/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name() { return "x86" SLJIT_CPUINFO; } /* 32b register indexes: 0 - EAX 1 - ECX 2 - EDX 3 - EBX 4 - none 5 - EBP 6 - ESI 7 - EDI */ /* 64b register indexes: 0 - RAX 1 - RCX 2 - RDX 3 - RBX 4 - none 5 - RBP 6 - RSI 7 - RDI 8 - R8 - From now on REX prefix is required 9 - R9 10 - R10 11 - R11 12 - R12 13 - R13 14 - R14 15 - R15 */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* Last register + 1. */ #define TMP_REGISTER (SLJIT_NO_REGISTERS + 1) static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 2] = { 0, 0, 2, 1, 0, 0, 3, 6, 7, 0, 0, 4, 5 }; #define CHECK_EXTRA_REGS(p, w, do) \ if (p >= SLJIT_TEMPORARY_EREG1 && p <= SLJIT_TEMPORARY_EREG2) { \ w = compiler->temporaries_start + (p - SLJIT_TEMPORARY_EREG1) * sizeof(sljit_w); \ p = SLJIT_MEM1(SLJIT_LOCALS_REG); \ do; \ } \ else if (p >= SLJIT_SAVED_EREG1 && p <= SLJIT_SAVED_EREG2) { \ w = compiler->saveds_start + (p - SLJIT_SAVED_EREG1) * sizeof(sljit_w); \ p = SLJIT_MEM1(SLJIT_LOCALS_REG); \ do; \ } #else /* SLJIT_CONFIG_X86_32 */ /* Last register + 1. */ #define TMP_REGISTER (SLJIT_NO_REGISTERS + 1) #define TMP_REG2 (SLJIT_NO_REGISTERS + 2) #define TMP_REG3 (SLJIT_NO_REGISTERS + 3) /* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present Note: avoid to use r12 and r13 for memory addessing therefore r12 is better for SAVED_EREG than SAVED_REG. */ #ifndef _WIN64 /* 1st passed in rdi, 2nd argument passed in rsi, 3rd in rdx. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = { 0, 0, 6, 1, 8, 11, 3, 15, 14, 13, 12, 4, 2, 7, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = { 0, 0, 6, 1, 0, 3, 3, 7, 6, 5, 4, 4, 2, 7, 1 }; #else /* 1st passed in rcx, 2nd argument passed in rdx, 3rd in r8. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = { 0, 0, 2, 1, 11, 13, 3, 6, 7, 14, 12, 15, 10, 8, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = { 0, 0, 2, 1, 3, 5, 3, 6, 7, 6, 4, 7, 2, 0, 1 }; #endif #define REX_W 0x48 #define REX_R 0x44 #define REX_X 0x42 #define REX_B 0x41 #define REX 0x40 typedef unsigned int sljit_uhw; typedef int sljit_hw; #define IS_HALFWORD(x) ((x) <= 0x7fffffffll && (x) >= -0x80000000ll) #define NOT_HALFWORD(x) ((x) > 0x7fffffffll || (x) < -0x80000000ll) #define CHECK_EXTRA_REGS(p, w, do) #endif /* SLJIT_CONFIG_X86_32 */ #if (defined SLJIT_SSE2 && SLJIT_SSE2) #define TMP_FREG (SLJIT_FLOAT_REG4 + 1) #endif /* Size flags for emit_x86_instruction: */ #define EX86_BIN_INS 0x0010 #define EX86_SHIFT_INS 0x0020 #define EX86_REX 0x0040 #define EX86_NO_REXW 0x0080 #define EX86_BYTE_ARG 0x0100 #define EX86_HALF_ARG 0x0200 #define EX86_PREF_66 0x0400 #if (defined SLJIT_SSE2 && SLJIT_SSE2) #define EX86_PREF_F2 0x0800 #define EX86_SSE2 0x1000 #endif #define INC_SIZE(s) (*buf++ = (s), compiler->size += (s)) #define INC_CSIZE(s) (*code++ = (s), compiler->size += (s)) #define PUSH_REG(r) (*buf++ = (0x50 + (r))) #define POP_REG(r) (*buf++ = (0x58 + (r))) #define RET() (*buf++ = (0xc3)) #define RETN(n) (*buf++ = (0xc2), *buf++ = n, *buf++ = 0) /* r32, r/m32 */ #define MOV_RM(mod, reg, rm) (*buf++ = (0x8b), *buf++ = (mod) << 6 | (reg) << 3 | (rm)) static sljit_ub get_jump_code(int type) { switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_FLOAT_EQUAL: return 0x84; case SLJIT_C_NOT_EQUAL: case SLJIT_C_FLOAT_NOT_EQUAL: return 0x85; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: return 0x82; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: return 0x83; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: return 0x87; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: return 0x86; case SLJIT_C_SIG_LESS: return 0x8c; case SLJIT_C_SIG_GREATER_EQUAL: return 0x8d; case SLJIT_C_SIG_GREATER: return 0x8f; case SLJIT_C_SIG_LESS_EQUAL: return 0x8e; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: return 0x80; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: return 0x81; case SLJIT_C_FLOAT_NAN: return 0x8a; case SLJIT_C_FLOAT_NOT_NAN: return 0x8b; } return 0; } static sljit_ub* generate_far_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, int type); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) static sljit_ub* generate_fixed_jump(sljit_ub *code_ptr, sljit_w addr, int type); #endif static sljit_ub* generate_near_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_ub *code, int type) { int short_jump; sljit_uw label_addr; if (jump->flags & JUMP_LABEL) label_addr = (sljit_uw)(code + jump->u.label->size); else label_addr = jump->u.target; short_jump = (sljit_w)(label_addr - (jump->addr + 2)) >= -128 && (sljit_w)(label_addr - (jump->addr + 2)) <= 127; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((sljit_w)(label_addr - (jump->addr + 1)) > 0x7fffffffll || (sljit_w)(label_addr - (jump->addr + 1)) < -0x80000000ll) return generate_far_jump_code(jump, code_ptr, type); #endif if (type == SLJIT_JUMP) { if (short_jump) *code_ptr++ = 0xeb; else *code_ptr++ = 0xe9; jump->addr++; } else if (type >= SLJIT_FAST_CALL) { short_jump = 0; *code_ptr++ = 0xe8; jump->addr++; } else if (short_jump) { *code_ptr++ = get_jump_code(type) - 0x10; jump->addr++; } else { *code_ptr++ = 0x0f; *code_ptr++ = get_jump_code(type); jump->addr += 2; } if (short_jump) { jump->flags |= PATCH_MB; code_ptr += sizeof(sljit_b); } else { jump->flags |= PATCH_MW; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code_ptr += sizeof(sljit_w); #else code_ptr += sizeof(sljit_hw); #endif } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ub *code; sljit_ub *code_ptr; sljit_ub *buf_ptr; sljit_ub *buf_end; sljit_ub len; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); check_sljit_generate_code(compiler); reverse_buf(compiler); /* Second code generation pass. */ code = (sljit_ub*)SLJIT_MALLOC_EXEC(compiler->size); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = buf->memory; buf_end = buf_ptr + buf->used_size; do { len = *buf_ptr++; if (len > 0) { /* The code is already generated. */ SLJIT_MEMMOVE(code_ptr, buf_ptr, len); code_ptr += len; buf_ptr += len; } else { if (*buf_ptr >= 4) { jump->addr = (sljit_uw)code_ptr; if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 4); else code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 4); jump = jump->next; } else if (*buf_ptr == 0) { label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } else if (*buf_ptr == 1) { const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_w); const_ = const_->next; } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *code_ptr++ = (*buf_ptr == 2) ? 