/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* x86 64-bit arch dependent functions. */ /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static sljit_s32 emit_load_imm64(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { sljit_u8 *inst; inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + sizeof(sljit_sw)); FAIL_IF(!inst); INC_SIZE(2 + sizeof(sljit_sw)); inst[0] = REX_W | ((reg_map[reg] <= 7) ? 0 : REX_B); inst[1] = U8(MOV_r_i32 | reg_lmap[reg]); sljit_unaligned_store_sw(inst + 2, imm); return SLJIT_SUCCESS; } static sljit_s32 emit_do_imm32(struct sljit_compiler *compiler, sljit_u8 rex, sljit_u8 opcode, sljit_sw imm) { sljit_u8 *inst; sljit_uw length = (rex ? 2 : 1) + sizeof(sljit_s32); inst = (sljit_u8*)ensure_buf(compiler, 1 + length); FAIL_IF(!inst); INC_SIZE(length); if (rex) *inst++ = rex; *inst++ = opcode; sljit_unaligned_store_s32(inst, (sljit_s32)imm); return SLJIT_SUCCESS; } static sljit_u8* emit_x86_instruction(struct sljit_compiler *compiler, sljit_uw size, /* The register or immediate operand. */ sljit_s32 a, sljit_sw imma, /* The general operand (not immediate). */ sljit_s32 b, sljit_sw immb) { sljit_u8 *inst; sljit_u8 *buf_ptr; sljit_u8 rex = 0; sljit_u8 reg_lmap_b; sljit_uw flags = size; sljit_uw inst_size; /* The immediate operand must be 32 bit. */ SLJIT_ASSERT(a != SLJIT_IMM || compiler->mode32 || IS_HALFWORD(imma)); /* Both cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BIN_INS | EX86_SHIFT_INS)) != (EX86_BIN_INS | EX86_SHIFT_INS)); /* Size flags not allowed for typed instructions. */ SLJIT_ASSERT(!(flags & (EX86_BIN_INS | EX86_SHIFT_INS)) || (flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) == 0); /* Both size flags cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) != (EX86_BYTE_ARG | EX86_HALF_ARG)); /* SSE2 and immediate is not possible. */ SLJIT_ASSERT(a != SLJIT_IMM || !(flags & EX86_SSE2)); SLJIT_ASSERT(((flags & (EX86_PREF_F2 | EX86_PREF_F3 | EX86_PREF_66)) & ((flags & (EX86_PREF_F2 | EX86_PREF_F3 | EX86_PREF_66)) - 1)) == 0); SLJIT_ASSERT((flags & (EX86_VEX_EXT | EX86_REX)) != EX86_VEX_EXT); size &= 0xf; /* The mod r/m byte is always present. */ inst_size = size + 1; if (!compiler->mode32 && !(flags & EX86_NO_REXW)) rex |= REX_W; else if (flags & EX86_REX) rex |= REX; if (flags & (EX86_PREF_F2 | EX86_PREF_F3 | EX86_PREF_66)) inst_size++; /* Calculate size of b. */ if (b & SLJIT_MEM) { if (!(b & OFFS_REG_MASK) && NOT_HALFWORD(immb)) { PTR_FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immb)); immb = 0; if (b & REG_MASK) b |= TO_OFFS_REG(TMP_REG2); else b |= TMP_REG2; } if (!(b & REG_MASK)) inst_size += 1 + sizeof(sljit_s32); /* SIB byte required to avoid RIP based addressing. */ else { if (immb != 0 && !(b & OFFS_REG_MASK)) { /* Immediate operand. */ if (immb <= 127 && immb >= -128) inst_size += sizeof(sljit_s8); else inst_size += sizeof(sljit_s32); } else if (reg_lmap[b & REG_MASK] == 5) { /* Swap registers if possible. */ if ((b & OFFS_REG_MASK) && (immb & 0x3) == 0 && reg_lmap[OFFS_REG(b)] != 5) b = SLJIT_MEM | OFFS_REG(b) | TO_OFFS_REG(b & REG_MASK); else inst_size += sizeof(sljit_s8); } if (reg_map[b & REG_MASK] >= 8) rex |= REX_B; if (reg_lmap[b & REG_MASK] == 4 && !(b & OFFS_REG_MASK)) b |= TO_OFFS_REG(SLJIT_SP); if (b & OFFS_REG_MASK) { inst_size += 1; /* SIB byte. */ if (reg_map[OFFS_REG(b)] >= 8) rex |= REX_X; } } } else if (!(flags & EX86_SSE2_OP2)) { if (reg_map[b] >= 8) rex |= REX_B; } else if (freg_map[b] >= 8) rex |= REX_B; if ((flags & EX86_VEX_EXT) && (rex & 0x3)) { SLJIT_ASSERT(size == 2); size++; inst_size++; } if (a == SLJIT_IMM) { if (flags & EX86_BIN_INS) { if (imma <= 127 && imma >= -128) { inst_size += 1; flags |= EX86_BYTE_ARG; } else inst_size += 4; } else if (flags & EX86_SHIFT_INS) { SLJIT_ASSERT(imma <= (compiler->mode32 ? 