0; i < num_deltas; i++) { unsigned int pt_index; if (apply_to_all) pt_index = i; else { pt_index = indices[i]; if (unlikely (pt_index >= deltas.length)) continue; } if (phantom_only && pt_index < count - 4) continue; auto &delta = deltas.arrayZ[pt_index]; delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ delta.x += x_deltas.arrayZ[i] * scalar; delta.y += y_deltas.arrayZ[i] * scalar; } } else { /* Ouch. Four cases... for optimization. */ if (scalar != 1.0f) { if (apply_to_all) for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) { unsigned int pt_index = i; auto &delta = deltas.arrayZ[pt_index]; delta.x += x_deltas.arrayZ[i] * scalar; delta.y += y_deltas.arrayZ[i] * scalar; } else for (unsigned int i = 0; i < num_deltas; i++) { unsigned int pt_index = indices[i]; if (unlikely (pt_index >= deltas.length)) continue; if (phantom_only && pt_index < count - 4) continue; auto &delta = deltas.arrayZ[pt_index]; delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ delta.x += x_deltas.arrayZ[i] * scalar; delta.y += y_deltas.arrayZ[i] * scalar; } } else { if (apply_to_all) for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) { unsigned int pt_index = i; auto &delta = deltas.arrayZ[pt_index]; delta.x += x_deltas.arrayZ[i]; delta.y += y_deltas.arrayZ[i]; } else for (unsigned int i = 0; i < num_deltas; i++) { unsigned int pt_index = indices[i]; if (unlikely (pt_index >= deltas.length)) continue; if (phantom_only && pt_index < count - 4) continue; auto &delta = deltas.arrayZ[pt_index]; delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ delta.x += x_deltas.arrayZ[i]; delta.y += y_deltas.arrayZ[i]; } } } /* infer deltas for unreferenced points */ if (!apply_to_all && !phantom_only) { if (!end_points) { for (unsigned i = 0; i < count; ++i) if (points.arrayZ[i].is_end_point) end_points.push (i); if (unlikely (end_points.in_error ())) return false; } unsigned start_point = 0; for (unsigned end_point : end_points) { /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ unsigned unref_count = 0; for (unsigned i = start_point; i < end_point + 1; i++) unref_count += deltas.arrayZ[i].flag; unref_count = (end_point - start_point + 1) - unref_count; unsigned j = start_point; if (unref_count == 0 || unref_count > end_point - start_point) goto no_more_gaps; for (;;) { /* Locate the next gap of unreferenced points between two referenced points prev and next. * Note that a gap may wrap around at left (start_point) and/or at right (end_point). */ unsigned int prev, next, i; for (;;) { i = j; j = next_index (i, start_point, end_point); if (deltas.arrayZ[i].flag && !deltas.arrayZ[j].flag) break; } prev = j = i; for (;;) { i = j; j = next_index (i, start_point, end_point); if (!deltas.arrayZ[i].flag && deltas.arrayZ[j].flag) break; } next = j; /* Infer deltas for all unref points in the gap between prev and next */ i = prev; for (;;) { i = next_index (i, start_point, end_point); if (i == next) break; deltas.arrayZ[i].x = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::x); deltas.arrayZ[i].y = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::y); if (--unref_count == 0) goto no_more_gaps; } } no_more_gaps: start_point = end_point + 1; } } flush = true; } while (iterator.move_to_next ()); if (flush) { for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) points.arrayZ[i].translate (deltas.arrayZ[i]); } return true; } unsigned int get_axis_count () const { return table->axisCount; } private: hb_blob_ptr_t table; unsigned glyphCount; hb_vector_t> shared_tuple_active_idx; }; protected: FixedVersion<>version; /* Version number of the glyph variations table * Set to 0x00010000u. */ HBUINT16 axisCount; /* The number of variation axes for this font. This must be * the same number as axisCount in the 'fvar' table. */ HBUINT16 sharedTupleCount; /* The number of shared tuple records. Shared tuple records * can be referenced within glyph variation data tables for * multiple glyphs, as opposed to other tuple records stored * directly within a glyph variation data table. */ NNOffset32To> sharedTuples; /* Offset from the start of this table to the shared tuple records. * Array of tuple records shared across all glyph variation data tables. */ HBUINT16 glyphCountX; /* The number of glyphs in this font. This must match the number of * glyphs stored elsewhere in the font. */ HBUINT16 flags; /* Bit-field that gives the format of the offset array that follows. * If bit 0 is clear, the offsets are uint16; if bit 0 is set, the * offsets are uint32. */ Offset32To dataZ; /* Offset from the start of this table to the array of * GlyphVariationData tables. */ UnsizedArrayOf offsetZ; /* Offsets from the start of the GlyphVariationData array * to each GlyphVariationData table. */ public: DEFINE_SIZE_ARRAY (20, offsetZ); }; struct gvar_accelerator_t : gvar::accelerator_t { gvar_accelerator_t (hb_face_t *face) : gvar::accelerator_t (face) {} }; } /* namespace OT */ #endif /* HB_OT_VAR_GVAR_TABLE_HH */