0xe8 /* call */ : 0xe9 /* jmp */; buf_ptr++; *(sljit_w*)code_ptr = *(sljit_w*)buf_ptr - ((sljit_w)code_ptr + sizeof(sljit_w)); code_ptr += sizeof(sljit_w); buf_ptr += sizeof(sljit_w) - 1; #else code_ptr = generate_fixed_jump(code_ptr, *(sljit_w*)(buf_ptr + 1), *buf_ptr); buf_ptr += sizeof(sljit_w); #endif } buf_ptr++; } } while (buf_ptr < buf_end); SLJIT_ASSERT(buf_ptr == buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); jump = compiler->jumps; while (jump) { if (jump->flags & PATCH_MB) { SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) >= -128 && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) <= 127); *(sljit_ub*)jump->addr = (sljit_ub)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))); } else if (jump->flags & PATCH_MW) { if (jump->flags & JUMP_LABEL) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)jump->addr = (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_w))); #else SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll); *(sljit_hw*)jump->addr = (sljit_hw)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))); #endif } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)jump->addr = (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_w))); #else SLJIT_ASSERT((sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll); *(sljit_hw*)jump->addr = (sljit_hw)(jump->u.target - (jump->addr + sizeof(sljit_hw))); #endif } } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) else if (jump->flags & PATCH_MD) *(sljit_w*)jump->addr = jump->u.label->addr; #endif jump = jump->next; } /* Maybe we waste some space because of short jumps. */ SLJIT_ASSERT(code_ptr <= code + compiler->size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = compiler->size; return (void*)code; } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static int emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w); static int emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w); static int emit_mov(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw); static SLJIT_INLINE int emit_save_flags(struct sljit_compiler *compiler) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!buf); INC_SIZE(5); *buf++ = 0x9c; /* pushfd */ #else buf = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!buf); INC_SIZE(6); *buf++ = 0x9c; /* pushfq */ *buf++ = 0x48; #endif *buf++ = 0x8d; /* lea esp/rsp, [esp/rsp + sizeof(sljit_w)] */ *buf++ = 0x64; *buf++ = 0x24; *buf++ = sizeof(sljit_w); compiler->flags_saved = 1; return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_restore_flags(struct sljit_compiler *compiler, int keep_flags) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!buf); INC_SIZE(5); #else buf = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!buf); INC_SIZE(6); *buf++ = 0x48; #endif *buf++ = 0x8d; /* lea esp/rsp, [esp/rsp - sizeof(sljit_w)] */ *buf++ = 0x64; *buf++ = 0x24; *buf++ = (sljit_ub)-(int)sizeof(sljit_w); *buf++ = 0x9d; /* popfd / popfq */ compiler->flags_saved = keep_flags; return SLJIT_SUCCESS; } #ifdef _WIN32 #include static void SLJIT_CALL sljit_touch_stack(sljit_w local_size) { /* Workaround for calling _chkstk. */ alloca(local_size); } #endif #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #include "sljitNativeX86_32.c" #else #include "sljitNativeX86_64.c" #endif static int emit_mov(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { /* No destination, doesn't need to setup flags. */ if (src & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; } return SLJIT_SUCCESS; } if (src >= SLJIT_TEMPORARY_REG1 && src <= TMP_REGISTER) { code = emit_x86_instruction(compiler, 1, src, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else if (!compiler->mode32) { if (NOT_HALFWORD(srcw)) return emit_load_imm64(compiler, dst, srcw); } else return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, 0xb8 + reg_lmap[dst], srcw); #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (!compiler->mode32 && NOT_HALFWORD(srcw)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, srcw)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } #endif code = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc7; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { code = emit_x86_instruction(compiler, 1, dst, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; return SLJIT_SUCCESS; } /* Memory to memory move. Requires two instruction. */ code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } #define EMIT_MOV(compiler, dst, dstw, src, srcw) \ FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int size; #endif CHECK_ERROR(); check_sljit_emit_op0(compiler, op); switch (GET_OPCODE(op)) { case SLJIT_BREAKPOINT: buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0xcc; break; case SLJIT_NOP: buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x90; break; case SLJIT_UMUL: case SLJIT_SMUL: case SLJIT_UDIV: case SLJIT_SDIV: compiler->flags_saved = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #ifdef _WIN64 SLJIT_COMPILE_ASSERT( reg_map[SLJIT_TEMPORARY_REG1] == 0 && reg_map[SLJIT_TEMPORARY_REG2] == 2 && reg_map[TMP_REGISTER] > 7, invalid_register_assignment_for_div_mul); #else SLJIT_COMPILE_ASSERT( reg_map[SLJIT_TEMPORARY_REG1] == 0 && reg_map[SLJIT_TEMPORARY_REG2] < 7 && reg_map[TMP_REGISTER] == 2, invalid_register_assignment_for_div_mul); #endif compiler->mode32 = op & SLJIT_INT_OP; #endif op = GET_OPCODE(op); if (op == SLJIT_UDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG2, 0); buf = emit_x86_instruction(compiler, 1, SLJIT_TEMPORARY_REG2, 0, SLJIT_TEMPORARY_REG2, 0); #else buf = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); #endif FAIL_IF(!buf); *buf = 0x33; } if (op == SLJIT_SDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG2, 0); #endif /* CDQ instruction */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x99; #else if (compiler->mode32) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x99; } else { buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = REX_W; *buf = 0x99; } #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = 0xf7; *buf = 0xc0 | ((op >= SLJIT_UDIV) ? reg_map[TMP_REGISTER] : reg_map[SLJIT_TEMPORARY_REG2]); #else #ifdef _WIN64 size = (!compiler->mode32 || op >= SLJIT_UDIV) ? 