0x1f : 0x3f)); if (imma != 1) { inst_size++; flags |= EX86_BYTE_ARG; } } else if (flags & EX86_BYTE_ARG) inst_size++; else if (flags & EX86_HALF_ARG) inst_size += sizeof(short); else inst_size += sizeof(sljit_s32); } else { SLJIT_ASSERT(!(flags & EX86_SHIFT_INS) || a == SLJIT_PREF_SHIFT_REG); /* reg_map[SLJIT_PREF_SHIFT_REG] is less than 8. */ if (!(flags & EX86_SSE2_OP1)) { if (reg_map[a] >= 8) rex |= REX_R; } else if (freg_map[a] >= 8) rex |= REX_R; } if (rex) inst_size++; inst = (sljit_u8*)ensure_buf(compiler, 1 + inst_size); PTR_FAIL_IF(!inst); /* Encoding prefixes. */ INC_SIZE(inst_size); if (flags & EX86_PREF_F2) *inst++ = 0xf2; else if (flags & EX86_PREF_F3) *inst++ = 0xf3; else if (flags & EX86_PREF_66) *inst++ = 0x66; /* Rex is always the last prefix. */ if (rex) *inst++ = rex; buf_ptr = inst + size; /* Encode mod/rm byte. */ if (!(flags & EX86_SHIFT_INS)) { if ((flags & EX86_BIN_INS) && a == SLJIT_IMM) *inst = (flags & EX86_BYTE_ARG) ? GROUP_BINARY_83 : GROUP_BINARY_81; if (a == SLJIT_IMM) *buf_ptr = 0; else if (!(flags & EX86_SSE2_OP1)) *buf_ptr = U8(reg_lmap[a] << 3); else *buf_ptr = U8(freg_lmap[a] << 3); } else { if (a == SLJIT_IMM) { if (imma == 1) *inst = GROUP_SHIFT_1; else *inst = GROUP_SHIFT_N; } else *inst = GROUP_SHIFT_CL; *buf_ptr = 0; } if (!(b & SLJIT_MEM)) { *buf_ptr = U8(*buf_ptr | MOD_REG | (!(flags & EX86_SSE2_OP2) ? reg_lmap[b] : freg_lmap[b])); buf_ptr++; } else if (b & REG_MASK) { reg_lmap_b = reg_lmap[b & REG_MASK]; if (!(b & OFFS_REG_MASK) || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP)) { if (immb != 0 || reg_lmap_b == 5) { if (immb <= 127 && immb >= -128) *buf_ptr |= 0x40; else *buf_ptr |= 0x80; } if (!(b & OFFS_REG_MASK)) *buf_ptr++ |= reg_lmap_b; else { buf_ptr[0] |= 0x04; buf_ptr[1] = U8(reg_lmap_b | (reg_lmap[OFFS_REG(b)] << 3)); buf_ptr += 2; } if (immb != 0 || reg_lmap_b == 5) { if (immb <= 127 && immb >= -128) *buf_ptr++ = U8(immb); /* 8 bit displacement. */ else { sljit_unaligned_store_s32(buf_ptr, (sljit_s32)immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_s32); } } } else { if (reg_lmap_b == 5) *buf_ptr |= 0x40; buf_ptr[0] |= 0x04; buf_ptr[1] = U8(reg_lmap_b | (reg_lmap[OFFS_REG(b)] << 3) | (immb << 6)); buf_ptr += 2; if (reg_lmap_b == 5) *buf_ptr++ = 0; } } else { buf_ptr[0] |= 0x04; buf_ptr[1] = 0x25; buf_ptr += 2; sljit_unaligned_store_s32(buf_ptr, (sljit_s32)immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_s32); } if (a == SLJIT_IMM) { if (flags & EX86_BYTE_ARG) *buf_ptr = U8(imma); else if (flags & EX86_HALF_ARG) sljit_unaligned_store_s16(buf_ptr, (sljit_s16)imma); else if (!(flags & EX86_SHIFT_INS)) sljit_unaligned_store_s32(buf_ptr, (sljit_s32)imma); } return inst; } static sljit_s32 emit_vex_instruction(struct sljit_compiler *compiler, sljit_uw op, /* The first and second register operand. */ sljit_s32 a, sljit_s32 v, /* The general operand (not immediate). */ sljit_s32 b, sljit_sw immb) { sljit_u8 *inst; sljit_u8 vex = 0; sljit_u8 vex_m = 0; sljit_uw size; SLJIT_ASSERT(((op & (EX86_PREF_F2 | EX86_PREF_F3 | EX86_PREF_66)) & ((op & (EX86_PREF_F2 | EX86_PREF_F3 | EX86_PREF_66)) - 1)) == 0); op |= EX86_REX; if (op & VEX_OP_0F38) vex_m = 0x2; else if (op & VEX_OP_0F3A) vex_m = 0x3; if ((op & VEX_W) || ((op & VEX_AUTO_W) && !compiler->mode32)) { if (vex_m == 0) vex_m = 0x1; vex |= 0x80; } if (op & EX86_PREF_66) vex |= 0x1; else if (op & EX86_PREF_F2) vex |= 0x3; else if (op & EX86_PREF_F3) vex |= 0x2; op &= ~(EX86_PREF_66 | EX86_PREF_F2 | EX86_PREF_F3); if (op & VEX_256) vex |= 0x4; vex = U8(vex | ((((op & VEX_SSE2_OPV) ? freg_map[v] : reg_map[v]) ^ 0xf) << 3)); size = op & ~(sljit_uw)0xff; size |= (vex_m == 0) ? (EX86_VEX_EXT | 2) : 3; inst = emit_x86_instruction(compiler, size, a, 0, b, immb); FAIL_IF(!inst); SLJIT_ASSERT((inst[-1] & 0xf0) == REX); /* If X or B is present in REX prefix. */ if (vex_m == 0 && inst[-1] & 0x3) vex_m = 0x1; if (vex_m == 0) { vex |= U8(((inst[-1] >> 2) ^ 0x1) << 7); inst[-1] = 0xc5; inst[0] = vex; inst[1] = U8(op); return SLJIT_SUCCESS; } vex_m |= U8((inst[-1] ^ 0x7) << 5); inst[-1] = 0xc4; inst[0] = vex_m; inst[1] = vex; inst[2] = U8(op); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Enter / return */ /* --------------------------------------------------------------------- */ static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr) { sljit_uw type = jump->flags >> TYPE_SHIFT; int short_addr = !(jump->flags & SLJIT_REWRITABLE_JUMP) && !(jump->flags & JUMP_LABEL) && (jump->u.target <= 0xffffffff); /* The relative jump below specialized for this case. */ SLJIT_ASSERT(reg_map[TMP_REG2] >= 8); if (type < SLJIT_JUMP) { /* Invert type. */ *code_ptr++ = U8(get_jump_code(type ^ 0x1) - 0x10); *code_ptr++ = short_addr ? (6 + 3) : (10 + 3); } *code_ptr++ = short_addr ? REX_B : (REX_W | REX_B); *code_ptr++ = MOV_r_i32 | reg_lmap[TMP_REG2]; jump->addr = (sljit_uw)code_ptr; if (jump->flags & JUMP_LABEL) jump->flags |= PATCH_MD; else if (short_addr) sljit_unaligned_store_s32(code_ptr, (sljit_s32)jump->u.target); else sljit_unaligned_store_sw(code_ptr, (sljit_sw)jump->u.target); code_ptr += short_addr ? sizeof(sljit_s32) : sizeof(sljit_sw); *code_ptr++ = REX_B; *code_ptr++ = GROUP_FF; *code_ptr++ = U8(MOD_REG | (type >= SLJIT_FAST_CALL ? CALL_rm : JMP_rm) | reg_lmap[TMP_REG2]); return code_ptr; } static sljit_u8* generate_put_label_code(struct sljit_put_label *put_label, sljit_u8 *code_ptr, sljit_uw max_label) { if (max_label > HALFWORD_MAX) { put_label->addr -= put_label->flags; put_label->flags = PATCH_MD; return code_ptr; } if (put_label->flags == 0) { /* Destination is register. */ code_ptr = (sljit_u8*)put_label->addr - 2 - sizeof(sljit_uw); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); SLJIT_ASSERT((code_ptr[1] & 0xf8) == MOV_r_i32); if ((code_ptr[0] & 0x07) != 0) { code_ptr[0] = U8(code_ptr[0] & ~0x08); code_ptr += 2 + sizeof(sljit_s32); } else { code_ptr[0] = code_ptr[1]; code_ptr += 1 + sizeof(sljit_s32); } put_label->addr = (sljit_uw)code_ptr; return code_ptr; } code_ptr -= put_label->flags + (2 + sizeof(sljit_uw)); SLJIT_MEMMOVE(code_ptr, code_ptr + (2 + sizeof(sljit_uw)), put_label->flags); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); if ((code_ptr[1] & 0xf8) == MOV_r_i32) { code_ptr += 2 + sizeof(sljit_uw); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); } SLJIT_ASSERT(code_ptr[1] == MOV_rm_r); code_ptr[0] = U8(code_ptr[0] & ~0x4); code_ptr[1] = MOV_rm_i32; code_ptr[2] = U8(code_ptr[2] & ~(0x7 << 3)); code_ptr = (sljit_u8*)(put_label->addr - (2 + sizeof(sljit_uw)) + sizeof(sljit_s32)); put_label->addr = (sljit_uw)code_ptr; put_label->flags = 0; return code_ptr; } #ifdef _WIN64 typedef struct { sljit_sw regs[2]; } sljit_sse2_reg; #endif /* _WIN64 */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_uw size; sljit_s32 word_arg_count = 0; sljit_s32 saved_arg_count = SLJIT_KEPT_SAVEDS_COUNT(options); sljit_s32 saved_regs_size, tmp, i; #ifdef _WIN64 sljit_s32 saved_float_regs_size; sljit_s32 saved_float_regs_offset = 0; sljit_s32 float_arg_count = 0; #endif /* _WIN64 */ sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); if (options & SLJIT_ENTER_REG_ARG) arg_types = 0; /* Emit ENDBR64 at function entry if needed. */ FAIL_IF(emit_endbranch(compiler)); compiler->mode32 = 0; /* Including the return address saved by the call instruction. */ saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - saved_arg_count, 1); tmp = SLJIT_S0 - saveds; for (i = SLJIT_S0 - saved_arg_count; i > tmp; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } #ifdef _WIN64 local_size += SLJIT_LOCALS_OFFSET; saved_float_regs_size = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sse2_reg); if (saved_float_regs_size > 0) { saved_float_regs_offset = ((local_size + 0xf) & ~0xf); local_size = saved_float_regs_offset + saved_float_regs_size; } #else /* !