/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* ppc 32-bit arch dependent functions. */ static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { if (imm <= SIMM_MAX && imm >= SIMM_MIN) return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm)); if (!(imm & ~0xffff)) return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm)); FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16))); return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS; } #define INS_CLEAR_LEFT(dst, src, from) \ (RLWINM | S(src) | A(dst) | ((from) << 6) | (31 << 1)) static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_s32 src2) { switch (op) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: SLJIT_ASSERT(src1 == TMP_REG1); if (dst != src2) return push_inst(compiler, OR | S(src2) | A(dst) | B(src2)); return SLJIT_SUCCESS; case SLJIT_MOV_U8: case SLJIT_MOV_S8: SLJIT_ASSERT(src1 == TMP_REG1); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S8) return push_inst(compiler, EXTSB | S(src2) | A(dst)); return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24)); } else if ((flags & REG_DEST) && op == SLJIT_MOV_S8) return push_inst(compiler, EXTSB | S(src2) | A(dst)); else { SLJIT_ASSERT(dst == src2); } return SLJIT_SUCCESS; case SLJIT_MOV_U16: case SLJIT_MOV_S16: SLJIT_ASSERT(src1 == TMP_REG1); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S16) return push_inst(compiler, EXTSH | S(src2) | A(dst)); return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16)); } else { SLJIT_ASSERT(dst == src2); } return SLJIT_SUCCESS; case SLJIT_NOT: SLJIT_ASSERT(src1 == TMP_REG1); return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2)); case SLJIT_NEG: SLJIT_ASSERT(src1 == TMP_REG1); /* Setting XER SO is not enough, CR SO is also needed. */ return push_inst(compiler, NEG | OE((flags & ALT_FORM1) ? ALT_SET_FLAGS : 0) | RC(flags) | D(dst) | A(src2)); case SLJIT_CLZ: SLJIT_ASSERT(src1 == TMP_REG1); return push_inst(compiler, CNTLZW | S(src2) | A(dst)); case SLJIT_ADD: if (flags & ALT_FORM1) { /* Setting XER SO is not enough, CR SO is also needed. */ return push_inst(compiler, ADD | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2)); } if (flags & ALT_FORM2) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ SLJIT_ASSERT(src2 == TMP_REG2); if (flags & ALT_FORM3) return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm); if (flags & ALT_FORM4) { FAIL_IF(push_inst(compiler, ADDIS | D(dst) | A(src1) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)))); src1 = dst; } return push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm); } if (!(flags & ALT_SET_FLAGS)) return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2)); if (flags & ALT_FORM4) return push_inst(compiler, ADDC | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2)); return push_inst(compiler, ADD | RC(flags) | D(dst) | A(src1) | B(src2)); case SLJIT_ADDC: return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)); case SLJIT_SUB: if (flags & ALT_FORM1) { if (flags & ALT_FORM2) { FAIL_IF(push_inst(compiler, CMPLI | CRD(0) | A(src1) | compiler->imm)); if (!(flags & ALT_FORM3)) return SLJIT_SUCCESS; return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff)); } FAIL_IF(push_inst(compiler, CMPL | CRD(0) | A(src1) | B(src2))); if (!(flags & ALT_FORM3)) return SLJIT_SUCCESS; return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1)); } if (flags & ALT_FORM2) { /* Setting XER SO is not enough, CR SO is also needed. */ return push_inst(compiler, SUBF | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1)); } if (flags & ALT_FORM3) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm); } if (flags & ALT_FORM4) { if (flags & ALT_FORM5) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, CMPI | CRD(0) | A(src1) | compiler->imm); } return push_inst(compiler, CMP | CRD(0) | A(src1) | B(src2)); } if (!(flags & ALT_SET_FLAGS)) return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1)); if (flags & ALT_FORM5) return push_inst(compiler, SUBFC | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1)); return push_inst(compiler, SUBF | RC(flags) | D(dst) | A(src2) | B(src1)); case SLJIT_SUBC: return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)); case SLJIT_MUL: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm); } return push_inst(compiler, MULLW | OE(flags) | RC(flags) | D(dst) | A(src2) | B(src1)); case SLJIT_AND: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm); } return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_OR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm))); return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16)); } return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_XOR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm))); return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16)); } return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_SHL: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); compiler->imm &= 0x1f; return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1)); } return push_inst(compiler, SLW | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_LSHR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); compiler->imm &= 0x1f; return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1)); } return push_inst(compiler, SRW | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_ASHR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); compiler->imm &= 0x1f; return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11)); } return push_inst(compiler, SRAW | RC(flags) | S(src1) | A(dst) | B(src2)); } SLJIT_UNREACHABLE(); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value) { FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 16))); return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value)); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { sljit_ins *inst = (sljit_ins *)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 16) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | (new_target & 0xffff); inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { sljit_ins *inst = (sljit_ins *)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 16) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | (new_constant & 0xffff); inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); }