/**************************************************************************** ** ** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the documentation of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:FDL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Free Documentation License Usage ** Alternatively, this file may be used under the terms of the GNU Free ** Documentation License version 1.3 as published by the Free Software ** Foundation and appearing in the file included in the packaging of ** this file. Please review the following information to ensure ** the GNU Free Documentation License version 1.3 requirements ** will be met: http://www.gnu.org/copyleft/fdl.html. ** $QT_END_LICENSE$ ** ****************************************************************************/ /*! \page objecttrees.html \title Object Trees & Ownership \ingroup qt-basic-concepts \brief Information about the parent-child pattern used to describe object ownership in Qt. \section1 Overview \l{QObject}{QObjects} organize themselves in object trees. When you create a QObject with another object as parent, it's added to the parent's \l{QObject::children()}{children()} list, and is deleted when the parent is. It turns out that this approach fits the needs of GUI objects very well. For example, a \l QShortcut (keyboard shortcut) is a child of the relevant window, so when the user closes that window, the shorcut is deleted too. \l QWidget, the base class of everything that appears on the screen, extends the parent-child relationship. A child normally also becomes a child widget, i.e. it is displayed in its parent's coordinate system and is graphically clipped by its parent's boundaries. For example, when the application deletes a message box after it has been closed, the message box's buttons and label are also deleted, just as we'd want, because the buttons and label are children of the message box. You can also delete child objects yourself, and they will remove themselves from their parents. For example, when the user removes a toolbar it may lead to the application deleting one of its \l QToolBar objects, in which case the tool bar's \l QMainWindow parent would detect the change and reconfigure its screen space accordingly. The debugging functions \l QObject::dumpObjectTree() and \l QObject::dumpObjectInfo() are often useful when an application looks or acts strangely. \target note on the order of construction/destruction of QObjects \section1 Construction/Destruction Order of QObjects When \l {QObject} {QObjects} are created on the heap (i.e., created with \e new), a tree can be constructed from them in any order, and later, the objects in the tree can be destroyed in any order. When any QObject in the tree is deleted, if the object has a parent, the destructor automatically removes the object from its parent. If the object has children, the destructor automatically deletes each child. No QObject is deleted twice, regardless of the order of destruction. When \l {QObject} {QObjects} are created on the stack, the same behavior applies. Normally, the order of destruction still doesn't present a problem. Consider the following snippet: \snippet code/doc_src_objecttrees.cpp 0 The parent, \c window, and the child, \c quit, are both \l {QObject} {QObjects} because QPushButton inherits QWidget, and QWidget inherits QObject. This code is correct: the destructor of \c quit is \e not called twice because the C++ language standard \e {(ISO/IEC 14882:2003)} specifies that destructors of local objects are called in the reverse order of their constructors. Therefore, the destructor of the child, \c quit, is called first, and it removes itself from its parent, \c window, before the destructor of \c window is called. But now consider what happens if we swap the order of construction, as shown in this second snippet: \snippet code/doc_src_objecttrees.cpp 1 In this case, the order of destruction causes a problem. The parent's destructor is called first because it was created last. It then calls the destructor of its child, \c quit, which is incorrect because \c quit is a local variable. When \c quit subsequently goes out of scope, its destructor is called again, this time correctly, but the damage has already been done. */