_WIN64 */ SLJIT_ASSERT(SLJIT_LOCALS_OFFSET == 0); #endif /* _WIN64 */ arg_types >>= SLJIT_ARG_SHIFT; while (arg_types > 0) { if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) { tmp = 0; #ifndef _WIN64 switch (word_arg_count) { case 0: tmp = SLJIT_R2; break; case 1: tmp = SLJIT_R1; break; case 2: tmp = TMP_REG1; break; default: tmp = SLJIT_R3; break; } #else /* !_WIN64 */ switch (word_arg_count + float_arg_count) { case 0: tmp = SLJIT_R3; break; case 1: tmp = SLJIT_R1; break; case 2: tmp = SLJIT_R2; break; default: tmp = TMP_REG1; break; } #endif /* _WIN64 */ if (arg_types & SLJIT_ARG_TYPE_SCRATCH_REG) { if (tmp != SLJIT_R0 + word_arg_count) EMIT_MOV(compiler, SLJIT_R0 + word_arg_count, 0, tmp, 0); } else { EMIT_MOV(compiler, SLJIT_S0 - saved_arg_count, 0, tmp, 0); saved_arg_count++; } word_arg_count++; } else { #ifdef _WIN64 SLJIT_COMPILE_ASSERT(SLJIT_FR0 == 1, float_register_index_start); float_arg_count++; if (float_arg_count != float_arg_count + word_arg_count) FAIL_IF(emit_sse2_load(compiler, (arg_types & SLJIT_ARG_MASK) == SLJIT_ARG_TYPE_F32, float_arg_count, float_arg_count + word_arg_count, 0)); #endif /* _WIN64 */ } arg_types >>= SLJIT_ARG_SHIFT; } local_size = ((local_size + saved_regs_size + 0xf) & ~0xf) - saved_regs_size; compiler->local_size = local_size; #ifdef _WIN64 if (local_size > 0) { if (local_size <= 4 * 4096) { if (local_size > 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096); if (local_size > 2 * 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 2); if (local_size > 3 * 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 3); } else { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, local_size >> 12); EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_MEM1(SLJIT_SP), -4096); BINARY_IMM32(SUB, 4096, SLJIT_SP, 0); BINARY_IMM32(SUB, 1, TMP_REG1, 0); inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); inst[0] = JNE_i8; inst[1] = (sljit_u8)-21; local_size &= 0xfff; } if (local_size > 0) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -local_size); } #endif /* _WIN64 */ if (local_size > 0) BINARY_IMM32(SUB, local_size, SLJIT_SP, 0); #ifdef _WIN64 if (saved_float_regs_size > 0) { compiler->mode32 = 1; tmp = SLJIT_FS0 - fsaveds; for (i = SLJIT_FS0; i > tmp; i--) { FAIL_IF(emit_groupf(compiler, MOVAPS_xm_x | EX86_SSE2, i, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset)); saved_float_regs_offset += 16; } for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) { FAIL_IF(emit_groupf(compiler, MOVAPS_xm_x | EX86_SSE2, i, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset)); saved_float_regs_offset += 16; } } #endif /* _WIN64 */ return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 saved_regs_size; #ifdef _WIN64 sljit_s32 saved_float_regs_size; #endif /* _WIN64 */ CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); #ifdef _WIN64 local_size += SLJIT_LOCALS_OFFSET; saved_float_regs_size = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sse2_reg); if (saved_float_regs_size > 0) local_size = ((local_size + 0xf) & ~0xf) + saved_float_regs_size; #else /* !