3 : 2; #else size = (!compiler->mode32) ? 3 : 2; #endif buf = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!buf); INC_SIZE(size); #ifdef _WIN64 if (!compiler->mode32) *buf++ = REX_W | ((op >= SLJIT_UDIV) ? REX_B : 0); else if (op >= SLJIT_UDIV) *buf++ = REX_B; *buf++ = 0xf7; *buf = 0xc0 | ((op >= SLJIT_UDIV) ? reg_lmap[TMP_REGISTER] : reg_lmap[SLJIT_TEMPORARY_REG2]); #else if (!compiler->mode32) *buf++ = REX_W; *buf++ = 0xf7; *buf = 0xc0 | reg_map[SLJIT_TEMPORARY_REG2]; #endif #endif switch (op) { case SLJIT_UMUL: *buf |= 4 << 3; break; case SLJIT_SMUL: *buf |= 5 << 3; break; case SLJIT_UDIV: *buf |= 6 << 3; break; case SLJIT_SDIV: *buf |= 7 << 3; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64) EMIT_MOV(compiler, SLJIT_TEMPORARY_REG2, 0, TMP_REGISTER, 0); #endif break; } return SLJIT_SUCCESS; } #define ENCODE_PREFIX(prefix) \ do { \ code = (sljit_ub*)ensure_buf(compiler, 1 + 1); \ FAIL_IF(!code); \ INC_CSIZE(1); \ *code = (prefix); \ } while (0) static int emit_mov_byte(struct sljit_compiler *compiler, int sign, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) int work_r; #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else return emit_load_imm64(compiler, dst, srcw); #endif } code = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc6; return SLJIT_SUCCESS; } dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER; if ((dst & SLJIT_MEM) && src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg_map[src] >= 4) { SLJIT_ASSERT(dst_r == TMP_REGISTER); EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); } else dst_r = src; #else dst_r = src; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS && reg_map[src] >= 4) { /* src, dst are registers. */ SLJIT_ASSERT(dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER); if (reg_map[dst] < 4) { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); code = emit_x86_instruction(compiler, 2, dst, 0, dst, 0); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbe : 0xb6; } else { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); if (sign) { /* shl reg, 24 */ code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!code); *code |= 0x4 << 3; code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!code); /* shr/sar reg, 24 */ *code |= 0x7 << 3; } else { /* and dst, 0xff */ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 255, dst, 0); FAIL_IF(!code); *(code + 1) |= 0x4 << 3; } } return SLJIT_SUCCESS; } #endif else { /* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */ code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbe : 0xb6; } if (dst & SLJIT_MEM) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst_r == TMP_REGISTER) { /* Find a non-used register, whose reg_map[src] < 4. */ if ((dst & 0xf) == SLJIT_TEMPORARY_REG1) { if ((dst & 0xf0) == (SLJIT_TEMPORARY_REG2 << 4)) work_r = SLJIT_TEMPORARY_REG3; else work_r = SLJIT_TEMPORARY_REG2; } else { if ((dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4)) work_r = SLJIT_TEMPORARY_REG1; else if ((dst & 0xf) == SLJIT_TEMPORARY_REG2) work_r = SLJIT_TEMPORARY_REG3; else work_r = SLJIT_TEMPORARY_REG2; } if (work_r == SLJIT_TEMPORARY_REG1) { ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]); } else { code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!code); *code = 0x87; } code = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; if (work_r == SLJIT_TEMPORARY_REG1) { ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]); } else { code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!code); *code = 0x87; } } else { code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; } #else code = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; #endif } return SLJIT_SUCCESS; } static int emit_mov_half(struct sljit_compiler *compiler, int sign, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else return emit_load_imm64(compiler, dst, srcw); #endif } code = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc7; return SLJIT_SUCCESS; } dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER; if ((dst & SLJIT_MEM) && (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)) dst_r = src; else { code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbf : 0xb7; } if (dst & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; } return SLJIT_SUCCESS; } static int emit_unary(struct sljit_compiler *compiler, int un_index, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } if (dst == src && dstw == srcw) { /* Same input and output */ code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_not_with_flags(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x0b; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, dst, 0, dst, 0); FAIL_IF(!code); *code = 0x0b; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x0b; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_clz(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; SLJIT_UNUSED_ARG(op); if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { /* Just set the zero flag. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 31, TMP_REGISTER, 0); #else code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, TMP_REGISTER, 0); #endif FAIL_IF(!code); *code |= 0x5 << 3; return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); src = TMP_REGISTER; srcw = 0; } code = emit_x86_instruction(compiler, 2, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = 0xbd; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) dst_r = dst; else { /* Find an unused temporary register. */ if ((dst & 0xf) != SLJIT_TEMPORARY_REG1 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4)) dst_r = SLJIT_TEMPORARY_REG1; else if ((dst & 0xf) != SLJIT_TEMPORARY_REG2 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG2 << 4)) dst_r = SLJIT_TEMPORARY_REG2; else dst_r = SLJIT_TEMPORARY_REG3; EMIT_MOV(compiler, dst, dstw, dst_r, 0); } EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, 32 + 31); #else dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REG2; compiler->mode32 = 0; EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 64 + 63 : 32 + 31); compiler->mode32 = op & SLJIT_INT_OP; #endif code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0x45; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0); #else code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, dst_r, 0); #endif FAIL_IF(!code); *(code + 1) |= 0x6 << 3; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x87; } #else if (dst & SLJIT_MEM) EMIT_MOV(compiler, dst, dstw, TMP_REG2, 0); #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int update = 0; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) int dst_is_ereg = 0; int src_is_ereg = 0; #else #define src_is_ereg 0 #endif CHECK_ERROR(); check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_INT_OP; #endif CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1); CHECK_EXTRA_REGS(src, srcw, src_is_ereg = 1); if (GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI) { op = GET_OPCODE(op); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif SLJIT_COMPILE_ASSERT(SLJIT_MOV + 7 == SLJIT_MOVU, movu_offset); if (op >= SLJIT_MOVU) { update = 1; op -= 7; } if (src & SLJIT_IMM) { switch (op) { case SLJIT_MOV_UB: srcw = (unsigned char)srcw; break; case SLJIT_MOV_SB: srcw = (signed char)srcw; break; case SLJIT_MOV_UH: srcw = (unsigned short)srcw; break; case SLJIT_MOV_SH: srcw = (signed short)srcw; break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: srcw = (unsigned int)srcw; break; case SLJIT_MOV_SI: srcw = (signed int)srcw; break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg)) return emit_mov(compiler, dst, dstw, src, srcw); #endif } if (SLJIT_UNLIKELY(update) && (src & SLJIT_MEM) && !src_is_ereg && (src & 0xf) && (srcw != 0 || (src & 0xf0) != 0)) { code = emit_x86_instruction(compiler, 1, src & 0xf, 0, src, srcw); FAIL_IF(!code); *code = 0x8d; src &= SLJIT_MEM | 0xf; srcw = 0; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_UI || op == SLJIT_MOV_SI) || (src & SLJIT_MEM))) { SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_LOCALS_REG)); dst = TMP_REGISTER; } #endif switch (op) { case SLJIT_MOV: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) case SLJIT_MOV_UI: case SLJIT_MOV_SI: #endif FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); break; case SLJIT_MOV_UB: FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw)); break; case SLJIT_MOV_SB: FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw)); break; case SLJIT_MOV_UH: FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw)); break; case SLJIT_MOV_SH: FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw)); break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned int)srcw : srcw)); break; case SLJIT_MOV_SI: FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed int)srcw : srcw)); break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REGISTER) return emit_mov(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), dstw, TMP_REGISTER, 0); #endif if (SLJIT_UNLIKELY(update) && (dst & SLJIT_MEM) && (dst & 0xf) && (dstw != 0 || (dst & 0xf0) != 0)) { code = emit_x86_instruction(compiler, 1, dst & 0xf, 0, dst, dstw); FAIL_IF(!code); *code = 0x8d; } return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; switch (GET_OPCODE(op)) { case SLJIT_NOT: if (SLJIT_UNLIKELY(op & SLJIT_SET_E)) return emit_not_with_flags(compiler, dst, dstw, src, srcw); return emit_unary(compiler, 0x2, dst, dstw, src, srcw); case SLJIT_NEG: if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_unary(compiler, 0x3, dst, dstw, src, srcw); case SLJIT_CLZ: if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_clz(compiler, op, dst, dstw, src, srcw); } return SLJIT_SUCCESS; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #undef src_is_ereg #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \ if (IS_HALFWORD(immw) || compiler->mode32) { \ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!code); \ *(code + 1) |= (_op_imm_); \ } \ else { \ FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immw)); \ code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, arg, argw); \ FAIL_IF(!code); \ *code = (_op_mr_); \ } #define BINARY_EAX_IMM(_op_eax_imm_, immw) \ FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (_op_eax_imm_), immw)) #else #define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!code); \ *(code + 1) |= (_op_imm_); #define BINARY_EAX_IMM(_op_eax_imm_, immw) \ FAIL_IF(emit_do_imm(compiler, (_op_eax_imm_), immw)) #endif static int emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!code); *code = op_rm; } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REGISTER) { /* Special exception for sljit_emit_cond_value. */ code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* Only for cumulative operations. */ if (dst == src2 && dstw == src2w) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src1w); } else { BINARY_IMM(op_imm, op_mr, src1w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w); FAIL_IF(!code); *code = op_rm; } else if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!code); *code = op_rm; } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if ((dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) && dst != src2) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_mul(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; int dst_r; dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; /* Register destination. */ if (dst_r == src1 && !(src2 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } else if (dst_r == src2 && !