_WIN64 */ SLJIT_ASSERT(SLJIT_LOCALS_OFFSET == 0); #endif /* _WIN64 */ /* Including the return address saved by the call instruction. */ saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - SLJIT_KEPT_SAVEDS_COUNT(options), 1); compiler->local_size = ((local_size + saved_regs_size + 0xf) & ~0xf) - saved_regs_size; return SLJIT_SUCCESS; } static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler, sljit_s32 is_return_to) { sljit_uw size; sljit_s32 local_size, i, tmp; sljit_u8 *inst; #ifdef _WIN64 sljit_s32 saved_float_regs_offset; sljit_s32 fscratches = compiler->fscratches; sljit_s32 fsaveds = compiler->fsaveds; #endif /* _WIN64 */ #ifdef _WIN64 saved_float_regs_offset = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sse2_reg); if (saved_float_regs_offset > 0) { compiler->mode32 = 1; saved_float_regs_offset = (compiler->local_size - saved_float_regs_offset) & ~0xf; tmp = SLJIT_FS0 - fsaveds; for (i = SLJIT_FS0; i > tmp; i--) { FAIL_IF(emit_groupf(compiler, MOVAPS_x_xm | EX86_SSE2, i, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset)); saved_float_regs_offset += 16; } for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) { FAIL_IF(emit_groupf(compiler, MOVAPS_x_xm | EX86_SSE2, i, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset)); saved_float_regs_offset += 16; } compiler->mode32 = 0; } #endif /* _WIN64 */ local_size = compiler->local_size; if (is_return_to && compiler->scratches < SLJIT_FIRST_SAVED_REG && (compiler->saveds == SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) { local_size += SSIZE_OF(sw); is_return_to = 0; } if (local_size > 0) BINARY_IMM32(ADD, local_size, SLJIT_SP, 0); tmp = compiler->scratches; for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } tmp = SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options); for (i = SLJIT_S0 + 1 - compiler->saveds; i <= tmp; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } if (is_return_to) BINARY_IMM32(ADD, sizeof(sljit_sw), SLJIT_SP, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler) { CHECK_ERROR(); CHECK(check_sljit_emit_return_void(compiler)); compiler->mode32 = 0; FAIL_IF(emit_stack_frame_release(compiler, 0)); return emit_byte(compiler, RET_near); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_return_to(compiler, src, srcw)); compiler->mode32 = 0; if ((src & SLJIT_MEM) || (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options)))) { ADJUST_LOCAL_OFFSET(src, srcw); EMIT_MOV(compiler, TMP_REG2, 0, src, srcw); src = TMP_REG2; srcw = 0; } FAIL_IF(emit_stack_frame_release(compiler, 1)); SLJIT_SKIP_CHECKS(compiler); return sljit_emit_ijump(compiler, SLJIT_JUMP, src, srcw); } /* --------------------------------------------------------------------- */ /* Call / return instructions */ /* --------------------------------------------------------------------- */ #ifndef _WIN64 static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr) { sljit_s32 src = src_ptr ? (*src_ptr) : 0; sljit_s32 word_arg_count = 0; SLJIT_ASSERT(reg_map[SLJIT_R1] == 6 && reg_map[SLJIT_R3] == 1 && reg_map[TMP_REG1] == 2); SLJIT_ASSERT(!(src & SLJIT_MEM)); /* Remove return value. */ arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) word_arg_count++; arg_types >>= SLJIT_ARG_SHIFT; } if (word_arg_count == 0) return SLJIT_SUCCESS; if (word_arg_count >= 3) { if (src == SLJIT_R2) *src_ptr = TMP_REG1; EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R2, 0); } return emit_mov(compiler, SLJIT_R2, 0, SLJIT_R0, 0); } #else static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr) { sljit_s32 src = src_ptr ? (*src_ptr) : 0; sljit_s32 arg_count = 0; sljit_s32 word_arg_count = 0; sljit_s32 float_arg_count = 0; sljit_s32 types = 0; sljit_s32 data_trandfer = 0; static sljit_u8 word_arg_regs[5] = { 0, SLJIT_R3, SLJIT_R1, SLJIT_R2, TMP_REG1 }; SLJIT_ASSERT(reg_map[SLJIT_R3] == 1 && reg_map[SLJIT_R1] == 2 && reg_map[SLJIT_R2] == 8 && reg_map[TMP_REG1] == 9); SLJIT_ASSERT(!(src & SLJIT_MEM)); arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { types = (types << SLJIT_ARG_SHIFT) | (arg_types & SLJIT_ARG_MASK); switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: case SLJIT_ARG_TYPE_F32: arg_count++; float_arg_count++; if (arg_count != float_arg_count) data_trandfer = 1; break; default: arg_count++; word_arg_count++; if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count]) { data_trandfer = 1; if (src == word_arg_regs[arg_count]) { EMIT_MOV(compiler, TMP_REG2, 0, src, 0); *src_ptr = TMP_REG2; } } break; } arg_types >>= SLJIT_ARG_SHIFT; } if (!data_trandfer) return SLJIT_SUCCESS; while (types) { switch (types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (arg_count != float_arg_count) FAIL_IF(emit_sse2_load(compiler, 0, arg_count, float_arg_count, 0)); arg_count--; float_arg_count--; break; case SLJIT_ARG_TYPE_F32: if (arg_count != float_arg_count) FAIL_IF(emit_sse2_load(compiler, 1, arg_count, float_arg_count, 0)); arg_count--; float_arg_count--; break; default: if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count]) EMIT_MOV(compiler, word_arg_regs[arg_count], 0, word_arg_count, 0); arg_count--; word_arg_count--; break; } types >>= SLJIT_ARG_SHIFT; } return SLJIT_SUCCESS; } #endif SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types) { CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types)); compiler->mode32 = 0; if ((type & 0xff) != SLJIT_CALL_REG_ARG) PTR_FAIL_IF(call_with_args(compiler, arg_types, NULL)); if (type & SLJIT_CALL_RETURN) { PTR_FAIL_IF(emit_stack_frame_release(compiler, 0)); type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP); } SLJIT_SKIP_CHECKS(compiler); return sljit_emit_jump(compiler, type); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw)); compiler->mode32 = 0; if (src & SLJIT_MEM) { ADJUST_LOCAL_OFFSET(src, srcw); EMIT_MOV(compiler, TMP_REG2, 0, src, srcw); src = TMP_REG2; } if (type & SLJIT_CALL_RETURN) { if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) { EMIT_MOV(compiler, TMP_REG2, 0, src, srcw); src = TMP_REG2; } FAIL_IF(emit_stack_frame_release(compiler, 0)); } if ((type & 0xff) != SLJIT_CALL_REG_ARG) FAIL_IF(call_with_args(compiler, arg_types, &src)); if (type & SLJIT_CALL_RETURN) type = SLJIT_JUMP; SLJIT_SKIP_CHECKS(compiler); return sljit_emit_ijump(compiler, type, src, srcw); } static sljit_s32 emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { sljit_u8 *inst; if (FAST_IS_REG(dst)) { if (reg_map[dst] < 8) return emit_byte(compiler, U8(POP_r + reg_lmap[dst])); inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = REX_B; POP_REG(reg_lmap[dst]); return SLJIT_SUCCESS; } /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst = POP_rm; return SLJIT_SUCCESS; } static sljit_s32 emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { sljit_u8 *inst; if (FAST_IS_REG(src)) { if (reg_map[src] < 8) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 1); FAIL_IF(!inst); INC_SIZE(1 + 1); PUSH_REG(reg_lmap[src]); } else { inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + 1); FAIL_IF(!inst); INC_SIZE(2 + 1); *inst++ = REX_B; PUSH_REG(reg_lmap[src]); } } else { /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); inst[0] = GROUP_FF; inst[1] |= PUSH_rm; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); } RET(); return SLJIT_SUCCESS; } static sljit_s32 sljit_emit_get_return_address(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { sljit_s32 saved_regs_size; compiler->mode32 = 0; saved_regs_size = GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds - SLJIT_KEPT_SAVEDS_COUNT(compiler->options), 0); return emit_mov(compiler, dst, dstw, SLJIT_MEM1(SLJIT_SP), compiler->local_size + saved_regs_size); } /* --------------------------------------------------------------------- */ /* Other operations */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 reg, sljit_s32 mem, sljit_sw memw) { sljit_u8* inst; sljit_s32 i, next, reg_idx; sljit_u8 regs[2]; CHECK_ERROR(); CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw)); if (!