(src1 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } else if (src1 & SLJIT_IMM) { if (src2 & SLJIT_IMM) { EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w); src2 = dst_r; src2w = 0; } if (src1w <= 127 && src1w >= -128) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x6b; code = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!code); INC_CSIZE(1); *code = (sljit_b)src1w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_w*)code = src1w; } #else else if (IS_HALFWORD(src1w)) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_hw*)code = (sljit_hw)src1w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src2) EMIT_MOV(compiler, dst_r, 0, src2, src2w); code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } #endif } else if (src2 & SLJIT_IMM) { /* Note: src1 is NOT immediate. */ if (src2w <= 127 && src2w >= -128) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x6b; code = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!code); INC_CSIZE(1); *code = (sljit_b)src2w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_w*)code = src2w; } #else else if (IS_HALFWORD(src2w)) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_hw*)code = (sljit_hw)src2w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src1) EMIT_MOV(compiler, dst_r, 0, src1, src1w); code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } #endif } else { /* Neither argument is immediate. */ if (ADDRESSING_DEPENDS_ON(src2, dst_r)) dst_r = TMP_REGISTER; EMIT_MOV(compiler, dst_r, 0, src1, src1w); code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } if (dst_r == TMP_REGISTER) EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_lea_binary(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; int dst_r, done = 0; /* These cases better be left to handled by normal way. */ if (dst == src1 && dstw == src1w) return SLJIT_ERR_UNSUPPORTED; if (dst == src2 && dstw == src2w) return SLJIT_ERR_UNSUPPORTED; dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { /* It is not possible to be both SLJIT_LOCALS_REG. */ if (src1 != SLJIT_LOCALS_REG || src2 != SLJIT_LOCALS_REG) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0); FAIL_IF(!code); *code = 0x8d; done = 1; } } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (int)src2w); #else if (src2 & SLJIT_IMM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w); #endif FAIL_IF(!code); *code = 0x8d; done = 1; } } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (int)src1w); #else if (src1 & SLJIT_IMM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w); #endif FAIL_IF(!code); *code = 0x8d; done = 1; } } if (done) { if (dst_r == TMP_REGISTER) return emit_mov(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } return SLJIT_ERR_UNSUPPORTED; } static int emit_cmp_binary(struct sljit_compiler *compiler, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(0x3d, src2w); return SLJIT_SUCCESS; } if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if (src2 & SLJIT_IMM) { BINARY_IMM(0x7 << 3, 0x39, src2w, src1, 0); } else { code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!code); *code = 0x3b; } return SLJIT_SUCCESS; } if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS && !(src1 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!code); *code = 0x39; return SLJIT_SUCCESS; } if (src2 & SLJIT_IMM) { if (src1 & SLJIT_IMM) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); src1 = TMP_REGISTER; src1w = 0; } BINARY_IMM(0x7 << 3, 0x39, src2w, src1, src1w); } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = 0x3b; } return SLJIT_SUCCESS; } static int emit_test_binary(struct sljit_compiler *compiler, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(0xa9, src2w); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src2 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if (src2 == SLJIT_TEMPORARY_REG1 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(0xa9, src1w); return SLJIT_SUCCESS; } if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src1, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src1w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src2, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, src1, src1w, src2, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } static int emit_shift(struct sljit_compiler *compiler, sljit_ub mode, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) { if (dst == src1 && dstw == src1w) { code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) { if (src1 != dst) EMIT_MOV(compiler, dst, 0, src1, src1w); EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); } else { /* This case is really difficult, since ecx itself may used for addressing, and we must ensure to work even in that case. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0); #else /* [esp - 4] is reserved for eflags. */ EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), -(int)(2 * sizeof(sljit_w)), SLJIT_PREF_SHIFT_REG, 0); #endif EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0); #else /* [esp - 4] is reserved for eflags. */ EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), -(int)(2 * sizeof(sljit_w))); #endif EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_shift_with_flags(struct sljit_compiler *compiler, sljit_ub mode, int set_flags, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { /* The CPU does not set flags if the shift count is 0. */ if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2w & 0x3f) != 0 || (compiler->mode32 && (src2w & 0x1f) != 0)) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #else if ((src2w & 0x1f) != 0) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #endif if (!set_flags) return emit_mov(compiler, dst, dstw, src1, src1w); /* OR dst, src, 0 */ return emit_cum_binary(compiler, 0x0b, 0x09, 0x1 << 3, 0x0d, dst, dstw, src1, src1w, SLJIT_IMM, 0); } if (!set_flags) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); if (!(dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)) FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0)); FAIL_IF(emit_shift(compiler,mode, dst, dstw, src1, src1w, src2, src2w)); if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) return emit_cmp_binary(compiler, dst, dstw, SLJIT_IMM, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { CHECK_ERROR(); check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_INT_OP; #endif CHECK_EXTRA_REGS(dst, dstw, (void)0); CHECK_EXTRA_REGS(src1, src1w, (void)0); CHECK_EXTRA_REGS(src2, src2w, (void)0); if (GET_OPCODE(op) >= SLJIT_MUL) { if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); } switch (GET_OPCODE(op)) { case SLJIT_ADD: if (!GET_FLAGS(op)) { if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_cum_binary(compiler, 0x03, 0x01, 0x0 << 3, 0x05, dst, dstw, src1, src1w, src2, src2w); case SLJIT_ADDC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_cum_binary(compiler, 0x13, 0x11, 0x2 << 3, 0x15, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: if (!GET_FLAGS(op)) { if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); if (dst == SLJIT_UNUSED) return emit_cmp_binary(compiler, src1, src1w, src2, src2w); return emit_non_cum_binary(compiler, 0x2b, 0x29, 0x5 << 3, 0x2d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUBC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_non_cum_binary(compiler, 0x1b, 0x19, 0x3 << 3, 0x1d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: if (dst == SLJIT_UNUSED) return emit_test_binary(compiler, src1, src1w, src2, src2w); return emit_cum_binary(compiler, 0x23, 0x21, 0x4 << 3, 0x25, dst, dstw, src1, src1w, src2, src2w); case SLJIT_OR: return emit_cum_binary(compiler, 0x0b, 0x09, 0x1 << 3, 0x0d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_XOR: return emit_cum_binary(compiler, 0x33, 0x31, 0x6 << 3, 0x35, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: return emit_shift_with_flags(compiler, 0x4 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_LSHR: return emit_shift_with_flags(compiler, 0x5 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_ASHR: return emit_shift_with_flags(compiler, 0x7 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_get_register_index(int reg) { check_sljit_get_register_index(reg); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg == SLJIT_TEMPORARY_EREG1 || reg == SLJIT_TEMPORARY_EREG2 || reg == SLJIT_SAVED_EREG1 || reg == SLJIT_SAVED_EREG2) return -1; #endif return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, int size) { sljit_ub *buf; CHECK_ERROR(); check_sljit_emit_op_custom(compiler, instruction, size); SLJIT_ASSERT(size > 0 && size < 16); buf = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!buf); INC_SIZE(size); SLJIT_MEMMOVE(buf, instruction, size); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) static int sse2_available = 0; #endif #if (defined SLJIT_SSE2 && SLJIT_SSE2) /* Alignment + 2 * 16 bytes. */ static sljit_i sse2_data[3 + 4 + 4]; static sljit_i *sse2_buffer; static void init_compiler() { #if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) int features = 0; #endif sse2_buffer = (sljit_i*)(((sljit_uw)sse2_data + 15) & ~0xf); sse2_buffer[0] = 0; sse2_buffer[1] = 0x80000000; sse2_buffer[4] = 0xffffffff; sse2_buffer[5] = 0x7fffffff; #if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) #ifdef __GNUC__ /* AT&T syntax. */ asm ( "pushl %%ebx\n" "movl $0x1, %%eax\n" "cpuid\n" "popl %%ebx\n" "movl %%edx, %0\n" : "=g" (features) : : "%eax", "%ecx", "%edx" ); #elif defined(_MSC_VER) || defined(__BORLANDC__) /* Intel syntax. */ __asm { mov eax, 1 push ebx cpuid pop ebx mov features, edx } #else #error "SLJIT_SSE2_AUTO is not implemented for this C compiler" #endif sse2_available = (features >> 26) & 0x1; #endif } #endif SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void) { /* Always available. */ return 1; } #if (defined SLJIT_SSE2 && SLJIT_SSE2) static int emit_sse2(struct sljit_compiler *compiler, sljit_ub opcode, int xmm1, int xmm2, sljit_w xmm2w) { sljit_ub *buf; buf = emit_x86_instruction(compiler, 2 | EX86_PREF_F2 | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!buf); *buf++ = 0x0f; *buf = opcode; return SLJIT_SUCCESS; } static int emit_sse2_logic(struct sljit_compiler *compiler, sljit_ub opcode, int xmm1, int xmm2, sljit_w xmm2w) { sljit_ub *buf; buf = emit_x86_instruction(compiler, 2 | EX86_PREF_66 | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!buf); *buf++ = 0x0f; *buf = opcode; return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_sse2_load(struct sljit_compiler *compiler, int dst, int src, sljit_w srcw) { return emit_sse2(compiler, 0x10, dst, src, srcw); } static SLJIT_INLINE int emit_sse2_store(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src) { return emit_sse2(compiler, 0x11, src, dst, dstw); } #if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, #else static int sljit_emit_sse2_fop1(struct sljit_compiler *compiler, int op, #endif int dst, sljit_w dstw, int src, sljit_w srcw) { int dst_r; CHECK_ERROR(); check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (GET_OPCODE(op) == SLJIT_FCMP) { compiler->flags_saved = 0; if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) dst_r = dst; else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, dst_r, dst, dstw)); } return emit_sse2_logic(compiler, 0x2e, dst_r, src, srcw); } if (op == SLJIT_FMOV) { if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) return emit_sse2_load(compiler, dst, src, srcw); if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) return emit_sse2_store(compiler, dst, dstw, src); FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src, srcw)); return emit_sse2_store(compiler, dst, dstw, TMP_FREG); } if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) { dst_r = dst; if (dst != src) FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw)); } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw)); } switch (op) { case SLJIT_FNEG: FAIL_IF(emit_sse2_logic(compiler, 0x57, dst_r, SLJIT_MEM0(), (sljit_w)sse2_buffer)); break; case SLJIT_FABS: FAIL_IF(emit_sse2_logic(compiler, 0x54, dst_r, SLJIT_MEM0(), (sljit_w)(sse2_buffer + 4))); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } #if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, #else static int sljit_emit_sse2_fop2(struct sljit_compiler *compiler, int op, #endif int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { int dst_r; CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) { dst_r = dst; if (dst == src1) ; /* Do nothing here. */ else if (dst == src2 && (op == SLJIT_FADD || op == SLJIT_FMUL)) { /* Swap arguments. */ src2 = src1; src2w = src1w; } else if (dst != src2) FAIL_IF(emit_sse2_load(compiler, dst_r, src1, src1w)); else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w)); } } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w)); } switch (op) { case SLJIT_FADD: FAIL_IF(emit_sse2(compiler, 0x58, dst_r, src2, src2w)); break; case SLJIT_FSUB: FAIL_IF(emit_sse2(compiler, 0x5c, dst_r, src2, src2w)); break; case SLJIT_FMUL: FAIL_IF(emit_sse2(compiler, 0x59, dst_r, src2, src2w)); break; case SLJIT_FDIV: FAIL_IF(emit_sse2(compiler, 0x5e, dst_r, src2, src2w)); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } #endif #if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) || !