(reg & REG_PAIR_MASK)) return sljit_emit_mem_unaligned(compiler, type, reg, mem, memw); ADJUST_LOCAL_OFFSET(mem, memw); compiler->mode32 = 0; if ((mem & REG_MASK) == 0) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, memw); mem = SLJIT_MEM1(TMP_REG1); memw = 0; } else if (!(mem & OFFS_REG_MASK) && ((memw < HALFWORD_MIN) || (memw > HALFWORD_MAX - SSIZE_OF(sw)))) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, memw); mem = SLJIT_MEM2(mem & REG_MASK, TMP_REG1); memw = 0; } regs[0] = U8(REG_PAIR_FIRST(reg)); regs[1] = U8(REG_PAIR_SECOND(reg)); next = SSIZE_OF(sw); if (!(type & SLJIT_MEM_STORE) && (regs[0] == (mem & REG_MASK) || regs[0] == OFFS_REG(mem))) { if (regs[1] == (mem & REG_MASK) || regs[1] == OFFS_REG(mem)) { /* Base and offset cannot be TMP_REG1. */ EMIT_MOV(compiler, TMP_REG1, 0, OFFS_REG(mem), 0); if (regs[1] == OFFS_REG(mem)) next = -SSIZE_OF(sw); mem = (mem & ~OFFS_REG_MASK) | TO_OFFS_REG(TMP_REG1); } else { next = -SSIZE_OF(sw); if (!(mem & OFFS_REG_MASK)) memw += SSIZE_OF(sw); } } for (i = 0; i < 2; i++) { reg_idx = next > 0 ? i : (i ^ 0x1); reg = regs[reg_idx]; if ((mem & OFFS_REG_MASK) && (reg_idx == 1)) { inst = (sljit_u8*)ensure_buf(compiler, (sljit_uw)(1 + 5)); FAIL_IF(!inst); INC_SIZE(5); inst[0] = U8(REX_W | ((reg_map[reg] >= 8) ? REX_R : 0) | ((reg_map[mem & REG_MASK] >= 8) ? REX_B : 0) | ((reg_map[OFFS_REG(mem)] >= 8) ? REX_X : 0)); inst[1] = (type & SLJIT_MEM_STORE) ? MOV_rm_r : MOV_r_rm; inst[2] = 0x44 | U8(reg_lmap[reg] << 3); inst[3] = U8(memw << 6) | U8(reg_lmap[OFFS_REG(mem)] << 3) | reg_lmap[mem & REG_MASK]; inst[4] = sizeof(sljit_sw); } else if (type & SLJIT_MEM_STORE) { EMIT_MOV(compiler, mem, memw, reg, 0); } else { EMIT_MOV(compiler, reg, 0, mem, memw); } if (!(mem & OFFS_REG_MASK)) memw += next; } return SLJIT_SUCCESS; } static sljit_s32 emit_mov_int(struct sljit_compiler *compiler, sljit_s32 sign, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; sljit_s32 dst_r; compiler->mode32 = 0; if (src == SLJIT_IMM) { if (FAST_IS_REG(dst)) { if (!sign || ((sljit_u32)srcw <= 0x7fffffff)) return emit_do_imm32(compiler, reg_map[dst] <= 7 ? 0 : REX_B, U8(MOV_r_i32 | reg_lmap[dst]), srcw); inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; compiler->mode32 = 0; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) dst_r = src; else { if (sign) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst = MOVSXD_r_rm; } else { compiler->mode32 = 1; EMIT_MOV(compiler, dst_r, 0, src, srcw); compiler->mode32 = 0; } } if (dst & SLJIT_MEM) { compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; compiler->mode32 = 0; } return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG; sljit_u8 *inst, *jump_inst1, *jump_inst2; sljit_uw size1, size2; compiler->mode32 = 0; if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_U32) { if (src != SLJIT_IMM) { compiler->mode32 = 1; EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); compiler->mode32 = 0; } else FAIL_IF(emit_do_imm32(compiler, reg_map[TMP_REG1] <= 7 ? 0 : REX_B, U8(MOV_r_i32 | reg_lmap[TMP_REG1]), srcw)); FAIL_IF(emit_groupf(compiler, CVTSI2SD_x_rm | EX86_SELECT_F2_F3(op) | EX86_SSE2_OP1, dst_r, TMP_REG1, 0)); compiler->mode32 = 1; if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } if (!FAST_IS_REG(src)) { EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); src = TMP_REG1; } BINARY_IMM32(CMP, 0, src, 0); inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); inst[0] = JL_i8; jump_inst1 = inst; size1 = compiler->size; compiler->mode32 = 0; FAIL_IF(emit_groupf(compiler, CVTSI2SD_x_rm | EX86_SELECT_F2_F3(op) | EX86_SSE2_OP1, dst_r, src, 0)); inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); inst[0] = JMP_i8; jump_inst2 = inst; size2 = compiler->size; jump_inst1[1] = U8(size2 - size1); if (src != TMP_REG1) EMIT_MOV(compiler, TMP_REG1, 0, src, 0); EMIT_MOV(compiler, TMP_REG2, 0, src, 0); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 1, TMP_REG1, 0); FAIL_IF(!inst); inst[1] |= SHR; compiler->mode32 = 1; BINARY_IMM32(AND, 1, TMP_REG2, 0); compiler->mode32 = 0; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG2, 0); FAIL_IF(!inst); inst[0] = OR_r_rm; FAIL_IF(emit_groupf(compiler, CVTSI2SD_x_rm | EX86_SELECT_F2_F3(op) | EX86_SSE2_OP1, dst_r, TMP_REG1, 0)); compiler->mode32 = 1; FAIL_IF(emit_groupf(compiler, ADDSD_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, dst_r, dst_r, 0)); jump_inst2[1] = U8(compiler->size - size2); if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } static sljit_s32 sljit_emit_fset(struct sljit_compiler *compiler, sljit_s32 freg, sljit_u8 rex, sljit_s32 is_zero) { sljit_u8 *inst; sljit_u32 size; if (is_zero) { rex = freg_map[freg] >= 8 ? (REX_R | REX_B) : 0; } else { if (freg_map[freg] >= 8) rex |= REX_R; if (reg_map[TMP_REG1] >= 8) rex |= REX_B; } size = (rex != 0) ? 5 : 4; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); *inst++ = GROUP_66; if (rex != 0) *inst++ = rex; inst[0] = GROUP_0F; if (is_zero) { inst[1] = PXOR_x_xm; inst[2] = U8(freg_lmap[freg] | (freg_lmap[freg] << 3) | MOD_REG); } else { inst[1] = MOVD_x_rm; inst[2] = U8(reg_lmap[TMP_REG1] | (freg_lmap[freg] << 3) | MOD_REG); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler, sljit_s32 freg, sljit_f32 value) { union { sljit_s32 imm; sljit_f32 value; } u; CHECK_ERROR(); CHECK(check_sljit_emit_fset32(compiler, freg, value)); u.value = value; if (u.imm != 0) { compiler->mode32 = 1; EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, u.imm); } return sljit_emit_fset(compiler, freg, 0, u.imm == 0); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler, sljit_s32 freg, sljit_f64 value) { union { sljit_sw imm; sljit_f64 value; } u; CHECK_ERROR(); CHECK(check_sljit_emit_fset64(compiler, freg, value)); u.value = value; if (u.imm != 0) { compiler->mode32 = 0; EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, u.imm); } return sljit_emit_fset(compiler, freg, REX_W, u.imm == 0); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 freg, sljit_s32 reg) { sljit_u8 *inst; sljit_u32 size; sljit_u8 rex = 0; CHECK_ERROR(); CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg)); if (!(op & SLJIT_32)) rex = REX_W; if (freg_map[freg] >= 8) rex |= REX_R; if (reg_map[reg] >= 8) rex |= REX_B; size = (rex != 0) ? 5 : 4; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); *inst++ = GROUP_66; if (rex != 0) *inst++ = rex; inst[0] = GROUP_0F; inst[1] = GET_OPCODE(op) == SLJIT_COPY_TO_F64 ? MOVD_x_rm : MOVD_rm_x; inst[2] = U8(reg_lmap[reg] | (freg_lmap[freg] << 3) | MOD_REG); return SLJIT_SUCCESS; } static sljit_s32 skip_frames_before_return(struct sljit_compiler *compiler) { sljit_s32 tmp, size; /* Don't adjust shadow stack if it isn't enabled. */ if (!cpu_has_shadow_stack()) return SLJIT_SUCCESS; size = compiler->local_size; tmp = compiler->scratches; if (tmp >= SLJIT_FIRST_SAVED_REG) size += (tmp - SLJIT_FIRST_SAVED_REG + 1) * SSIZE_OF(sw); tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; if (SLJIT_S0 >= tmp) size += (SLJIT_S0 - tmp + 1) * SSIZE_OF(sw); return adjust_shadow_stack(compiler, SLJIT_MEM1(SLJIT_SP), size); }