(defined SLJIT_SSE2 && SLJIT_SSE2) static int emit_fld(struct sljit_compiler *compiler, int src, sljit_w srcw) { sljit_ub *buf; if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = 0xd9; *buf = 0xc0 + src - 1; return SLJIT_SUCCESS; } buf = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!buf); *buf = 0xdd; return SLJIT_SUCCESS; } static int emit_fop(struct sljit_compiler *compiler, sljit_ub st_arg, sljit_ub st_arg2, sljit_ub m64fp_arg, sljit_ub m64fp_arg2, int src, sljit_w srcw) { sljit_ub *buf; if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = st_arg; *buf = st_arg2 + src; return SLJIT_SUCCESS; } buf = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!buf); *buf++ = m64fp_arg; *buf |= m64fp_arg2; return SLJIT_SUCCESS; } static int emit_fop_regs(struct sljit_compiler *compiler, sljit_ub st_arg, sljit_ub st_arg2, int src) { sljit_ub *buf; buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = st_arg; *buf = st_arg2 + src; return SLJIT_SUCCESS; } #if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, #else static int sljit_emit_fpu_fop1(struct sljit_compiler *compiler, int op, #endif int dst, sljit_w dstw, int src, sljit_w srcw) { #if !(defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_ub *buf; #endif CHECK_ERROR(); check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (GET_OPCODE(op) == SLJIT_FCMP) { compiler->flags_saved = 0; #if !(defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) FAIL_IF(emit_fld(compiler, dst, dstw)); FAIL_IF(emit_fop(compiler, 0xd8, 0xd8, 0xdc, 0x3 << 3, src, srcw)); /* Copy flags. */ EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3); FAIL_IF(!buf); INC_SIZE(3); *buf++ = 0xdf; *buf++ = 0xe0; /* Note: lahf is not supported on all x86-64 architectures. */ *buf++ = 0x9e; EMIT_MOV(compiler, SLJIT_TEMPORARY_REG1, 0, TMP_REGISTER, 0); #else if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) { FAIL_IF(emit_fld(compiler, dst, dstw)); FAIL_IF(emit_fop_regs(compiler, 0xdf, 0xe8, src)); } else { FAIL_IF(emit_fld(compiler, src, srcw)); FAIL_IF(emit_fld(compiler, dst + ((dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) ? 1 : 0), dstw)); FAIL_IF(emit_fop_regs(compiler, 0xdf, 0xe8, src)); FAIL_IF(emit_fop_regs(compiler, 0xdd, 0xd8, 0)); } #endif return SLJIT_SUCCESS; } FAIL_IF(emit_fld(compiler, src, srcw)); switch (op) { case SLJIT_FNEG: FAIL_IF(emit_fop_regs(compiler, 0xd9, 0xe0, 0)); break; case SLJIT_FABS: FAIL_IF(emit_fop_regs(compiler, 0xd9, 0xe1, 0)); break; } FAIL_IF(emit_fop(compiler, 0xdd, 0xd8, 0xdd, 0x3 << 3, dst, dstw)); return SLJIT_SUCCESS; } #if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, #else static int sljit_emit_fpu_fop2(struct sljit_compiler *compiler, int op, #endif int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (src1 >= SLJIT_FLOAT_REG1 && src1 <= SLJIT_FLOAT_REG4 && dst == src1) { FAIL_IF(emit_fld(compiler, src2, src2w)); switch (op) { case SLJIT_FADD: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc0, src1)); break; case SLJIT_FSUB: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xe8, src1)); break; case SLJIT_FMUL: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc8, src1)); break; case SLJIT_FDIV: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xf8, src1)); break; } return SLJIT_SUCCESS; } FAIL_IF(emit_fld(compiler, src1, src1w)); if (src2 >= SLJIT_FLOAT_REG1 && src2 <= SLJIT_FLOAT_REG4 && dst == src2) { switch (op) { case SLJIT_FADD: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc0, src2)); break; case SLJIT_FSUB: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xe0, src2)); break; case SLJIT_FMUL: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc8, src2)); break; case SLJIT_FDIV: FAIL_IF(emit_fop_regs(compiler, 0xde, 0xf0, src2)); break; } return SLJIT_SUCCESS; } switch (op) { case SLJIT_FADD: FAIL_IF(emit_fop(compiler, 0xd8, 0xc0, 0xdc, 0x0 << 3, src2, src2w)); break; case SLJIT_FSUB: FAIL_IF(emit_fop(compiler, 0xd8, 0xe0, 0xdc, 0x4 << 3, src2, src2w)); break; case SLJIT_FMUL: FAIL_IF(emit_fop(compiler, 0xd8, 0xc8, 0xdc, 0x1 << 3, src2, src2w)); break; case SLJIT_FDIV: FAIL_IF(emit_fop(compiler, 0xd8, 0xf0, 0xdc, 0x6 << 3, src2, src2w)); break; } FAIL_IF(emit_fop(compiler, 0xdd, 0xd8, 0xdd, 0x3 << 3, dst, dstw)); return SLJIT_SUCCESS; } #endif #if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { if (sse2_available) return sljit_emit_sse2_fop1(compiler, op, dst, dstw, src, srcw); else return sljit_emit_fpu_fop1(compiler, op, dst, dstw, src, srcw); } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { if (sse2_available) return sljit_emit_sse2_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); else return sljit_emit_fpu_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); } #endif /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { sljit_ub *buf; struct sljit_label *label; CHECK_ERROR_PTR(); check_sljit_emit_label(compiler); /* We should restore the flags before the label, since other taken jumps has their own flags as well. */ if (SLJIT_UNLIKELY(compiler->flags_saved)) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!buf); *buf++ = 0; *buf++ = 0; return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type) { sljit_ub *buf; struct sljit_jump *jump; CHECK_ERROR_PTR(); check_sljit_emit_jump(compiler, type); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if ((type & 0xff) <= SLJIT_JUMP) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF_NULL(jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; if (type >= SLJIT_CALL1) PTR_FAIL_IF(call_with_args(compiler, type)); /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += (type >= SLJIT_JUMP) ? 5 : 6; #else compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3); #endif buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF_NULL(buf); *buf++ = 0; *buf++ = type + 4; return jump; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw) { sljit_ub *code; struct sljit_jump *jump; CHECK_ERROR(); check_sljit_emit_ijump(compiler, type, src, srcw); CHECK_EXTRA_REGS(src, srcw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if (type <= SLJIT_JUMP) FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } if (type >= SLJIT_CALL1) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (src == SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); src = TMP_REGISTER; } if ((src & SLJIT_MEM) && (src & 0xf) == SLJIT_LOCALS_REG && type >= SLJIT_CALL3) { if (src & 0xf0) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); src = TMP_REGISTER; } else srcw += sizeof(sljit_w); } #else if ((src & SLJIT_MEM) && (src & 0xf) == SLJIT_LOCALS_REG) { if (src & 0xf0) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); src = TMP_REGISTER; } else srcw += sizeof(sljit_w) * (type - SLJIT_CALL0); } #endif #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && defined(_WIN64) if (src == SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); src = TMP_REGISTER; } #endif FAIL_IF(call_with_args(compiler, type)); } if (src == SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF_NULL(jump); set_jump(jump, compiler, JUMP_ADDR); jump->u.target = srcw; /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += 5; #else compiler->size += 10 + 3; #endif code = (sljit_ub*)ensure_buf(compiler, 2); FAIL_IF_NULL(code); *code++ = 0; *code++ = type + 4; } else { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; #endif code = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!code); *code++ = 0xff; *code |= (type >= SLJIT_FAST_CALL) ? (2 << 3) : (4 << 3); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type) { sljit_ub *buf; sljit_ub cond_set = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int reg; #endif CHECK_ERROR(); check_sljit_emit_cond_value(compiler, op, dst, dstw, type); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; CHECK_EXTRA_REGS(dst, dstw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) FAIL_IF(emit_restore_flags(compiler, 0)); switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_FLOAT_EQUAL: cond_set = 0x94; break; case SLJIT_C_NOT_EQUAL: case SLJIT_C_FLOAT_NOT_EQUAL: cond_set = 0x95; break; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: cond_set = 0x92; break; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: cond_set = 0x93; break; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: cond_set = 0x97; break; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: cond_set = 0x96; break; case SLJIT_C_SIG_LESS: cond_set = 0x9c; break; case SLJIT_C_SIG_GREATER_EQUAL: cond_set = 0x9d; break; case SLJIT_C_SIG_GREATER: cond_set = 0x9f; break; case SLJIT_C_SIG_LESS_EQUAL: cond_set = 0x9e; break; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: cond_set = 0x90; break; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: cond_set = 0x91; break; case SLJIT_C_FLOAT_NAN: cond_set = 0x9a; break; case SLJIT_C_FLOAT_NOT_NAN: cond_set = 0x9b; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) reg = (op == SLJIT_MOV && dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; buf = (sljit_ub*)ensure_buf(compiler, 1 + 4 + 4); FAIL_IF(!buf); INC_SIZE(4 + 4); /* Set low register to conditional flag. */ *buf++ = (reg_map[reg] <= 7) ? 0x40 : REX_B; *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_lmap[reg]; *buf++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R)); *buf++ = 0x0f; *buf++ = 0xb6; *buf = 0xC0 | (reg_lmap[reg] << 3) | reg_lmap[reg]; if (reg == TMP_REGISTER) { if (op == SLJIT_MOV) { compiler->mode32 = 0; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } else { #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst, dstw, dst, dstw, TMP_REGISTER, 0); } } #else if (op == SLJIT_MOV) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!buf); INC_SIZE(3 + 3); /* Set low byte to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_map[dst]; *buf++ = 0x0f; *buf++ = 0xb6; *buf = 0xC0 | (reg_map[dst] << 3) | reg_map[dst]; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!buf); INC_SIZE(3 + 3); /* Set al to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0; *buf++ = 0x0f; *buf++ = 0xb6; if (dst >= SLJIT_SAVED_REG1 && dst <= SLJIT_NO_REGISTERS) *buf = 0xC0 | (reg_map[dst] << 3); else { *buf = 0xC0; EMIT_MOV(compiler, dst, dstw, SLJIT_TEMPORARY_REG1, 0); } EMIT_MOV(compiler, SLJIT_TEMPORARY_REG1, 0, TMP_REGISTER, 0); } } else { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, dst, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3); FAIL_IF(!buf); INC_SIZE(3); *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_map[dst]; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3 + 1); FAIL_IF(!buf); INC_SIZE(3 + 3 + 1); /* Set al to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0; *buf++ = 0x0f; *buf++ = 0xb6; *buf++ = 0xC0; *buf++ = 0x90 + reg_map[TMP_REGISTER]; } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst, dstw, dst, dstw, TMP_REGISTER, 0); } #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value) { sljit_ub *buf; struct sljit_const *const_; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int reg; #endif CHECK_ERROR_PTR(); check_sljit_emit_const(compiler, dst, dstw, init_value); CHECK_EXTRA_REGS(dst, dstw, (void)0); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; if (emit_load_imm64(compiler, reg, init_value)) return NULL; #else if (dst == SLJIT_UNUSED) dst = TMP_REGISTER; if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value)) return NULL; #endif buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!buf); *buf++ = 0; *buf++ = 1; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (reg == TMP_REGISTER && dst != SLJIT_UNUSED) if (emit_mov(compiler, dst, dstw, TMP_REGISTER, 0)) return NULL; #endif return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)addr = new_addr - (addr + 4); #else *(sljit_uw*)addr = new_addr; #endif } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant) { *(sljit_w*)addr = new_constant; }